文档库 最新最全的文档下载
当前位置:文档库 › 动点问题专题训练

动点问题专题训练

动点问题专题训练
动点问题专题训练

动点问题专题训练

1、如图,已知ABC

△中,10

AB AC

==厘米,8

BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD

△与CQP

△是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度

为多少时,能够使BPD

△与CQP

△全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度

从点B同时出发,都逆时针沿ABC

△三边运动,求经过多长时间点P

与点Q第一次在ABC

△的哪条边上相遇?

2、直线

3

6

4

y x

=-+与坐标轴分别交于A B

、两点,动点P Q

、同时从O点出发,

同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,

点P沿路线O→B→A运动.

(1)直接写出A B

、两点的坐标;

(2)设点Q的运动时间为t秒,OPQ

△的面积为S,求出S

与t之间的函数关系式;

(3)当

48

5

S=时,求出点P的坐标,并直接写出以点

O P Q

、、为顶点的平行四边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.

(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;

(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形

是正三角形?

4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),

点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);

(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

5在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点

B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -B

C -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ;

(2)在点P 从C 向A 运动的过程中,求△APQ

的面积S 与

t 的函数关系式;(不必写出t 的取值范围)

(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成

为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..

写出t 的值.

6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;

②当α= 度时,四边形E D B C 是直角梯形,此时AD 的长为 ;

(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.

16

(备用图)

7如图,在梯形ABCD

中,3545AD BC AD DC AB B ====?∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终

点D 运动.设运动的时间为t 秒. (1)求BC 的长.

(2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形.

8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =?∠. (1)求点E 到BC 的距离;

(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.

C M A

D

E B

F C

图4(备用)

A

D

E B

F C

图5(备用)

A D E B

F C

图1 图2

A D

E

B

F C P

N M 图3

A D E

B

F

C

P

N M

(第25题)

9如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在

第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.

(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;

(2)求正方形边长及顶点C 的坐标;

(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.

10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠= ,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .

经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

A

D

F

C G

B

图1

A

D

F C G

B 图2 A

D

F

G

B

图3

11已知一个直角三角形纸片OAB ,其中9024AO B O A O B ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .

(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;

(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;

(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.

12问题解决 如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求

AM

BN 的值.

类比归纳

在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,

则AM

BN 的值等于 ;若1CE CD n =(n 为整数)

,则AM

BN

的值等于 .(用含n 的式子表示) 联系拓广 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D

,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,

则AM

BN

的值等于 .(用含m n ,的式子表示)

方法指导: 为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2 图(2) A

B C D E

F M 图(1)

A

B C D E F

M

N

1.解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米,

∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.

又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,

∴BPD CQP △≌△. ································································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,

又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4

33

BP t ==秒, ∴515

443

Q CQ v t

=

==厘米/秒. ·

·················································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15

32104

x x =+?, 解得80

3

x =

秒. ∴点P 共运动了80

3803

?=厘米.

∵8022824=?+,

∴点P 、点Q 在AB 边上相遇, ∴经过

80

3

秒点P 与点Q 第一次在边AB 上相遇. ···················································· (12分) 2.解(1)A (8,0)B (0,6) ·················· 1分 (2)86OA OB == , 10AB ∴=

点Q 由O 到A 的时间是8

81

=(秒)

∴点P 的速度是

610

28

+=(单位/秒) ··· 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,

2S t = ······································································································································ 1分

当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,,

如图,作PD OA ⊥于点D ,由

PD AP BO AB =

,得4865

t

PD -=, ······································ 1分 21324255

S OQ PD t t ∴=?=-+ ·

························································································ 1分 (自变量取值范围写对给1分,否则不给分.)

(3)82455P ?? ???

, ····················································································································· 1分

12382412241224555555I M M 2??????

-- ? ? ???????

,,,,, ·

································································· 3分 3.解:(1)⊙P 与x 轴相切.

∵直线y =-2x -8与x 轴交于A (4,0),

与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =P A =8+k .

在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.

(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P

在线段OB 上时,作PE ⊥CD 于E .

∵△PCD 为正三角形,∴DE =12CD =3

2

,PD =3,

∴PE ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE , ∴△AOB ∽△PEB ,

2,

AO PE AB PB PB =,

∴PB =

∴8PO BO PB =-=

∴8)P -,

∴8k =

-.

当圆心P 在线段OB 延长线上时,同理可得P (0,8),

∴k =8,

∴当k 8或k =8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.

4.

5.解:(1)1,8

5

(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC

,4BC =, 得

45QF t =.∴4

5

QF t =. ∴14(3)2

5

S t t =-?, 即2265

5

S t t =-+.

(3)能.

①当DE ∥QB 时,如图4.

∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°.

由△APQ ∽△ABC ,得AQ AP AC AB

=

, 即335t t -=

. 解得9

8

t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.

此时∠APQ =90°. 由△AQP ∽△ABC ,得

AQ AP

AB AC

=

, 即353t t -=. 解得158

t =.

(4)52t =

或45

14

t =. ①点P 由C 向A 运动,DE 经过点C .

连接QC ,作QG ⊥BC 于点G ,如图6.

PC t =,222QC QG CG =+2234

[(5)][4(5)]55

t t =-+--.

由2

2

PC QC =,得2

2234

[(5)][4(5)]55

t t t =-+--,解得52t =.

②点P 由A 向C 运动,DE 经过点C ,如图7.

22234

(6)[(5)][4(5)]55t t t -=-+--,4514

t =】

6.解(1)①30,1;②60,1.5;

(2)当∠α=900

时,四边形EDBC 是菱形. ∵∠α=∠ACB=900

,∴BC //ED .

∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900

,∠B =600

,BC =2,

∴∠A =300.

∴AB =4,AC .

图4

P

图5

∴AO =

1

2

AC

……………………8分 在Rt △AOD 中,∠A =300

,∴AD =2. ∴BD =2. ∴BD =BC .

又∵四边形EDBC 是平行四边形,

∴四边形EDBC 是菱形 ……………………10分

7.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形

∴3KH AD ==. ······································································································ 1分

在Rt ABK △中,sin 4542

AK AB =?==

. cos 4542

BK AB =?==

·········································································· 2分 在Rt CDH △

中,由勾股定理得,3HC ==

∴43310BC BK KH HC =++=++= ······························································ 3分

(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ·································································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥

∴NMC DGC =∠∠ 又C C =∠∠

∴MNC GDC △∽△

CN CM

CD CG =

·········································································································· 5分 即10257

t t -= 解得,50

17

t = ·········································································································· 6分

(图①) A D C B K H (图②) A D C B G M

N

(3)分三种情况讨论:

①当NC MC =时,如图③,即102t t =- ∴103

t = ·················································································································· 7分

②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:

由等腰三角形三线合一性质得()11

102522

EC MC t t ==-=- 在Rt CEN △中,5cos EC t

c NC t -==

又在Rt DHC △中,3

cos 5

CH c CD ==

∴535

t t -=

解得25

8

t = ·············································································································· 8分

解法二:

∵90C C DHC NEC =∠=∠=?∠∠, ∴NEC DHC △∽△

NC EC

DC HC =

即553t t -= ∴258

t = ·················································································································· 8分

③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.11

22

FC NC t ==

解法一:(方法同②中解法一)

1

3

2cos 1025t

FC C MC t ===-

解得60

17

t =

解法二:

∵90C C MFC DHC =∠=∠=?∠∠, ∴MFC DHC △∽△ ∴

FC MC

HC DC

=

A

D

C

B M

N

(图③)

(图④)

A

D C

B

M N

H E

(图⑤)

A D

C

B

H N M

F

即1102235t

t -= ∴6017

t =

综上所述,当10

3

t =、258t =或6017t =时,MNC △为等腰三角形 ···················· 9分

8.解(1)如图1,过点E 作EG BC ⊥于点G . ························· 1分

∵E 为AB 的中点,

∴1

22

BE AB ==.

在Rt EBG △中,60B =?∠,∴30BEG =?∠. ·············· 2分

∴1

12

BG BE EG ====, 即点E 到BC

··············································· 3分 (2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.

∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =

,PM EG ==

同理4MN AB ==. ······································································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==?=?∠∠,∠.

∴12PH PM =

= ∴3

cos302

MH PM =?= .

则35

422

NH MN MH =-=-=.

在Rt PNH △

中,PN === ∴PMN △的周长

=4PM PN MN ++=. ················································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.

当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.

类似①,3

2

MR =

. ∴23MN MR ==.

········································································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.

此时,6132x EP GM BC BG MC ===--=--=. ············································· 8分

图1

A D

E B

F C G

图2

A D E

B

F C

P

N

H

当MP MN =时,如图4

,这时MC MN MP ===

此时,615x EP GM ===-=

当NP NM =时,如图5,30NPM PMN ==?∠∠.

则120PMN =?∠,又60MNC =?∠, ∴180PNM MNC +=?∠∠.

因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =?= .

此时,6114x EP GM ===--=.

综上所述,当2x =或4

或(5-时,PMN △为等腰三角形. ·························· 10分 9解:(1)Q (1,0) ············································································································ 1分 点P 运动速度每秒钟1个单位长度. ·················································································· 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.

在Rt △AFB

中,10AB 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=?= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.

∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴

AP AM MP AB AF BF ==. 1068

t A M M P

∴==

. ∴3

45

5

AM t PM t ==,. ∴3410,5

5

PN OM t ON PM t ==-==. 设△OPQ 的面积为S (平方单位) ∴213473

(10)(1)52

5

1010

S t t t t =?-+=+

-(0≤t ≤10)

······························································ 5分 说明:未注明自变量的取值范围不扣分.

∵3

10a =-

<0 ∴当474710

362()10

t =-=?-时, △OPQ 的面积最大. ································ 6分 图3

A D E B

F

C

P

N M 图4

A D E

B

F C

P

M N 图5

A D E

B

F (P )

C

M

N G

G

R

G

此时P 的坐标为(

9415,53

10) . ························································································ 7分 (4) 当 53

t =或295

13

t =时, OP 与PQ 相等. ······························································ 9分

10.解:(1)正确.······························································ (1分) 证明:在AB 上取一点M ,使AM EC =,连接ME . (2分)

BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.

CF 是外角平分线,

45DCF ∴∠=°,

135ECF ∴∠=°.

AME ECF ∴∠=∠.

90AEB BAE ∠+∠= °,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.

AME BCF ∴△≌△(ASA )

. ···················································································· (5分) AE EF ∴=. ·

··············································································································· (6分) (2)正确. ··································································· (7分) 证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . ············································ (8分) BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥.

DAE BEA ∴∠=∠.

NAE CEF ∴∠=∠.

ANE ECF ∴△≌△(ASA )

. ··················································································· (10分) AE EF ∴=. (11分)

11.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.

设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.

在Rt AOC △中,由勾股定理,得222

AC OC OA =+, 即()2

2

2

42m m -=+,解得32

m =

. ∴点C 的坐标为302??

???

,. ·

········································································································ 4分 (Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,,

A

D F C G

E B M A D

F

G E B N

则4B C BC OB OC y '==-=-,

在Rt B OC '△中,由勾股定理,得2

2

2

B C OC OB ''=+.

()2

224y y x ∴-=+,

即2

128

y x =-

+ ·

··················································································································· 6分 由点B '在边OA 上,有02x ≤≤,

∴ 解析式21

28

y x =-+()02x ≤≤为所求.

∴ 当02x ≤≤时,y 随x 的增大而减小,

y ∴的取值范围为3

22

y ≤≤. ·

······················································································ 7分 (Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠ ,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB

''=,得2OC OB ''=. ···················································································· 9分 在Rt B OC ''△中,

设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2

001228

x x =-

+,

解得000808x x x =-±>∴=-+,∴点C

的坐标为()

016. ····················································································· 10分

12解:方法一:如图(1-1),连接BM EM BE ,,.

由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.

∴MN 垂直平分BE .∴BM EM BN EN ==,. ·············································· 1分 ∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,. ∵

1

12

CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.

N 图(1-1)

A B

C E

F M

在Rt CNE △中,222

NE CN CE =+.

∴()2

2221x x =-+.解得54x =

,即54

BN =. ···················································· 3分 在Rt ABM △和在Rt DEM △中,

222AM AB BM +=, 222DM DE EM +=,

∴2222AM AB DM DE +=+.

············································································· 5分 设AM y =,则2DM y =-,∴()2222

221y y +=-+.

解得14y =,即1

4AM =. ······················································································· 6分

∴1

5

AM BN =.

··········································································································· 7分 方法二:同方法一,5

4

BN =. ················································································ 3分

如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .

∵AD BC ∥,∴四边形GDCN 是平行四边形.

∴NG CD BC ==.

同理,四边形ABNG 也是平行四边形.∴54

AG BN ==. ∵90MN BE EBC BNM ⊥∴∠+∠=,°. 90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠ ,°,. 在BCE △与NGM △中

90EBC MNG BC NG C NGM ∠=∠??

=??∠=∠=?

,,°.∴BCE NGM EC MG =△≌△,. ································5分

∵1

14

AM AG MG AM =--=5,=.

4··································································· 6分 ∴

1

5

AM BN =.

········································································································· 7分 类比归纳

25(或410);9

17

; ()2

2

11n n -+ ·················································································· 10分 联系拓广

N

图(1-2)

A B

C D

E

F

M

G

222221

1

n m n n m -++ ············································································································· 12分

中考数学动点问题专题练习(含答案)

动点专题 一、应用勾股定理建立函数解析式 例1(2000年2上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 二、应用比例式建立函数解析式 例2(2006年2山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A E D C B 图2 H M N G P O A B 图1 x y

C 三、应用求图形面积的方法建立函数关系式 例4(2004年2上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y . (1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积. 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. A B C O 图8 H

初中数学动点问题专题复习

初中数学动点问题练习题 1、(宁夏回族自治区)已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在 ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒. 1、线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形 MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 2、如图,在梯形ABCD 中,3545AD BC AD DC AB B ====?∥,,,.动点 M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长. (2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形. 3、如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 的坐标为(6,0),点B 的坐标为(4,3),点C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒). (1)求线段AB 的长;当t 为何值时,MN ∥OC ? (2)设△CMN 的面积为S ,求S 与t 之间的函数解析式, 并指出自变量t 的取值范围;S 是否有最小值? C P Q B A M N C B

圆的动点问题--经典模拟题及答案

圆的动点问题 25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知:在Rt ABC △中,∠ACB =90°,BC =6,AC =8,过点A 作直线MN ⊥AC ,点E 是直线 MN 上的一个动点, (1)如图1,如果点E 是射线AM 上的一个动点(不与点A 重合),联结CE 交AB 于点P .若 AE 为x ,AP 为y ,求y 关于x 的函数解析式,并写出它的定义域; (2) 在射线AM 上是否存在一点E ,使以点E 、A 、P 组成的三角形与△ABC 相似,若存在求 AE 的长,若不存在,请说明理由; (3)如图2,过点B 作BD ⊥MN ,垂足为D ,以点C 为圆心,若以AC 为半径的⊙C 与以ED 为半径的⊙E 相切,求⊙E 的半径. 25.(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分) 在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y . (1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长. 25.如图,在 半径为5的⊙O 中,点 A 、 B 在⊙O 上,∠AOB=90°,点 C 是弧AB 上的一个动点,AC 与OB 的延长线相交于点 D ,设AC=x ,BD=y . (1)求y 关于x 的函数解析式,并写出它的定义域; (2)如果⊙O 1与⊙O 相交于点A 、C ,且⊙O 1与⊙O 的圆心距为2,当BD=OB 时,求⊙O 1的半径; (3)是否存在点C ,使得△DCB ∽△DOC ?如果存在,请证明;如果不存在,请简要说明理由. A B E F C D O A B E F C D O A B C P E M 第25题图1 D A B C M 第25题图2 N

七年级动点问题专项练习

七年级“动点问题”专项练习 1、已知点 A 在数轴上对应的数为 a,点 B 对应的数为 b,且 |2b﹣6|+(a+1)2=0,A、B 之间的距离记作 AB,定义:AB=|a﹣b|. (1)求线段 AB 的长. (2)设点 P 在数轴上对应的数 x,当 PA﹣PB=2 时,求 x 的值. (3)M、N 分别是 PA、PB 的中点,当 P 移动时,指出当下列结论分别成立时,x 的取值范围,并说明理由:①PM PN 的值不变,②|PM﹣PN|的值不变.

2、如图 1,已知数轴上两点 A、B 对应的数分别为-1、3,点 P 为数轴上的 一动点,其对应的数为 x. (1)PA=______________;PB=_____________(用含 x 的式子表示). (2)在数轴上是否存在点 P,使 PA+PB=5?若存在,请求出 x 的值;若不存在,请说明理由. (3)如图 2,点 P 以每秒 1 个单位的速度从点 D 向右运动,同时点 A 以每秒 5 个单位的速度向左运动,点 B 以每秒 20 个单位的速度向右运动,在运动过程中,M、N 分别是 AP、OB 的中点,问:的值是否发生变化?请说明理由.

3、如图,已知 A(﹣4,3)、B(﹣1,3)、C(﹣2,1),△ABC 中任意一 P(x0,y0)点平移后对应的点为 P1(x0+2,y0﹣1),将△ABC 作同样的平移得到△A1B1C1. (1)画出△A 1B 1 C 1 . (2)直接写出 A 1、B 1 、C 1 的坐标. (3)在坐标轴上是否存在点 P,使△PB1C1的面积等于△ABC 的面积?若存在,求出点的坐标;若不存在,说明理由.

初中数学动点问题专题讲解简洁版

A B C D E O l A ′ 中考动点专题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 例1(2005年·)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F. (1)求证: △ADE ∽△AEP. (2)设OA=x ,AP=y ,求y 关于 x 的函数解析式,并写出它的定义域. (3)当BF=1时,求线段AP 的长. (二)线动问题 在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E. (1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F ,且AO = 4 1 AC ,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值围; ②探索:是否存在这样的x ,以A 为圆心,以-x 4 3 长为半径的圆与直 线l 相切,若存在,请求出x 的值;若不存在,请说明理由. (2)①92+=x AC ,9412+=x AO ,)9(121 2+=x AF ,x x AE 49 2+= ∴AF 2 1 ?=?AE S AEF x x 96)9(22+= ,x x x S 96)9(322+-= A 3(2) O 3(1)

圆中动点问题2

圆中动点问题 一、选择题 【题1】如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确 ...的是( C ) A、当弦PB最长时,ΔAPC是等腰三角形。 B、当ΔAPC是等腰三角形时,PO⊥AC。 C、当PO⊥AC时,∠ACP=300. D、当∠ACP=300,ΔPBC是直角三角形 【答案】 【题2】如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F两点,则EF的长( C )

A.等于42 B.等于43 C.等于6 D.随P点位置的变化而变化 【答案】分析:连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x,证△OBD∽△OCA,推出OC:OB=OD:OA,即(r+x):1=9:(r﹣x),求出r2﹣x2=9,根据垂径定理和勾股定理可求出答案. 解答:解:连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x, ∵以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,∴OA=4+5=9,0B=5﹣4=1, ∵AB是直径,∴∠APB=90°,∵∠BOD=90°,∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°, ∵∠PBA=∠OBD,∴∠PAB=∠ODB,∵∠APB=∠BOD=90°,∴△OBD∽△OCA, ∴OC OD OB OA =,即 9 1 r x r x + = - 解得:r2﹣x2=9, 由垂径定理得:OE=OF,OE2=EN2﹣ON2=r2﹣x2=9, 即OE=OF=3,∴EF=2OE=6,故选C. 【题3】如图,已知⊙O1的半径为1cm,⊙O2的半径为2cm,将⊙O1,⊙O2放置在直线l上,如果⊙O1在直线l上任意滚动,那么圆心距O1O2的长不可能是0.5cm 【答案】解:∵⊙O1的半径为1cm,⊙O2的半径为2cm,∴当两圆内切时,圆心距为1,∵⊙O1在直线l上任意滚动,∴两圆不可能内含,∴圆心距不能小于1,故选D. 【题4】如图,⊙O的半径为4cm,直线l与⊙O相交于A、B两点,AB=4cm,P为直线l上一动点,以1cm为半径的⊙P与⊙O没有公共点.设PO=dcm,则d的范围是d>5cm或2cm≤d<3cm.

中考动点问题专项训练(含详细解析)

中考动点问题专项训练(含详细解析) 一、解答题 1. 如图,在矩形中,,,点从点出发沿向点匀速运动,速度是;同时, 点从点出发沿方向,在射线上匀速运动,速度是,过点作交于点,连接,,交于点.设运动时间为,解答下列问题: (1)当为何值时,四边形是平行四边形; (2)设的面积为,求与之间的函数关系式; (3)是否存在某一时刻,使得的面积为矩形面积的; (4)是否存在某一时刻,使得点在线段的垂直平分线上. 2. 已知:如图,在中,,,,点从点出发,沿向点匀速运动,速 度为;过点作,交于点,同时,点从点出发,沿向点匀速运动,速度为;当一个点停止运动时,另一个点也停止运动,连接.设运动时间为,解答下列问题: (1)当为何值时,四边形为平行四边形? (2)设四边形的面积为,试确定与的函数关系式; ?若存在,请说明理由,若存在,求出的(3)在运动过程中,是否存在某一时刻,使 四边形 值,并求出此时的距离. 3. 已知:和矩形如图①摆放(点与点重合),点,,在同一条直线上, ,,.如图②,从图①的位置出发,沿方向匀速运动,速度为; 与交于点.同时,点从点出发,沿方向匀速运动,速度为.过作,垂足为,交于,连接,,当点停止运动时,也停止运动.设运动时间为,解答下列问题: (1)当为何值时,? (2)设五边形的面积为,求与之间的函数关系式;

?若存在,求出的值;若不存在,请(3)在运动过程中,是否存在某一时刻,使 五边形矩形 说明理由; (4)在运动过程中,是否存在某一时刻,使点在的垂直平分线上?若存在,求出的值;若不存在,请说明理由. 4. 如图,在中,,,点从点出发,在线段上以每秒的速度向点 匀速运动.与此同时,点从点出发,在线段上以每秒的速度向点匀速运动.过点作,交于点,连接,.当点到达中点时,点与同时停止运动.设运动时间为秒(). (1)当为何值时,. (2)设的面积为,求出与之间的函数关系式. (3)是否存在某一时刻,使?若存在,求出的值;若不存在,说明理由. 5. 如图,在矩形中,,,点从点出发沿向点匀速运动,速度是,过点 作交于点,同时,点从点出发沿方向,在射线上匀速运动,速度是,连接,,与交于点,设运动时间为. (1)当为何值时,四边形是平行四边形; (2)设的面积为,求与之间的函数关系式; (3)是否存在某一时刻,使得的面积为矩形面积的; (4)是否存在某一时刻,使得点在线段的垂直平分线上. 6. 已知:如图①,在中,,,,点由出发沿方向向点匀速运动, 速度为;点由出发沿方向向点匀速运动,速度为;连接.若设运动的时间为(),解答下列问题: (1)当为何值时,? (2)设的面积为,求与之间的函数关系式;

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

七年级数学上册数轴上的动点问题专题训练

七年级数学上册 数轴上的动点问题专题训练1.在数轴上依次有A,B,C 三点,其中点 A,C 表示的数分别为-2,5,且BC=6AB .(1)在数轴上表示出A,B,C 三点; (2)若甲、乙、丙三个动点分别从 A 、 B 、 C 三点同时出发,沿数轴负方向运动,它们的速度分别是2,2 1,41(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?(3)在数轴上是否存在点 P ,使P 到A 、B 、C 的距离和等于10?若存在,求点P 对应的 数;若不存在,请说明理由. 2.已知多项式x 3-3xy 2-4的常数项是a ,次数是b (1) 直接写出a ,b ,并将这两个数在数轴上所对应的点A 、B 表示出来 (2) 数轴上A 、B 之间的距离记作 |AB|,定义:|AB|=|a -b|,设点P 在数轴上对应的数为 x ,当|PA|+|PB|=13时,直接写出x 的值_____________ (3) 若点A 、点B 同时沿数轴向正方向运动, 点A 的速度是点B 的2倍,且3秒后,23AO =OB , 求点B 的速度3.(本题12分)已知A 、B 两个动点同时在数轴上匀速运动,且保持运动的方向不变.若 A 、 B 两点的起始位置分别用有理数 a 、 b 表示, c 是最大的负整数,且|a -19c 2|+|b -8c 3|=0 (1) 求a 、b 、c 的值 (2) 根据题意及表格中的已知数据,填写完表格: 运动时间(秒) 0 5 7 t A 点位置 a -1 B 点位置 b 17 27 (3) 若A 、B 两点同时到达点 M 的位置,且点M 用有理数m 表示,求m 的值(4) A 、B 两点能否相距18个单位长度?如果能,求出此时运动了多少秒及此时A 、B 两点表示5510 643210-1-2-3-4

初中几何的动点问题专题练习(答案)

初中几何的动点问题专题练习(答案) 1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 1.解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC = , ∴B C ∠=∠, ∴BPD CQP △≌△. ··························· (4分) ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4 33 BP t = =秒, ∴515 443 Q CQ v t = ==厘米/秒. ······················· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得 15 32104x x =+?, 解得80 3 x =秒. ∴点P 共运动了80 3803 ?=厘米. ∵8022824=?+, ∴点P 、点Q 在AB 边上相遇,

初中数学动点问题专题讲解整理.doc

中考动点专题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式 例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=3 2 NH=2132?OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴ 2362 1 21x OH MH -== . 在Rt △MPH 中, . 222223362 1 419x x x MH PH MP +=- +=+=H M N G P O A B 图1 x y

动点问题--圆(含答案)

2.如图7,梯形中,,,, ,,点 为线段上一动点(不与点重合),关于的轴对称图 形为,连接,设,的面积为, 的面积为. 1)当点落在梯形的中位线上时,求的值;(全等) 2)试用表示,并写出的取值范围;(相似) 3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+ 相似) 答案】解:(1)如图1,为梯形的中位线,则,过点作 于点,则有: 在中,有 在中, 解得: 2)如图2,交于点,与关于对称, 则有:, 又与关于对称, 3)如图3,当的外接圆与相切时,则为切点. 的圆心落在的中点,设为

则有,过点作, 连接,得 解得:(舍去) 3.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0) (1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(全等) (2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等+分类讨论)(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与

【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明, (2)分两种情况①当t>1 时,点E在y轴的负半轴上,02 时,三角形相似时还各有两种情况,根据比例式求出时间t. 【解答】: 证明:(1)如图,连接PM,PN, ∵⊙P与x轴,y轴分别相切于点M和点N, ∴PM⊥MF,PN⊥ON且PM=PN, ∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF, ∠NPE=∠MPF=90°﹣∠MPE, 在△PMF和△PNE中,,∴△PMF≌△PNE(ASA), ∴PE=PF, (2)解:①当t>1时,点E在y轴的负半轴上,如图, 由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1, ∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1, ∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0

中考数学动点问题专项训练

25、(12分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=18 cm,BC=24cm,动点P从A开始沿AD向D以1cm/s的速度运动;动点Q从点 C开始向B以2cm/s的速度运动。P、Q分别从点A、C同时出发,当其中一点到达端 点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD是平行四边形; (2)当t为何值时,四边形PQCD是直角梯形; (3)当t为何值时,四边形PQCD是等腰梯形 24、(10分)如图1,△ABD和△BDC都是边长为1的等边三角形.(1)四边形ABCD 是菱形吗?为什么?(2)如图2,将△BDC沿射线BD方向平移到△B1D1C1的位置,则四边形ABC1D1是平行四边形吗?为什么? (3)在△BDC移动过程中,四边形ABC1D1有可能是矩形吗?如果是,请求出点B移动的距离(写出过程);如果不是,请说明理由(图3供操作时使用). 28. 如图,直线y=x+1 (k≠0)与x轴交于点B,与双曲线y=(m+5)x2m+1交于点A、C, 其中点A在第一象限,点C在第三象限. (1)求双曲线的解析式; (2)求A点的坐标; (3)若S△AOB=2,在x轴上是否存在点P,使△AOP是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

22、(12分)如图,已知:梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是AD、BC、BE、CE的中点. (1)求证:△ABE≌△DCE (2)四边形EGFH是什么特殊四边形?并证明你的结论. (3)连接EF,当四边形EGFH是正方形时,线段EF与BC有什么关系?请说明理由 .(满分10分)如下图,直角梯形ABCD中,AD∥BC,AD=24,BC=26,∠B=90°,动点P从A 开始沿AD边向D以1的速度运动,动点Q从点C开始沿CB以3的速度向点B运动.P、Q 同时出发,当其中一点到达顶点时,另一点也随之停止运动,设运动时间为,问为何值时,(1)四边形PQCD是平行四边形.(2)当为何值时,四边形PQCD为等腰梯形.

初中数学几何的动点问题专题练习-附答案版

动点问题专题训练 1、如图,已知A B C △中,10A B A C ==厘米,8B C =厘米,点D 为A B 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P D △与 CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使B P D △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿A B C △三边运动,求经过多长时间点P 与点Q 第一次在A B C △的哪条边上相遇? 2、直线364 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发, 同时到达A 点,运动停止.点Q 沿线段O A 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485 S = 时,求出点P 的坐标,并直接写出以点 O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是 正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

最新中考动点问题专题(教师讲义带答案)

中考动点型问题专题 一、中考专题诠释 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. “动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。 二、解题策略和解法精讲 解决动点问题的关键是“动中求静”. 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 三、中考考点精讲 考点一:建立动点问题的函数解析式(或函数图像) 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系. 例1 (2015?兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为() A.B.C.D. 思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论. 解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则: (1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1); (2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2). 综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2), 这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求. 故选B. 点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择. 对应训练 1.(2015?白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是() A.B.C.D. 1.C 考点二:动态几何型题目

动点问题专题训练

动点问题专题训练 1、如图,在直角梯形ABCD 中AB ∥CD, AD⊥CD, AB=8, CD=12, AD=3,动点P 从点C 出发,以每秒2个单位的速度匀速向点D 运动,动点Q 从点A 出发,以每秒1个单位的速度匀速向点B 运动.设P 、Q 同时出发,运动时间为t ,请回答下列问题: (1) t 为何值时,四边形PQBC 为平行四边形 (2) t 为何值时,四边形PQBC 为等腰梯形 (3) t 为何值时,四边形PQBC 为菱形若不能,怎样改变Q 点的速度使四边形PQBC 为菱形. (4) 】 (5) t 为何值时,PQ 将梯形ABCD 的面积平分 (6) t 为何值时,PQ 将梯形ABCD 的周长平分 (7) PQ 能否将梯形ABCD 的面积、周长同时平分改变Q 点的速度后能否平分 (8) 连接DQ, t 为何值时△DPQ 是直角三角形 (9) t 为何值时△DPQ 是等腰三角形 (10) △DPQ 能否成为等边三角形 (11) 连接AC 交PQ 于M,点M 的位置是否随着PQ 的运动而改变位置 (12) 求出△AQM 的面积S 与t 的函数关系式. (13) t 为何值时PQ ⊥AC (14) t 为何值时DQ ⊥AC 2、如图,在等边△ABC 中,已知AB =BC =CA =4cm ,AD ⊥BC 于D ,点P 、Q 分别从B 、C 两点同时出发,其中点P 沿BC 向终点C 运动,速度为 1cm/s ;点P 沿CA 、AB 向终点B 运动,速度为2cm/s , 设它们运动的时间为x(s)。 ⑴ x 为何值时,PQ ⊥AC ; \ ⑵ 设△PQD 的面积为y ,当0<x <2时,求y 与 x 的函数关系式;最值 3) 当0<x <2时,求证:AD 平分△PQD 的面积; 4) x 为何值时,ABDQ 是等腰梯形。 5) x 为何值时,PBQ 是正三角形 6) x 为何值时,PDQ 的面积是ABC 的一半。(或直角三角形) 7) x 为何值时,AC ∥PQ 8) 探索以PQ 为直径的圆与AC 的位置关系。请写出相应位置关系的x 的取值范围。 A C Q A 》

初中数学压轴题---几何动点问题专题训练(含详细答案)

初中数学压轴题---几何动点问题专题训练 1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵厘米, ∴835PC =-=厘米8PC BC BP BC =-=,, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4 33 BP t ==秒, ∴515 443 Q CQ v t = ==厘米/秒. · ································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得 15 32104 x x =+?,

2014年中考数学专题复习:与圆有关的动点问题(精品含答案)(最新整理)

2014 年中考数学专题复习:与圆有关的动点问题 1、如图,⊙O 的直径 AB=4,C 为圆周上一点,AC=2,过点 C 作⊙O 的切线 DC ,P 点为优弧 CBA 上一动点(不与 A .C 重合). (1) 求∠APC 与∠ACD 的度数; (2) 当点 P 移动到 CB 弧的中点时,求证:四边形 OBPC 是菱形. (3)P 点移动到什么位置时,△APC 与△ABC 全等,请说明理由. 2、如图,在⊙O 上位于直径 AB 的异侧有定点 C 和动点 P , AC= 1 2 AB ,点 P 在半圆弧 AB 上运动(不与 A 、B 两点重合),过点 C 作直线 PB 的垂线 CD 交 PB 于 D 点. (1) 如图 1,求证:△PCD ∽△ABC ; (2) 当点 P 运动到什么位置时,△PCD ≌△ABC ?请在图 2 中画出△PCD 并说明理由; (3) 如图 3,当点 P 运动到 CP ⊥AB 时,求∠BCD 的度数.

3、如图,在半径为 2 的扇形 AOB 中,∠AOB=90°,点 C 是弧 AB 上的一个动点(不与点 A、B 重合)OD⊥BC,OE⊥AC,垂足分别为 D、E. (1)当BC=1 时,求线段 OD 的长; (2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在, 请说明理由; (3)设BD=x,△DOE的面积为 y,求y 关于x 的函数关系式,并写出它的定义域. 4、如图,菱形ABCD 的边长为2cm,∠DAB=60°.点P 从A 点出发,以cm/s 的速度,沿AC 向C 作匀速运动;与此同时,点 Q 也从A 点出发,以 1cm/s 的速度,沿射线 AB 作匀速运 动.当 P 运动到 C 点时,P、Q 都停止运动.设点 P 运动的时间为 ts. (1)当P 异于A.C 时,请说明PQ∥BC; (2)以P 为圆心、PQ 长为半径作圆,请问:在整个运动过程中,t 为怎样的值时,⊙P与 边BC 分别有 1 个公共点和 2 个公共点?

初中数学几何的动点问题专题练习附答案

动点问题专题训练 1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等 (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇 1.解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ··················· (4分) P

②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4 33 BP t ==秒, ∴515 443 Q CQ v t = ==厘米/秒. ··············· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15 32104 x x =+?, 解得80 3 x = 秒. ∴点P 共运动了 80 3803 ?=厘米. ∵8022824=?+, ∴点P 、点Q 在AB 边上相遇, ∴经过 80 3 秒点P 与点Q 第一次在边AB 上相遇. ······· (12分) 2、直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出 发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求 出S 与t 之间的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 2.解(1)A (8,0)B (0,6) 1分 (2)86OA OB ==,

相关文档
相关文档 最新文档