文档库 最新最全的文档下载
当前位置:文档库 › EGFR, KRAS,BRAF and PIK3CA in 861 patients

EGFR, KRAS,BRAF and PIK3CA in 861 patients

EGFR, KRAS,BRAF and PIK3CA in 861 patients
EGFR, KRAS,BRAF and PIK3CA in 861 patients

Cancer Biomarkers10(2011/2012)63–6963 DOI10.3233/CBM-2012-0233

IOS Press

Somatic mutation analysis of EGFR,KRAS, BRAF and PIK3CA in861patients with

non-small cell lung cancer

Jianping Xu a,Jiaying He b,Huiyi Yang b,Xiaodi Luo b,Zhangmin Liang b,Jiaxin Chen b,Zhiping Cai b, Jiasen Xu b and Lifen Ren-Heidenreich b,?

a Cancer Institute&Hospital,Chinese Academy of Medical Sciences,Beijing,China

b SurExam Bio-Tech Co.,Guangzhou,Guangdong,China

Abstract.The prevalence of EGFR,KRAS,BRAF and PIK3CA mutations in861randomly selected Chinese patients with non-small cell lung cancer(NSCLC)was assayed by the SurPlex-xTAG70plex platform and analyzed.The results showed that the occurrence rates were41.0,8.0,0.7and3.7%,respectively.The mutation rates signi?cantly correlated with gender, histology and smoking history.The EGFR exon19,20and21mutations were higher in females compared to males(p<0.001, exon19and21;p=0.018,exon20),higher in adenocarcinomas compared to other forms of lung cancers(p<0.001,exon19 and21;p=0.035,exon20),and higher in non-smokers compared to smokers(p<0.001,exon19and21;p=0.029,exon20). Conversely,the KRAS mutations were higher in males compared to females(p=0.004),higher in adenocarcinomas compared to other forms of lung cancers(p<0.001),and higher in smokers compared to non-smokers(p<0.001).The PIK3CA mutation rate was lower in adenocarcinomas compared to other forms of lung cancers(p=0.003).

Keywords:EGFR signaling pathway,somatic mutations,non-small cell lung cancers,biomarker,Chinese patients,liquidchip

1.Introduction

Lung cancer,speci?cally non-small cell lung can-cer(NSCLC),is the leading cause of death in can-cer patients worldwide[1].Evidence has accumulat-ed indicating that the epidermal growth factor receptor (EGFR)plays a critical role in cell differentiation and proliferation,and becomes aberrantly regulated in can-cer cells[2–4].Tyrosine kinase inhibitors(TKIs),such as Ge?tinib(Iressa)and Erlotinib(Tarceva),which tar-get the EGFR tyrosine kinase subunit and hence block EGFR function,have been approved by the US FDA for the treatment of NSCLC patients.In clinical tri-als,however,only a small portion of patients were re-?Corresponding author:Lifen Ren-Heidenreich,PhD,Global Chief Scienti?c Of?cer,SurExam Bio-Tech Co.,Guangzhou Tech-nology Innovation Base,80Lanyue Road,Science City,Guangzhou 510663,China.https://www.wendangku.net/doc/135544230.html,/,My US Mobile:401206 2931;Fax:+862032057122;E-mail:lifen.ren@https://www.wendangku.net/doc/135544230.html,/ lifenren@https://www.wendangku.net/doc/135544230.html,.sponsive to the treatments[5–7].Somatic gene muta-tions in the EGFR signaling pathway,such as EGFR, KRAS,BRAF and PIK3CA,were found to correlate with the clinical response to EGFR-TKIs.Some mu-tations on EGFR exon18,19or21lead to alterations in downstream signaling pathways and make tumor cells more susceptible to TKI-mediated apoptosis[8–10],while other mutations on EGFR exon20,BRAF, KRAS,or PIK3CA contribute to resistance to TKI ther-apies[11–15].Therefore,screening for such mutations in NSCLC patients could lead to the identi?cation of subgroups of patients who would bene?t substantially from EGFR-TKIs.Previous studies have demonstrated that EGFR kinase domain mutations are predominantly observed in lung adenocarcinomas,non-smokers,East Asians,and females[16–20].

Also in China among all cancers,lung cancer

is the leading cause of death[21];however,studies on a cohort of Chinese patients are lacking.The

xTAG70plex developed by SurExam(70plex),is a ro-

ISSN1574-0153/11/12/$27.50 2011/2012–IOS Press and the authors.All rights reserved

64J.Xu et al./Somatic mutation analysis of EGFR,KRAS,BRAF and PIK3CA in861patients with non-small cell lung cancer bust platform for simultaneous detection of the70most

frequent alleles of EGFR,KRAS,BRAF and PIK3CA

gene somatic mutations[22].In this study,the mutation

status of EGFR,KRAS,BRAF and PIK3CA in DNA

extracted from formalin-?xed and paraf?n-embedded

(FFPE)tumor samples of861Chinese with NSCLC

was assayed by the70plex and analyzed.

2.Patients and methods

2.1.Patients

The FFPE tumor samples used in this study were pre-

pared from primary or relapsed surgical specimens of

861randomly selected Chinese patients with NSCLC

diagnosed between May,2010and Aug,2011.Sam-

ples for this study are collected from all major hospitals

throughout China.All samples and clinical data were

provided by SurExam Testing Center.

2.2.Mutation analysis of EGFR,KRAS,BRAF and

PIK3CA

Tumor genomic DNA

each FFPE slide was

extracted with the system(Promega,GA, USA)and the concentration was determined using the Nanodrop1000spectrophotometer(Thermo Scienti?c, USA).DNA of all861samples tested was suf?cient for analysis.The mutation status of exons18to21 of EGFR,exons2and3of KRAS,exon15of BRAF and exons9and20of PIK3CA were analyzed with the70plex for the70alleles.The70plex includes?ve major steps:1)multiplex PCR to amplify the regions of target genes;2)exonuclease I and shrimp alkaline phosphatase(EXO-SAP)cleaning in which the PCR mixture was treated using EXO-SAP to remove excess nucleotides and primers;3)allele speci?c primer ex-tension(ASPE)in which the EXO-SAP-cleaned PCR product was subjected to an ASPE step where each of70universal tags was linked to a speci?c primer sequence complementary to a speci?c gene of inter-est.The Tsp DNA polymerase will then only extend primers that are a100%match to the templates;4) hybridization to beads.The ASPE products were hy-bridized to speci?c anti-tag probes that were pre-coated on the polystyrene microspheres and5)Luminex anal-ysis.The beads were then applied to the Luminex200 and median?uorescence intensity(MFI)was read and analyzed.The DNA extraction and the?rst3steps were performed in separated rooms and controlled us-ing the GMP standards.Steps4and5were performed in the GLP lab.A series of mutational analyses was performed at SurExam Testing Center.

Table1

Patient characteristics(n=861)

No.of patients

Median age58(15–85)years

Gender

Female

Male

368

493

Histology

ADC

Non-ADC

667

194

Smoking history

Smokers a

Non-smokers b

Unknown

411

439

11

ADC:adenocarcinoma.

a Included ever smokers and current smokers.

b Never smokers.

2.3.Statistical analysis

The statistical analysis was performed using the SPSS Base System TM and Advanced Statistics TM pro-grams(SPSS,Chicago,IL,USA).The variables mea-sured in the study were tested for associations by the chi-square test.If each number of samples in the con-tingency table was fewer than?ve,Fisher’s exact test was used.P values that were less than0.05were con-sidered statistically signi?cant.

3.Results

3.1.Detailed clinical and pathological characteristics

of861Chinese patients with NSCLC

Detailed clinical and pathological characteristics of these patients are presented in Table1.Patient age ranged from15to85years with a median age of 58years.Of the861patients,667(77.5%)were diag-nosed with adenocarcinoma and194(22.5%)with an-other type of NSCLC.All non-adenocarcinomas sam-ples are squamous cell carcinoma.Samples with large cell neuroendocrine carcinomas and carcinoids were not included in this study.Four hundred and eleven were smokers(47.7%),439,non-smokers(51.0%)and 11,unknown(1.3%).“Non-smokers”are referred to never smokers;and all current smokers and former/ever smokers are grouped as“smokers”in this study.

3.2.EGFR,KRAS,BRAF and PIK3CA mutation

status in Chinese patients with NSCLC

Detection of EGFR,KRAS,BRAF and PIK3CA mu-tation status was performed in861specimens.EGFR

J.Xu et al./Somatic mutation analysis of EGFR,KRAS,BRAF and PIK3CA in861patients with non-small cell lung cancer

65

Fig.1.DNA sequencing data of6specimens that had multiple mu-tations.(A)The specimen carrying both EGFR exon18G719A (GGC>GCC)and exon20S768I(AGC>ATC)mutations.(B)The specimen carrying both EGFR exon19del E746-A750(K745:AAA) and exon20T790M(ACG>ATG)mutations.(C)The specimen carrying both EGFR exon20T790M(ACG>ATG)and exon21 L858R(CTG>CGG)mutations.(D)The specimen carrying both EGFR exon19del E746-A750(K745:AAA)and KRAS exon2G12V (GGT>GTT)mutations.(E)The specimen carrying both EGFR ex-on19del L747-E749ins P and PIK3CA exon9E545K(GAG>AAG) mutations.(F)The specimen carrying both EGFR exon21L858R (CTG>CGG)and PIK3CA exon20H1047R(CAT>CGT)muta-tions.

mutation was detected in353of861tumors(41.0%). Of these353mutations,the distribution of the muta-tions was that10were in exon18(2.8%),162were in exon19(45.9%),15were in exon20(4.2%),and 166were in exon21(47.0%).The occurrence rates of KRAS,BRAF and PIK3CA mutations were8.0,0.7and 3.7%,respectively(Table2).

There were25specimens(2.9%)that had multiple mutations.Twenty four of them(96.0%)harbored two different mutations,and the other one harbored three mutations.Eleven specimens(44.0%)harbored EGFR exon19or21as well as PIK3CA mutations simultane-

Table2

EGFR,KRAS,BRAF and PIK3CA mutation status in861Chinese patients with NSCLC

Gene No.of mutation Percentage(%)

EGFR

Exon18

Exon19

Exon20

Exon21

353

10

162

15

166

41.0

1.2

18.8

1.7

19.3

KRAS

Exon2

Exon3

69

66

3

8.0

7.7

0.3

BRAF Exon1560.7

PIK3CA

Exon9

Exon20

32

23

9

3.7

2.7

1.0 ously;1,EGFR exon19as well as KRAS mutation;and 1,KRAS and PIK3CA mutation.Interestingly,13of15 EGFR exon20mutation specimens(86.7%)harbored another concomitant EGFR mutation(2in exon18;5, exon19and6,exon21)(Table3).Results from all of 25specimens carrying multiple mutations were further con?rmed by regular DNA sequencing(Fig.1).

In the EGFR gene,the most prevalent mutation type was L858R(CTG>CGG)in exon21,which account-ed for46.5%of all EGFR mutations.Del E746-A750 (K745:AAA),del E746-A750(K745:AAG),del L747-S752ins S,del L747-E749ins P and del L747-T751 were the?ve major in-frame deletions in exon19, which occupied90.1%of all EGFR exon19mutations (Fig.2a).In KRAS and PIK3CA mutations,KRAS ex-on2G12C,G12D,G12V,G12A and PIK3CA exon9 E545K,E542K,exon20H1047R were more frequent than other types.All of the BRAF mutations detected in exon15were V600E(Fig.2b).

3.3.Relationship between patient characteristics and

EGFR,KRAS,BRAF and PIK3CA mutations Relationships between patient characteristics and EGFR,KRAS,BRAF and PIK3CA mutations are shown in Table4.The EGFR exon19,20and21mutations were more common in females than in males(28.3% versus11.8%in exon19,p<0.001;3.0%versus0.8% in exon20,p=0.018;and27.4%versus13.2%in exon21,p<0.001),more in adenocarcinomas than in other forms of lung cancers(22.6%versus5.7% in exon19,p<0.001;2.2%versus0.0%in exon 20,p=0.029;and22.6%versus7.7%in exon21, p<0.001),and more in non-smokers than smokers (26.7%versus10.7%in exon19,p<0.001;2.7% versus0.7%in exon20,p=0.035;and27.6%ver-sus10.2%in exon21,p<0.001).There was also

66J.Xu et al./Somatic mutation analysis of EGFR,KRAS,BRAF and PIK3CA in861patients with non-small cell lung

cancer

(a)

(b)

Fig.2.Relative frequency of individual mutations.EGFR exons18-21(a).KRAS exons2and3,BRAF exon15,and PIK3CA exons9and20(b).

a tendency towards a higher KRAS mutation ratio in males(10.3%males versus4.9%females,p=0.004), adenocarcinomas(9.9%adenocarcinomas versus1.5% non-adenocarcinomas,p<0.001)and smokers(11.7% smokers versus4.6%non-smokers,p<0.001),and a tendency towards a lower PIK3CA mutation ratio in adenocarcinomas(2.7%adenocarcinomas versus7.2% non-adenocarcinomas,p=0.003).

4.Discussion

In this study,the prevalence of EGFR,KRAS,BRAF and PIK3CA somatic mutations in randomly selected 861Chinese NSCLC patients was assayed and ana-lyzed.To our knowledge,it represents the?rst large-scale samples analysis of major recurrent somatic mu-tations in the EGFR signaling pathway on Chinese NSCLC patients.The frequency of EGFR,KRAS, BRAF and PIK3CA mutations in Chinese NSCLC pa-tients is similar to that in East Asian patients[6,23–28], but the frequency of EGFR mutation is higher than that in Caucasian populations,and the frequency of KRAS mutation is quite opposite[10,29–31].This provides a rationale to predict relatively high response rates to EGFR-TKIs in Chinese patients,based on the relative-ly high EGFR mutation rate and low KRAS mutation rate observed in this study.

J.Xu et al./Somatic mutation analysis of EGFR,KRAS,BRAF and PIK3CA in861patients with non-small cell lung cancer67

Table3

Summary of25NSCLC patients with multiple mutations in their tumors

Clinical characteristics Mutation sites

No.Age/gender Histology Smoking

161/F ADC No EGFR exon20and21

248/F ADC No EGFR exon19and20

361/F ADC No EGFR exon19and20,and PIK3CA exon20

467/M ADC No EGFR exon21and PIK3CA exon9

550/F ADC No EGFR exon19and PIK3CA exon9

656/M ADC No EGFR exon19and PIK3CA exon9

748/F ADC No EGFR exon19and PIK3CA exon9

845/M ADC Yes EGFR exon20and21

964/F ADC No EGFR exon19and20

1077/M Non-ADC Yes EGFR exon21and PIK3CA exon20

1142/M ADC Yes EGFR exon19and PIK3CA exon20

12Unknown/M Non-ADC Yes EGFR exon21and PIK3CA exon9

1371/F ADC No EGFR exon20and21

1450/F ADC No EGFR exon20and21

1554/M ADC No EGFR exon21and PIK3CA exon9

1654/F ADC No EGFR exon19and20

1755/F ADC No EGFR exon19and PIK3CA exon9

1842/F ADC No KRAS exon2and PIK3CA exon9

1950/M ADC Yes EGFR exon20and21

2056/M ADC Yes EGFR exon19and KRAS exon2

2155/F Non-ADC No EGFR exon19and PIK3CA exon9

2257/F ADC No EGFR exon19and20

2344/F ADC No EGFR exon18and20

2456/F ADC No EGFR exon20and21

2538/M ADC No EGFR exon18and20

ADC:adenocarcinoma;F:female;M:male.

Table4

Factors associated with EGFR,KRAS,BRAF and PIK3CA mutations

Mutations/patients tested

EGFR KRAS PIK3CA

Factors Exon19p-Value Exon20p-Value Exon21p-Value Exon

2&3p-Value Exon

9&20

p-Value

Gender

Female Male 104/368

58/493

<0.00111/368

4/493

0.018101/368

65/493

<0.00118/368

51/493

0.0049/368

23/493

0.089

Histology

ADC Non-ADC 151/667

11/194

<0.00115/667

0/194

0.029151/667

15/194

<0.00166/667

3/194

<0.00118/667

14/194

0.003

Smoking history

Smokers Non-smokers 44/411

117/439

<0.0013/411

12/439

0.03542/411

121/439

<0.00148/411

20/439

<0.00118/411

14/439

0.362

ADC:adenocarcinoma.

Concurrent presence of EGFR and KRAS mutations in NSCLC patients is relatively rare and their appear-ance is believed to be mutually exclusive[26,32–35]. And in this study,only1case(0.1%)out of861pa-tients with tumors harboring multiple EGFR and KRAS mutations was found.Otherwise,the mutational sta-tus of PIK3CA was not mutually exclusive to EGFR or KRAS[36].Kobayashi et al.and Pao et al.reported that EGFR exon20T790M mutation appeared to be associ-ated with an acquired resistance to EGFR-TKIs[37,38].It explained why in this study,most of the EGFR exon 20mutations were frequently associated with EGFR activating mutations.

The EGFR exon19,20and21mutations in this study were linked to gender,histology type and smoking his-tory,a?nding in accordance with those from previous studies[9,10,39].The conclusions that KRAS muta-tions were linked to gender,histology type and smok-ing history,while PIK3CA was only linked to histology type,were reported in previous studies[24,28,40].

68J.Xu et al./Somatic mutation analysis of EGFR,KRAS,BRAF and PIK3CA in861patients with non-small cell lung cancer

The percentage of Chinese lung cancer patients with-out smoking history is much higher than that in indus-trialized North America and Europe[41].For example, the percentage of lung cancer incidences in Chinese females caused by smoking is much lower than that in North America and Europe[41].It should be point-ed out that,although Chinese women do not usually smoke,they might be subjected to second hand smoke. In addition,culture and environmental pollution might also play important roles in these differences.

In summary,this study represents the prevalence of EGFR,KRAS,BRAF and PIK3CA somatic mutations in Chinese NSCLC patients and the relationship of the mutation rates with the patient characteristics of gen-der,histology and smoking history.The results may suggest that a substantial portion of adenocarcinomas in Chinese female,non-smoker patients could be asso-ciated with a favorable response to EGFR-TKIs. Acknowledgements

Reagents and funding for this study were provided by SurExam Bio-Tech Co.Ltd,Guangzhou,China.We would like to thank Guoqiang Li,Shiyang Wu,Con-gling Liu,Xianbiao Sun,Xuqiu Qin,Feng Wang and Yujin Chen for their assistance and technical support. Con?ict of interest

Jianping Xu and Jiaying He contributed equally to this study.

References

[1]Parkin DM,Bray F,Ferlay J,Pisani P.Global cancer statistics,

2002.CA Cancer J Clin2005;55:74-108.

[2]Ciardiello F,Tortora G.A novel approach in the treatment of

cancer:targeting the epidermal growth factor receptor.Clin

Cancer Res2001;7:2958-70.

[3]Scagliotti GV,Selvaggi G,Novello S,Hirsch FR.The biology

of epidermal growth factor receptor in lung cancer.Clin Cancer

Res2004;10:4227-32.

[4]Schlessinger J.Cell signaling by receptor tyrosine kinases.

Cell2000;103:211-25.

[5]Fukuoka M,Yano S,Giaccone G,Tamura T,Nakagawa K,

Douillard JY,et al.Multi-institutional randomized phase II trial of ge?tinib for previously treated patients with advanced

non-small-cell lung cancer.J Clin Oncol2003;21:2237-46.

[6]Huang SF,Liu HP,Li LH,Ku YC,Fu YN,Tsai HY,et al.

High frequency of epidermal growth factor receptor muta-

tions with complex patterns in non-small cell lung cancers re-

lated to ge?tinib responsiveness in Taiwan.Clin Cancer Res

2004;10:8195-203.

[7]Zhang X,Chang A.Molecular predictors of EGFR-TKI sen-

sitivity in advanced non–small cell lung cancer.Int J Med Sci 2008;5:209-17.

[8]Sordella R,Bell DW,Haber DA,Settleman J.Ge?tinib-

sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways.Science2004;305:1163-7.

[9]Lynch TJ,Bell DW,Sordella R,Gurubhagavatula S,Oki-

moto RA,Brannigan BW,et al.Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to ge?tinib.N Engl J Med 2004;350:2129-39.

[10]Paez JG,Janne PA,Lee JC,Tracy S,Greulich H,Gabriel S,et

al.EGFR mutations in lung cancer:correlation with clinical

response to ge?tinib therapy.Science2004;304:1497-500. [11]Wu S,Zhu Z,He J,Luo X,Xu J,Ren-Heidenreich L.A novel

mutant-enriched liquidchip technology for the qualitative de-tection of somatic mutations in KRAS gene from both serum and tissue samples.Clin Chem Lab Med2010;48:1103–6. [12]Maheswaran S,Sequist LV,Nagrath S,Ulkus L,Brannigan B,

Collura CV,et al.Detection of mutations in EGFR in circulat-

ing lung-cancer cells.N Engl J Med2008;359:366-77. [13]Di Nicolantonio F,Martini M,Molinari F,Sartore-Bianchi A,

Arena S,Saletti P,et al.Wild-type BRAF is required for re-sponse to panitumumab or cetuximab in metastatic colorectal

cancer.J Clin Oncol2008;26:5705-12.

[14]Li`e vre A,Bachet JB,Le Corre D,Boige V,Landi B,Emile JF,

et al.KRAS mutation status is predictive of response to cetux-imab therapy in colorectal cancer.Cancer Res2006;66:3992-

5.

[15]Eichhorn PJ,Gili M,Scaltriti M,Serra V,Guzman M,Ni-

jkamp W,et al.Phosphatidylinositol3-kinase hyperactiva-

tion results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol3-kinase inhibitor NVP-BEZ235.

Cancer Res2008;68:9221-30.

[16]Yang CH.EGFR tyrosine kinase inhibitors for the treatment

of NSCLC in East Asia:present and future.Lung Cancer 2008;60Suppl2:S23-S30.

[17]Yatabe Y,Mitsudomi T.Epidermal growth factor receptor mu-

tations in lung cancers.Pathol Int2007;57:233-44.

[18]Shigematsu H,Lin L,Takahashi T,Nomura M,Suzuki M,

Wistuba II,Fong KM,et a1.Clinical and biological features

associated with epidermal growth factor receptor gene muta-tions in lung cancers.J Natl Cancer Inst2005;97:339-46. [19]Bai H,Mao L,Wang HS,Zhao J,Yang L,An TT,et a1.Epider-

mal growth factor receptor mutations in plasma DNA samples predict tumor response in Chinese patients with stages IIIB to IV non-small-cell lung cancer.J Clin Oncol2009;27:2653-9.

[20]Li Q,Zhao YL,Hao HJ,Li XH.EGFR gene mutation sta-

tus among lung cancer patients in China.Zhonghua Zhongliu Zazhi2007;29:270-3.

[21]Chen WQ.Estimation of cancer incidence and mortality in

China in2004-2005.Zhonghua Zhongliu Zazhi2009;31:664-8.

[22]Li G,Luo X,He J,Zhu Z,Yu G,Qin H,et al.A novel liquidchip

platform for simultaneous detection of70alleles of DNA so-matic mutations on EGFR,KRAS,BRAF and PIK3CA from formalin-?xed and paraf?n-embedded slides containing tumor tissue.Clin Chem Lab Med2010Dec1.

[23]Soung YH,Lee JW,Kim SY,Seo SH,Park WS,Nam SW,

et al.Mutational analysis of EGFR and K-RAS genes in lung adenocarcinomas.Virchows Arch2005;446:483-8.

[24]Tam IY,Chung LP,Suen WS,Wang E,Wong MC,Ho KK,

et al.Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with

J.Xu et al./Somatic mutation analysis of EGFR,KRAS,BRAF and PIK3CA in861patients with non-small cell lung cancer69

different tobacco exposure and clinic pathologic features.Clin Cancer Res2006;12:1647-53.

[25]Kosaka T,Yatabe Y,Endoh H,Kuwano H,Takahashi T,Mit-

sudomi T.Mutations of the epidermal growth factor recep-tor gene in lung cancer:biological and clinical implications.

Cancer Res2004;64:8919-23.

[26]Jang TW,Oak CH,Chang HK,Suo SJ,Jung MH.EGFR and

KRAS mutations in patients with adenocarcinoma of the lung.

Korean J Intern Med2009;24:48-54.

[27]Shibata T,Hanada S,Kokubu A,Matsuno Y,Asamura H,Ohta

T,et al.Gene expression pro?ling of epidermal growth factor receptor/KRAS pathway activation in lung adenocarcinoma.

Cancer Sci2007;98:985-91.

[28]Kawano O,Sasaki H,Endo K,Suzuki E,Haneda H,Yukiue

H,et al.PIK3CA mutation status in Japanese lung cancer patients.Lung Cancer2006;54:209-15.

[29]Nelson HH,Christiani DC,Mark EJ,Wiencke JK,Wain JC,

Kelsey KT.Implications and prognostic value of K-ras muta-tion for early-stage lung cancer in women.J Natl Cancer Inst 1999;91:2032-8.

[30]Pao W,Miller V,Zakowski M,Doherty J,Politi K,Sarkaria I,

et al.EGF receptor gene mutations are common in lung cancers

from“never smokers”and are associated with sensitivity of tumors to ge?tinib and erlotinib.Proc Natl Acad Sci USA 2004;101:13306-11.

[31]Marks JL,McLellan MD,Zakowski MF,Lash AE,Kasai Y,

Broderick S,et al.Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identi?es a novel somatic kinase domain mutation in FGFR4.PLoS One 2007;2:e426.

[32]Sun LN,Luan HL,Zang FL,Wang M,Dong N,Guo Y,et

al.Relationship between EGFR and K-ras mutations and clin-ic pathological characteristics and response to erlotinib treat-ment in301Chinese patients with non-small cell lung cancer.

Zhonghua Zhongliu Zazhi2010;32:667-70.[33]Lee SY,Kim MJ,Jin G,Yoo SS,Park JY,Choi JE,et al.

Relationship between EGFR and K-ras mutations and clinic pathological characteristics and response to erlotinib treatment

in301Chinese patients with non-small cell lung cancer.J Thorac Oncol2010;5:1734-40.

[34]Do H,Krypuy M,Mitchell PL,Fox SB,Dobrovic A.High

resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin?xed paraf?n embedded biopsies.BMC Cancer2008;8:142.

[35]Sun Y,Ren Y,Fang Z,Li C,Fang R,Gao B,et al.Lung

adenocarcinoma from East Asian never-smokers is a disease largely de?ned by targetable oncogenic mutant kinases.J Clin Oncol2010;28:4616-20.

[36]Yamamoto H,Shigematsu H,Nomura M,Lockwood WW,

Sato M,Okumura N,et al.PIK3CA mutations and copy num-ber gains in human lung cancers.Cancer Res2008;68:6912-

21.

[37]Kobayashi S,Boggon TJ,Dayaram T,Janne PA,Kocher

O,Meyerson M,et al.EGFR mutation and resistance of non-small-cell lung cancer to ge?tinib.N Engl J Med 2005;352:786-92.

[38]Pao W,Miller V A,Politi KA,Riely GJ,Somwar R,Zakowski

MF,et al.Acquired resistance of lung adenocarcinomas to ge?tinib or erlotinib is associated with a second mutation in the EGFR kinase domain.PLoS Med2005;2:e73.

[39]Sasaki H,Endo K,Takada M,Kawahara M,Kitahara N,Tana-

ka H,et al.EGFR exon20insertion mutation in Japanese lung cancer.Lung Cancer2007;58:324-8.

[40]Mao C,Qiu LX,Liao RY,Du FB,Ding H,Yang WC,et al.

KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer:a meta-analysis of 22studies.Lung Cancer2010;69:272-8.

[41]Jemal A,Bray F,Center MM,Ferlay J,Ward E,Forman D.

Global cancer statistics.CA Cancer J Clin2011;61:69-90.

内生肌酐清除率

内生肌酐清除率 编辑 肌酐是肌酸的代谢产物,在成人体内含肌酐约100g,其中98%存在于肌肉,每天约更新2%,人体血液中肌酐的生成可有内、外源性两种,如在严格控制饮食条件和肌肉活动相对稳定的情况下,血浆肌酐的生成量和尿的排出量较恒定,其含量的变化主要受内源性肌酐的影响,而且肌酐大部分是从肾小球滤过,不被肾小管重吸收,排泌量很少,故肾单位时间内,把若干毫升血浆中的内生肌酐全部清除出去,称为内生肌酐清除率(Ccr)。 目录 1概念 2正常值 3临床意义 4内生肌酐清除率试验 内生肌酐清除率的测定 参考值 临床意义 5内生肌酐清除率与尿肌酐、血肌酐的关系 1 概念

内生肌酐清除率检测[1] 内生肌酐清除率试验,可反映肾小球滤过功能和粗略估计有效肾单位的数量,故为测定肾损害的定量试验。因其操作方法简便,干扰因素较少,敏感性较高,为目前临床常用的较好的肾功能试验之一。 2正常值 成人 80~120ml/min;新生儿 40~65ml/min。 内生肌酐清除率公式为Ccr=(140-年龄)×体重(kg)/[72×Scr(mg/dl) ]或 Ccr=[(140-年龄)×体重(kg)]/[0.818×Scr(umol/L)] 内生肌酐清楚率计算过程中应注意肌酐的单位女性按计算结果×0.85。注:Ccr(内生肌酐清除率) Scr (血肌酐) 3临床意义 ⑴内生肌酐清除率低于参考值的80%以下者,则表示肾小球滤过功能减退。 ⑵内生肌酐清除率低至50~70 ml/min,为肾功能轻微损害。 ⑶内生肌酐清除率31~50 ml/min, 为肾功能中度损害。 ⑷内生肌酐清除率30ml/min以下,为肾功能重度损害。 ⑸内生肌酐清除率低至11~20ml/min,为早期肾功能不全。 ⑹内生肌酐清除率低至6~10ml/min,为晚期肾功能不全。 ⑺内生肌酐清除率低于5ml/min,为肾功能不全终末期。 4内生肌酐清除率试验 [2]内生肌酐清除率试验(简称肌酐清除率):目前在临床普遍应用的是内生肌酐清除率试验。内生性肌酐在体内产生速度较恒定(每20g肌肉每日约生成1mg),因而血中浓度和24小时尿中排出量也基本稳定。肌酐的测定方法也较菊粉简便,易于在临床推广应用。肌酐主要从肾小球排出外,还有小部分从肾小管分泌,小管分泌肌酐不仅个体差异较大,而且在GFR下降时由小管分泌所占比例也将代偿性加大。因此严格来说肌酐清除率与菊粉清除率所代表的GFR值之间有一定出

肾小球滤过率的计算公式

肾小球滤过率(GFR)的计算 最常用的是CG公式和肾脏饮食修正公式MDRD,2009年又提出CKD-EPI公式,别认为是比CG公式和MDRD更能准备估算GFR,但存在争议,DN肾病共识推荐2006年的eGFR的适合中国的MDRD 公式(DN肾病指南标红) 1、CG-GFR公式: 男性Ccr=(140-年龄)×体重(kg)×1.23/血肌酐(umol/L) 女性Ccr=(140-年龄)×体重(kg)×1.03/血肌酐(umol/L) 或男性Ccr=[(140-年龄)×体重(kg)]/[0.818×血肌酐(umol/L)] 女性计算结果×0.85 2、简化MRDR计算公式: eGFR=(186×Scr)-(1.154×年龄)-0.203×(如果是女性0.742) c-aGFR=(186×Scr)-(1.154×年龄)-1.154×(如果是女性0.742)×1.233(中国人修正) Scr为血清肌酐(mg/dl),血肌酐的单位换算:1mg/dL=88.41 umol/L GFR(ml·min-1?173 m-2)=175x血清肌酐(SCr)-1.234×年龄-0.179(如果是女性×0.79) 肾小球率过滤意义 肾小球滤过率与肾血浆流量的比值称为滤过分数。每分钟肾血浆流量约660ml,故滤过分数为125/660×100%≈19%。这一结果表明,流经肾的血浆约有1/5由肾小球滤入囊腔生成原尿。肾小球滤过率和滤过分数是衡量肾功能的指标。成人 80~120ml/min;

新生儿40~65ml/min。

我国对慢性肾功能不全的分期 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

内生肌酐清除率公式

内生肌酐清除率公式 成人体内含肌酐约100g,其中98%存在于肌肉,每天约更新2%,人体血液中肌酐的生成可有内、外源性两种,如在严格控制饮食条件和肌肉活动相对稳定的情况下,血浆肌酐的生成量和尿的排出量较恒定,其含量的变化主要受内源性肌酐的影响,而且肌酐大部分是从肾小球滤过,不被肾小管重吸收,排泌量很少,故肾单位时间内,把若干毫升血浆中的内生肌酐全部清除出去,称为内生肌酐清除率(Ccr)。 内生肌酐清除率试验,可反映肾小球滤过功能和粗略估计有效肾单位的数量,故为测定肾损害的定量试验。因其操作方法简便,干扰因素较少,敏感性较高,为目前临床常用的较好的肾功能试验之一。 内生肌酐清除率试验(简称肌酐清除率):内生性肌酐在体内产生速度较恒定(每20g肌肉每日约生成1mg),因而血中浓度和24小时尿中排出量也基本稳定。肌酐的测定方法也较菊粉简便,易于在临床推广应用。肌酐主要从肾小球排出外,还有小部分从肾小管分泌,小管分泌肌酐不仅个体差异较大,而且在GFR下降时由小管分泌所占比例也将代偿性加大。因此严格来说肌酐清除率与菊粉清除率所代表的GFR值之间有一定出入,在健康人,Ccr比Cin的数值约高出15%,且这一差异随GFR下降程度的增加而扩大,这是肌酐清除率固有的一个缺点。 内生肌酐清除率的测定: 标本采集与计算: 为排除来自动物骨骼肌和大量蛋白质食物中外源性肌酐的干扰,试验前应给受试者无肌酐饮食3天,并限蛋白入量,避免剧烈运动,使血中内生肌酐浓度达到稳定。 试验前24小时禁服利尿剂,留取24小时尿,其间保持适当的水分入量,禁服咖啡、茶等利尿性物质,准确计量全部尿量V(ml);测尿肌酐(U)和血肌酐(P)。 Ccr= U×V/P(ml/min) V:每分钟尿量(ml/min)=全部尿量(ml)÷(24×60)min U:尿肌酐,umol/L P:血肌酐,umol/L

肾小球滤过率的计算公式

附录2肾小球滤过率(GFR)的估计 1、Cockcroft-Gault公式:Ccr=(140-年龄)×体重(kg)/72×Scr(mg/dl) 或Ccr=[(140-年龄)×体重(kg)]/[0.818×Scr(umol/L)] 内生肌酐清楚率计算过程中应注意肌酐的单位女性按计算结果×0.85 2、简化MDRD公式: GFR(ml/min1.73m2)=186×(Scr)-1.154×(年龄)-0.203×(0.742女性) 注:Ccr为内生肌酐清除率;GFR为肾小球滤过率;Scr为血清肌酐(mg/dl);年龄以岁为单位;体重以kg为单位。 c-aGFR(ml/min·1.73m2)=186×血肌酐-1.154×年龄-1.154×[女性×0.742] ×[中国人×1.233]。 3、血肌酐的单位换算:1mg/dL=88.41umol/L 血糖换算:1mmol/L=18mg/dL 尿酸换算: 4、

(定义和分期依据K/DOQI慢性肾脏病临床实践指南) 肾小球滤过率的计算公式 正常成人,本指标应大于90毫升/分钟,低于60毫升/分钟时目前就认为已经处于慢性肾衰疾病三期的状态,需要认真进行治疗了。小于15毫升/分钟时应开始进行透析治疗。GFR测定较为复杂,现多采用计算的方法。公式如下: GFR=(140-年龄)*体重 / 肌酐浓度(ml/dl)*72。女性在此基础上再乘以0.85。 肾小球滤过率意义 肾小球滤过率与肾血浆流量的比值称为滤过分数。每分钟肾血浆流量约660ml,故滤过分数为125/660×100%≈19%。这一结果表明,流经肾的血浆约有1/5由肾小球滤入囊腔生成原尿。肾小球滤过率和滤过分数是衡量肾功能的指标。 成人 80~120ml/min;新生儿 40~65ml/min。 内生肌酐清除率公式为Ccr=(140-年龄)×体重(kg)/72×Scr(mg/dl) 或 Ccr=[(140-年龄)×体重(kg)]/[0.818×Scr(umol/L)] 内生肌酐清楚率计算过程中应注意肌酐的单位女性按计算结果×0.85。注:Ccr(内生肌酐清除率) Scr (血肌酐) ⑴内生肌酐清除率低于参考值的80%以下者,则表示肾小球滤过功能减退。 ⑵内生肌酐清除率低至50~70 ml/min,为肾功能轻微损害。 ⑶内生肌酐清除率31~50 ml/min, 为肾功能中度损害。 ⑷内生肌酐清除率30ml/min以下,为肾功能重度损害。 ⑸内生肌酐清除率低至11~20ml/min,为早期肾功能不全。 ⑹内生肌酐清除率低至6~10ml/min,为晚期肾功能不全。 ⑺内生肌酐清除率低于5ml/min,为肾功能不全终末期。

肌酐清除率计算公式 最新版本

内生肌酐清楚率公式为Ccr=(140-年龄)×体重(kg)/72×Scr(mg/dl) 或Ccr=[(140-年龄)×体重(kg)]/[0.818×Scr(umol/L)] 内生肌酐清楚率计算过程中应注意肌酐的单位女性按计算结果×0.85。【Ccr(内生肌酐清除率)Scr(血肌酐)】 内生肌酐清除率公式应用举例: 患者男性血肌酐132umol/L 体重65kg 年龄25岁计算内生肌酐清除率Ccr=[(140-年龄)×体重(k g)]/[0.818×Scr(umol/L)]=[(140-25)*65]/[0.818*132]=69 mL/min?1.73m2 内生肌酐清除率的计算问问专家 如不想计算体表面积,也可代入公式Ccr=Ucr/Scr*V,计算出内生肌酐清除率。(Ucr:尿肌酐Scr:血肌酐V:每分钟尿量,ml/min)),当然此时需要留取24小时尿液。因容易留尿不准,且高温时需冷藏,所以存在一定不便。因此,患者可根据自身及当地医院条件选择简易的内生肌酐清除率公式进行计算。 内生肌酐清除率计算公式的局限性 通过测定血清肌酐水平,利用简便的计算方法计算内生肌酐清除率(Ccr),一般采用Cockcroft公式。 Ccr=(140-年龄)×体重(kg)/72×Scr(mg/dl)。 女性按计算结果×0.85。 这个公式适用于肾功能损害比较轻的患者,对实际内生肌酐清除率较低的慢性肾病3—5期者其计算值往往偏高而并不适用。一般将肌酐清除率<60ml/min作为肾脏亚临床损害的参考指标。 男:Ccr(mg/l)=(140-年龄)×体重(KG)/(7.2×Scr) 女:Ccr(mg/l)=(140-年龄)×体重(KG)/(8.5×Scr) 男(umol/L):Ccr=(140-年龄)×体重(KG)/(0.814×Scr) 女(umol/L):Ccr=(140-年龄)×体重(KG)/(0.96×Scr)

肌酐清除率及计算公式

肌酐清除率及计算公式 肌酐是肌酸的代谢产物,在成人体内含肌酐约100g,其中98%存在于肌肉,每天约更新2%,人体血液中肌酐的生成可有内、外源性两种,如在严格控制饮食条件和肌肉活动相对稳定的情况下,血浆肌酐的生成量和尿的排出量较恒定,其含量的变化主要受内源性肌酐的影响,而且肌酐大部分是从肾小球滤过,不被肾小管重吸收,排泌量很少,故肾单位时间内,把若干毫升血浆中的内生肌酐全部清除出去,称为内生肌酐清除率(Ccr)。内生肌酐清除率试验,可反映肾小球滤过功能和粗略估计有效肾单位的数量,故为测定肾损害的定量试验。因其操作方法简便,干扰因素较少,敏感性较高,为目前临床常用的较好的肾功能试验之一。 正常值 成人80~120ml/min;新生儿40~65ml/min。 内生肌酐清除率公式为: Ccr=(140-年龄)×体重(kg)/72×Scr(mg/dl) 或 Ccr=[(140-年龄)×体重(kg)]/[0.818×Scr(umol/L)] 内生肌酐清楚率计算过程中应注意肌酐的单位 女性按计算结果×0.85。 注:Ccr(内生肌酐清除率)Scr(血肌酐) 临床意义 ⑴内生肌酐清除率低于参考值的80%以下者,则表示肾小球滤过功能减退。 ⑵内生肌酐清除率低至50~70 ml/min,为肾功能轻微损害。 ⑶内生肌酐清除率31~50 ml/min, 为肾功能中度损害。 ⑷内生肌酐清除率30ml/min以下,为肾功能重度损害。 ⑸内生肌酐清除率低至11~20ml/min,为早期肾功能不全。 ⑹内生肌酐清除率低至6~10ml/min,为晚期肾功能不全。 ⑺内生肌酐清除率低于5ml/min,为肾功能不全终末期。 计算公式: (1)Cockcroft_Gault公式: (140-年龄)×体重(k g) Ccr = ---------------------------------------- (女性×0. 85) 72×Scr(mg/dl) (140-年龄)×体重(k g) 或Ccr = ------------------------------------------(女性×0. 85) 0.818×Scr(umol/L) 0. 84 ×Ccr ×1. 73 GFR(ml/min /1. 73 m2 ) =--------------------------------

肌酐清除率计算公式

肌酐清除率计算公式文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

内生肌酐清楚率公式为Ccr=(140-年龄)×体重(kg)/72×Scr(mg/dl) 或Ccr=[(140-年龄)×体重(kg)]/[×Scr(umol/L)] 内生肌酐清楚率计算过程中应注意肌酐的单位女性按计算结果×。【Ccr(内生肌酐清除率) Scr(血肌酐)】内生肌酐清除率公式应用举例:患者男性血肌酐132umol/L 体重65kg 年龄25岁计算内生肌酐清除率Ccr=[(140-年龄)×体重(k g)]/[×Scr(umol/L)]=[(140-25)*65]/[*132]=69 mL/min1.73m2 如不想计算体表面积,也可代入公式Ccr=Ucr/Scr*V,计算出内生肌酐清除率。(Ucr:尿肌酐 Scr:血肌酐V:每分钟尿量,ml/min)),当然此时需要留取24小时尿液。因容易留尿不准,且高温时需冷藏,所以存在一定不便。因此,患者可根据自身及当地医院条件选择简易的内生肌酐清除率公式进行计算。内生肌酐清除率计算公式的局限性 通过测定血清肌酐水平,利用简便的计算方法计算内生肌酐清除率 (Ccr),一般采用Cockcroft公式。 Ccr=(140-年龄)×体重(kg)/72×Scr(mg/dl)。 女性按计算结果×。

这个公式适用于肾功能损害比较轻的患者,对实际内生肌酐清除率较低的慢性肾病3—5期者其计算值往往偏高而并不适用。一般将肌酐清除率<60ml/min作为肾脏亚临床损害的参考指标。 男:Ccr(mg/l)=(140-年龄)×体重(KG)/(×Scr) 女:Ccr(mg/l)=(140-年龄)×体重(KG)/(×Scr) 男(umol/L):Ccr=(140-年龄)×体重(KG)/(×Scr) 女(umol/L):Ccr=(140-年龄)×体重(KG)/(×Scr) 请教各位前辈这两个公式对吗 内生肌酐清除率测定常用的计算公式有: ①标准24小时留尿计算法: 尿肌酐浓度(μmol/L)×每分钟尿量(ml/min) 血浆肌酐浓度(μmol/L) ② 4小时留尿改良法:在严格控制条件下,24小时内血浆和尿液肌酐含量较恒定,为临床应用方便,用4小时尿及空腹一次性取血进行肌酐测定,先计算每分钟尿量(ml/min),再按上述公式计算清除率。

怎么计算肾小球滤过率及解析

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 附录2肾小球滤过率(GFR)的估计 1、Cockcroft-Gault公式:Ccr=(140-年龄)×体重(kg)/72×Scr(mg/dl) 或Ccr=[(140-年龄)×体重(kg)]/[0.818×Scr(umol/L)] 内生肌酐清楚率计算过程中应注意肌酐的单位女性按计算结果×0.85 2、简化MDRD公式: GFR(ml/min1.73m2)=186×(Scr)-1.154×(年龄)-0.203×(0.742女性) 注:Ccr为内生肌酐清除率;GFR为肾小球滤过率;Scr为血清肌酐(mg/dl);年龄以岁为单位;体重以kg为单位。 c-aGFR(ml/min·1.73m2)=186×血肌酐-1.154×年龄-1.154×[女性×0.742] ×[中国人×1.233]。 3、血肌酐的单位换算:1mg/dL=88.41umol/L 血糖换算:1mmol/L=18mg/dL 尿酸换算:

4、 (定义和分期依据K/DOQI慢性肾脏病临床实践指南) 肾小球滤过率的计算公式 正常成人,本指标应大于90毫升/分钟,低于60毫升/分钟时目前就认为已经处于慢性肾衰疾病三期的状态,需要认真进行治疗了。小于15毫升/分钟时应开始进行透析治疗。GFR测定较为复杂,现多采用计算的方法。公式如下:GFR=(140-年龄)*体重/ 肌酐浓度(ml/dl)*72。女性在此基础上再乘以0.85。 肾小球滤过率意义 肾小球滤过率与肾血浆流量的比值称为滤过分数。每分钟肾血浆流量约660ml,故滤过分数为125/660×100%≈19%。这一结果表明,流经肾的血浆约有1/5由肾小球滤入囊腔生成原尿。肾小球滤过率和滤过分数是衡量肾功能的指标。 成人 80~120ml/min;新生儿 40~65ml/min。 内生肌酐清除率公式为Ccr=(140-年龄)×体重(kg)/72×Scr(mg/dl) 或Ccr=[(140-年龄)×体重(kg)]/[0.818×Scr(umol/L)] 内生肌酐清楚率计算过程中应注意肌酐的单位女性按计算结果×0.85。注:Ccr(内生肌酐清除率) Scr(血肌酐) ⑴内生肌酐清除率低于参考值的80%以下者,则表示肾小球滤过功能减退。 ⑵内生肌酐清除率低至50~70 ml/min,为肾功能轻微损害。 ⑶内生肌酐清除率31~50 ml/min, 为肾功能中度损害。

肾内常用计算公式完整版

肾内常用计算公式 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

一.未血透病人残肾功能及营养状况评估 (一)内生肌酐清除率(CCr) 1.Ccr(ml/min)=[尿Cr浓度÷血Cr浓度]×[尿量(ml)÷尿液收集时间(min)] 2.矫正清楚率=Ccr×[标准体表面积(㎡)÷患者实际体表面积] 3.患者实际体表面积=×身高+×体重- (二)残肾的尿素清除率(Kru) 1.Kru(ml/min)=[尿BuN浓度÷血BuN浓度]×[尿量(ml)÷尿液收集时间 (min)] 2.残肾Kt/v=24h尿BuN总量(mmol)÷[血BuN浓度(mmol/L)×Vt(L)] 3.尿素分布容积Vt=体重×58% (三)蛋白分解率(PCR)和标准化蛋白分解率(nPCR) 1.PCR(g/d)=24h尿BuN总量(mmol/24h)×28×1000++24h尿蛋白定量 2.NPCR(g/㎏·d)=PCR/实际体重或理想体重 二.血透病人透析充分性及营养状况评估指标 (一)PCR和nPCR 1.PCR=+ 2.NPCR=Vt+=PCR/体重(㎏) 3.尿素生成率G=[(C3-C2)·Vt+Vu·Cu]÷Ti 注:C2. C3分别为透析后,下次透析前BuN浓度(mg/dl); Vu:透析间期总尿量(ml);Cu:透析间期全部尿中平均BuN浓度(mg/dl) Ti:透析间隔时间(min) 或 PCR(g/d)= [ (C3V3-C2V2)+VuCu ] 2824 / (1000 Ti) +Vt 注:C2. C3分别为透析后,下次透析前BuN浓度(mmol/L); V2. V3分别为透析后,下次透析前尿素分布容积(L,体重); Vu:透析间期总尿量(L);Cu:透析间期全部尿中平均BuN浓度(mmol/L) Ti:透析间隔时间(h) nPCR(g/kgd)=PCR/理想体重 (二)尿素的时间平均浓度(TACurea) TACurea(mg/dl)=[(C1+C2)·Td+(C2+C3)·Id]÷2(Td+Id) 注:C1. C2. C3 为透析前、透析后、下一次透析前 BuN浓度(mg/dl); Td为透析时间(h);Id为血透间隔时间(h) (三)尿素清除指数(Kt/V) 1.单次透析Kt/V计算 a.简化法:Kt/V=-×(R--uF/w) b.经典法:Kt/V=-In(R-)+(4-)×uF/w 注:R=C2/C1;uF/w为透析超滤量与透析后体重之比(㎏)。 2.如有残肾功能(KRU>min),则使用以下公式计算Kt/V(Dt) a.每周HD三次者:Dt= Kt/V+Vt b.每周HD二次者:Dt= Kt/V+Vt 3.Kru(ml/min)=Vu·Cu÷[Ti×(C2+C3)/2] 三.腹透病人透析充分性及营养评估指标 (一)每周Kt/V=总尿素清除率/Vt (二)总尿素清除率(L/W)=腹透液尿素清除率+残肾尿素清除率

计算法测定肾小球滤过率的临床应用价值

?论著? 计算法测定肾小球滤过率的临床应用价值 吴锡信1,陈江林2,彭 健1 (11中山大学附属第五医院,广东 珠海 519000; 21暨南大学医学院第三附属医院) 摘要:目的:探讨采用W CP 公式计算方法测定肾小球滤过率(GFR )的临床应用价值。方法:采用99m T c D T PA 清除率测定66例不同疾病住院患者GFR (T c GFR ),并测血清肌酐(SC r )及尿素氮(BUN ),同时以W CP 公式、Robert 公式计算GFR (W CP GFR ,Robert GFR ),以Cockcroft Gau lt 公式计算内生肌酐清除率(CG CC r ),所得数据进行对比研究及相关性分析。结果:除肾功能正常者CG CC r 与BUN 无显著相关外,肾功能不全及肾功能正常者的W CP GFR 、Robert GFR 、CG CC r 均分别与T c GFR 呈显著正相关(P 均<0101),与BUN 、SC r 呈显著负相关(P <0101或P <0105);与Robert GFR 、CG CC r 比较,W CP GFR 始终与T c GFR 最接近(P 均>0105);W CP GFR 、Robert GFR 、CG CC r 与T c GFR 的平均差绝对值逐渐增大,三者间差异显著(P 均<0105)。结论:W CP GFR 、Robert GFR 、CG CC r 均能在一定程度上准确反映GFR ,而以W CP GFR 更准确,且简便、快速、安全而廉价,可代替T c GFR 应用于临床。 关键词:肾小球滤过率;99m T c D T PA 清除率;内生肌酐清除率;尿素氮 中图分类号:R 446 文献标识码:A 文章编号:10030603(2002)06034703 Va lue of cli n ica l applica tion of deter m i n i ng glo m erular f iltra tion ra te by the ca lcula tion m ethod W U X i x in 1 ,CH EN J iang lin 2,P EN G J ian 1 .1.T he F if th A f f ilia ted H osp ita l of Z hong shan U n iversity ,Z huha i 519000,Guang d ong ,Ch ina ;2.T h ird A f f ilia ted H osp ita l of M ed ica l Colleg e ,J inan U n iversity ,Z huha i 519000,Guang d ong ,Ch ina Abstract :Objective :To assess the value of clin ical app licati on of determ in ing glom eru lar filtrati on rate (GFR )by the calcu lati on m ethod .M ethods :GFR s from 66patien ts in ho sp ital suffering from vari ou s diseases w ere accu rately determ ined u sing clearance rate of  99m T c D T PA (T c GFR ).Serum creatin ine (C r )and b lood u rea n itrogen (BUN )con ten ts w ere m easu red ,and si m u ltaneou sly GFR s w ere calcu lated by W CP fo rm u la and Robert fo rm u la (W CP GFR and Robert GFR ).C reatin ine clearance rate w as calcu lated by Cockcroft Gau lt fo rm u la (CG CC r ).T he con trast study and co rrelati on analysis w ere done fo r the data .Results :In patien ts w ith o r w ithou t renal in sufficiency ,W CP GFR ,Robert GFR ,and CG CC r w ere po sitively co rrelated w ith T c GFR (all P <0101)bu t negatively w ith BUN and serum C r (P <0105o r 0101),respectively ,w ith an excep ti on betw een CG CC r and BUN in tho se w ithou t renal dysfuncti on .W CP GFR w as mo re accu rate than the o thers and cou ld take the p lace of T c GFR clin ically .Conclusion s :W CP GFR ,Robert GFR ,and CG CC r m igh t be helpfu l to reflect GFR to certain ex ten t .O f them ,W CP GFR w as an accu rate ,si m p le , safe ,and cheap m ethod fo r determ in ing GFR and it shou ld be u sed and popu larized clin ically . Key words :glom eru lar filtrati on rate ;clearance rate of  99m T c D T PA ;creatin ine clearance rate ;b lood u rea n itrogen CLC nu m ber :R 446 D ocu m en t code :A Artica l I D :1003 0603(2002)06 0347 03 基金项目:广东省珠海市医学科研基金资助项目(N o .203030) 作者简介:吴锡信(1963),男(汉族),广东省廉江市人,副教授,硕士生导师,副主任医师,主要从事肾脏病诊治及中草药研究工作,曾获省、市级科技进步奖各1项,获国家专利权5项,主编专著 1部,发表论文40余篇。 应用二乙撑三胺五乙酸(99m T c D T PA )清除率 可精确测定肾小球滤过率(GFR ),但仍有费用昂贵、检查过程繁琐等缺点。我们根据血清肌酐(SC r )推导出计算GFR 公式(W CP 公式),为临床提供准确、简便、安全而廉价测定GFR 的方法(另文报 道)。本研究中随机选择66例不同疾病住院患者,采 用99m T c D T PA 清除率测定GFR (T c GFR ),并测定SC r 及尿素氮(BU N ),同时以W CP 公式、Robert 公式测定GFR (包括W CP GFR 、Robert GFR ),以Cockcroft Gau lt 公式计算内生肌酐清除率(CG CC r ),通过对比研究及相关分析方法,探讨W CP 公式计算法测定GFR 的临床应用价值。1 资料与方法 111 病例:随机选择66例不同疾病的非透析住 ?743?中国危重病急救医学2002年6月第14卷第6期

肌酐清除率及计算公式

肌酐清除率及计算公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

肌酐清除率及计算公式 概念 是肌酸的代谢产物,在成人体内含肌酐约100g,其中98%存在于肌肉,每天约更新2%,人体血液中肌酐的生成可有内、外源性两种,如在严格控制饮食条件和肌肉活动相对稳定的情况下,血浆肌酐的生成量和尿的排出量较恒定,其含量的变化主要受内源性肌酐的影响,而且肌酐大部分是从肾小球滤过,不被肾小管重吸收,排泌量很少,故肾单位时间内,把若干毫升血浆中的内生肌酐全部清除出去,称为内生肌酐清除率(Ccr)。内生肌酐清除率试验,可反映肾小球滤过功能和粗略估计有效肾单位的数量,故为测定肾损害的定量试验。因其操作方法简便,干扰因素较少,敏感性较高,为目前临床常用的较好的肾功能试验之一。 正常值 成人 80~120ml/min;新生儿 40~65ml/min。 内生肌酐清除率公式为: Ccr=(140-年龄)×体重(kg)/72×Scr(mg/dl) 或 Ccr=[(140-年龄)×体重(kg)]/[×Scr(umol/L)] 内生肌酐清楚率计算过程中应注意肌酐的单位 女性按计算结果×。 注:Ccr(内生肌酐清除率) Scr(血肌酐) 临床意义

⑴内生肌酐清除率低于参考值的80%以下者,则表示肾小球滤过功能减退。 ⑵内生肌酐清除率低至50~70 ml/min,为肾功能轻微损害。 ⑶内生肌酐清除率31~50 ml/min, 为肾功能中度损害。 ⑷内生肌酐清除率30ml/min以下,为肾功能重度损害。 ⑸内生肌酐清除率低至11~20ml/min,为早期肾功能不全。 ⑹内生肌酐清除率低至6~10ml/min,为晚期肾功能不全。 ⑺内生肌酐清除率低于5ml/min,为肾功能不全终末期。 ? 计算公式: (1)Cockcroft_Gault公式: (140-年龄)×体重(k g) Ccr = ---------------------------------------- (女性×0. 85) 72×Scr(mg/dl) (140-年龄)×体重(k g) 或Ccr = ------------------------------------------(女性×0. 85) ×Scr(umol/L) 0. 84 ×Ccr ×1. 73 GFR(ml/min /1. 73 m2 ) =-------------------------------- BSA(体表面积m2) ? Cockcroft-Gault方程计算的cCcr值BSA标准化并矫正为GFR(ml/min /1. 73 m2 ) 。

肾小球滤过率公式

肾小球滤过率 1.定义: 肾小球滤过率(GFR,glomerular filtration rate)是指单位时间(通常为1min)内两肾生成滤液的量,正常成人为90-125mL/min左右。肾小球滤过率与肾血浆流量的比值称为滤过分数。每分钟肾血浆流量约660ml,故滤过分数为125/660×100%≈19%。这一结果表明,流经肾的血浆约有1/5由肾小球滤入囊腔生成原尿。肾小球滤过率和滤过分数是衡量肾功能的指标。 2.正常范围: 成人:90-125mL/min,低于60mL/min时,则认为已经处于慢性肾衰疾病三期的状态,需要认真进行治疗,降低也见于肾实质性损伤及失水引起的血液浓缩,滤过能力下降。增高可发于糖尿病、高血压等的并发症,引起蛋白尿、血尿等。 儿童:40-65mL/min。 3.相关指标: 肾小球滤过率反应肾小球的滤过能力,与多种尿指标水平和血液学指标水平相关。 1)血清胱抑素C,机体所有有核细胞均可表达和生成该蛋白质,浓度相对恒定。循环血液中Cys-C能自由透过肾小球,在近曲小管几乎全部被上皮细胞摄取并分解,尿中仅微量排出。并且不受年龄、身高、饮食、恶性肿瘤等影响,是反映肾小球滤过率的敏感和特异指标,优于血清肌酐。 2)血清肌酐,血肌酐几乎全部被肾小球滤过,且不被肾小管重吸收,正常情况下,体内肌酐生成速率稳定,因此可用于计算肾小球滤过率。与之成负相关。 3)血清尿素,通常自由滤过肾小球,原尿中50%尿素氮再由肾小管集合重吸收,与肾小球滤过率成负相关。 4)血清α1-微球蛋白,通常自由滤过肾小球,再由近曲小管上皮细胞重摄

取和分解,升高多见于各种原因所致肾小球滤过功能损伤,与滤过率成负相关,指标相关性与利用血清胱抑素C 计算肾小球滤过率的诊断性能相当。 5)血清视黄醇结合蛋白、血清β2微球蛋白与α1-微球蛋白作用原理类似。 6)尿微量白蛋白、尿总蛋白,通常与肾小球滤过率成正相关。 4.计算公式: 1)CKD-EPI 公式 该公式发布于2009年,相对于之前应用较为普遍的MDRD 公式更为准确。该公式共分为三种形式: ①CKD-EPI CYS-C 133()0.996[0.932()]0.8 a CYSC eGFR =???女 其中a :CYSC ≤0.8mg/L ,a=-0.499;CYSC >0.8mg/L ,a=-1.328 ②CKD-EPI CRE ()0.993c age CRE eGFR a b =?? 其中a :黑人:女性:166;男性:163 白人或其他人种:女性:144;男性:141 b :女性:0.7;男性:0.9 c :女性,CRE ≤0.7,a=-0.329;CRE >0.7,a=-1.209 男性:CRE ≤0.9,a=-0.411;CRE >0.9,a=-1.209 age :年龄,单位岁 CRE :血清肌酐浓度水平,单位mg/dL ,(肌酐分子量113.1,则1mg/dL=88.42μmol/L ,1μmol/L=0.01131mg/dL ) ③CKD-EPI CRE-Cys-C 135()()0.993[0.969()]0.8 a c age CRE CYSC eGFR b =????女 其中b :女性0.7;男性:0.9 a :女性:CRE ≤0.7,a=-0.248;CRE >0.7,a=-0.601

(新)肌酐清除率与肾功能

当肾功能出现异常时,拿着长长的检验报告单时,是不是看不懂上面所所标明的意义是如何的?内生肌酐清除率(CCr)和血肌酐(SCr)常常是检测肾功能不全的必查项目,通过它们的数值,可以诊断出肾功能不全病情程度如何,但是患者对于数值的不了解,常常让自己或家人无法知悉自己病情发展程度肾功能不全患者怎么看内生肌酐清除率和血肌酐?北京最好的肾病医院——北京京北医院肾病诊疗中心专家给大家做出回答。 怎么看内生肌酐清除率和血肌酐数值 专家表示,肾功能不全临床按病情程度分为四期,而这四期内生肌酐清除率(CCr)和血肌酐(SCr)的数值范围均是不一样的,为了更便于大家知晓这一问题,专家给出以下肾功能不全病情分级标准及正常值范围。 正常值范围 1、内生肌酐清除率(CCr)正常值范围 新生儿(以体表面积校正):40~65ml/min 成人(以体表面积校正):80~120ml/min。 2、血肌酐(SCr)正常值范围:一般来说血肌酐正常值标准为:44-133umol/L,其中男女数值可能存在如下差异 女 44~97umol/L 男 53~106umol/L 肾病专家余惠民主任医师提醒:当内生肌酐清除率数值下降幅度越大,或是血肌酐数值上升幅度越高的时候,则表明肾功能不全的病情程度就越为严重,临床上肾功能不全按病情程度可分为四期。 肾功能不全临床分期不同,数值也不一样 一期:肾功能储备代偿期(简称,代偿期) CCr :50~80ml/min,SCr:133~177μmol/l; 二期:肾功能不全期(简称,失代偿期) CCr: 20~50ml/min,SCr:178~442μmol/l; 三期:肾功能衰竭期(简称,肾衰期)

肌酐清除率及计算公式

肌酐清除率及计算公式 医疗2010-01-22 21:48:01 阅读1043评论1字号:大中小 概念 肌酐是肌酸的代谢产物,在成人体内含肌酐约100g,其中98%存在于肌肉,每天约更新2%,人体血液中肌酐的生成可有内、外源性两种,如在严格控制饮食条件和肌肉活动相对稳定的情况下,血浆肌酐的生成量和尿的排岀量较恒定,其含量的变化主要受内源性肌酐的影响,而且肌酐大部分是从肾小球滤过,不被肾小管重吸收,排泌量很少,故肾单位时间内,把若干毫升血浆中 的内生肌酐全部清除出去,称为内生肌酐清除率(Ccr)。内生肌酐清除率试验,可反映肾小球滤 过功能和粗略估计有效肾单位的数量,故为测定肾损害的定量试验。因其操作方法简便,干扰因素较少,敏感性较高,为目前临床常用的较好的肾功能试验之一。 正常值 成人80 ?120ml / min ;新生儿40 ?65ml / min。 内生肌酐清除率公式为: Ccr=(140- 年龄)X 体重(kg)/72 x Scr(mg/dl)或 Ccr=[(140-年龄)X体重(kg)]/[0.818 X Scr(umol/L)] 内生肌酐清楚率计算过程中应注意肌酐的单位 女性按计算结果X 0.85 。 注:Ccr (内生肌酐清除率)Scr (血肌酐) 临床意义 ⑴内生肌酐清除率低于参考值的80 %以下者,则表示肾小球滤过功能减退。 ⑵内生肌酐清除率低至50?70 ml/min ,为肾功能轻微损害。 ⑶内生肌酐清除率31?50 ml/min, 为肾功能中度损害。 ⑷内生肌酐清除率30ml/min以下,为肾功能重度损害。 ⑸内生肌酐清除率低至11?20ml/min,为早期肾功能不全。 ⑹内生肌酐清除率低至6~ 10ml/min,为晚期肾功能不全。 ⑺内生肌酐清除率低于5ml/min,为肾功能不全终末期。 计算公式: (1)Cockcroft_Gault 公式: (140- 年龄)X体重(k g) 女性X 0. 85) Ccr = ----------------------------------------- ( 72X Scr(mg/dl)

肾内常用计算公式

肾内常用计算公式 Document number:PBGCG-0857-BTDO-0089-PTT1998

一.未血透病人残肾功能及营养状况评估 (一)内生肌酐清除率(CCr) 1.Ccr(ml/min)=[尿Cr浓度÷血Cr浓度]×[尿量(ml)÷尿液收集时间 (min)] 2.矫正清楚率=Ccr×[标准体表面积(㎡)÷患者实际体表面积] 3.患者实际体表面积=×身高+×体重- (二)残肾的尿素清除率(Kru) 1.Kru(ml/min)=[尿BuN浓度÷血BuN浓度]×[尿量(ml)÷尿液收集时间(min)] 2.残肾Kt/v=24h尿BuN总量(mmol)÷[血BuN浓度(mmol/L)×Vt (L)] 3.尿素分布容积Vt=体重×58% (三)蛋白分解率(PCR)和标准化蛋白分解率(nPCR) 1.PCR(g/d)=24h尿BuN总量(mmol/24h)×28×1000++24h尿蛋白定量2.NPCR(g/㎏·d)=PCR/实际体重或理想体重 二.血透病人透析充分性及营养状况评估指标 (一)PCR和nPCR 1.PCR=+ 2.NPCR=Vt+=PCR/体重(㎏) 3.尿素生成率G=[(C3-C2)·Vt+Vu·Cu]÷Ti 注:C2. C3分别为透析后,下次透析前BuN浓度(mg/dl);

Vu:透析间期总尿量(ml);Cu:透析间期全部尿中平均BuN浓度(mg/dl) Ti:透析间隔时间(min) 或 PCR(g/d)= [ (C3V3-C2V2)+VuCu ] 2824 / (1000 Ti) +Vt 注:C2. C3分别为透析后,下次透析前BuN浓度(mmol/L); V2. V3分别为透析后,下次透析前尿素分布容积(L,体重); Vu:透析间期总尿量(L);Cu:透析间期全部尿中平均BuN浓度(mmol/L) Ti:透析间隔时间(h) nPCR(g/kgd)=PCR/理想体重 (二)尿素的时间平均浓度(TACurea) TACurea(mg/dl)=[(C1+C2)·Td+(C2+C3)·Id]÷2(Td+Id) 注:C1. C2. C3 为透析前、透析后、下一次透析前 BuN浓度(mg/dl);Td为透析时间(h);Id为血透间隔时间(h) (三)尿素清除指数(Kt/V) 1.单次透析Kt/V计算 a.简化法:Kt/V=-×(R--uF/w) b.经典法:Kt/V=-In(R-)+(4-)×uF/w 注:R=C2/C1;uF/w为透析超滤量与透析后体重之比(㎏)。 2.如有残肾功能(KRU>min),则使用以下公式计算Kt/V(Dt) a.每周HD三次者:Dt= Kt/V+Vt b.每周HD二次者:Dt= Kt/V+Vt

内生肌酐清除率

正常值 成人80~120ml/min;新生儿40~65ml/min。内生肌酐清除率公式为Ccr=(140-年龄)×体重(kg)/72×Scr(mg/dl) 或Ccr=[(140-年龄)×体重(kg)]/[0.818×Scr(umol/L)] 内生肌酐清楚率计算过程中应注意肌酐的单位女性按计算结果×0.85。注:Ccr(内生肌酐清除率)Scr(血肌酐) 临床意义 ⑴内生肌酐清除率低于参考值的80%以下者,则表示肾小球滤过功能减退。 ⑵内生肌酐清除率低至50~70 ml/min,为肾功能轻微损害。 ⑶内生肌酐清除率31~50 ml/min, 为肾功能中度损害。 ⑷内生肌酐清除率30ml/min以下,为肾功能重度损害。 ⑸内生肌酐清除率低至11~20ml/min,为早期肾功能不全。 ⑹内生肌酐清除率低至6~10ml/min,为晚期肾功能不全。 ⑺内生肌酐清除率低于5ml/min,为肾功能不全终末期。 内生肌酐清除率与尿肌酐、血肌酐的关系 内生肌酐清除率与尿肌酐成正比关系而与血肌酐成反比关系。在尿量固定的情况下,尿肌酐越高,血肌酐越低,肌酐清除率就越高。肾前性少尿与少尿性急性肾功能衰竭,两者尿量均固定减少,但前者肾小球滤过功能及肾小管重吸收功能均较后者好,因而尿肌酐与血肌酐的比值高,即内生肌酐清除率高,以此可以作为那两类疾病的鉴别。非少尿性急性肾衰,由于肾小球滤过功能和肾小管浓缩功能均减少,内生肌酐清除率也降低。由此可见,在尿量固定的情况下,内生肌酐消除率不仅反映了肾小球的滤过功能,还提示了肾小管的浓缩功能。 血肌酐正常值 血肌酐正常值各个医院的衡量标准不一样,一般来说血肌酐正常值标准为:44-133umol/L,当血肌酐超过133umol/L 时意味着肾脏出现损伤,已经肾功能不全、肾衰竭。(133umol/L以上为炎症损伤期,186umol/L为肾功能损伤期,451umol/L为肾功能衰竭期【晚期(血肌酐值超过707nuol/L)为尿毒症】 血肌酐(SCr)正常值:男54~106微摩/升(0.6~1.2毫克/分升); 女44~97微摩/升(0.5~1.1毫克/分升)。 小儿:24.9~69.7umol/L。

相关文档
相关文档 最新文档