文档库 最新最全的文档下载
当前位置:文档库 › 求a+aa+aaa+aa…..a(n个a)之和

求a+aa+aaa+aa…..a(n个a)之和

求a+aa+aaa+aa…..a(n个a)之和
求a+aa+aaa+aa…..a(n个a)之和

胡冰倩计科3班2012329620058

实验内容1

输入两个正整数a和n,求a+aa+aaa+aa…..a(n个a)之和。要求定义并调用函数fn(a,n),它的功能是返回aa…….a(n个a)。例如,fn(a,n)的返回值是33。

2实验程序

#include

#include

int main(void)

{

inta,n,sum,i;

intfn(inta,int n);

printf("Enter a:");

scanf("%d",&a);

printf("Enter n:");

scanf("%d",&n);

sum=0;

for(i=1;i<=n;i++){

sum=sum+fn(a,i);

}

printf("sum=%d\n",sum);

return 0;

}

intfn(inta,int n)

{

inti;

for(i=1;i<=n-1;i++){

a=a+a*pow(10,i);

}

return a;

}

3实验结果

4实验心得

一次成功,哦也

笔算开n次方的方法

笔算开n次方 笔算开n次方的方法: 1、把被开方的整数部分从个位起向左每隔n位为一段,把开方的小数部分从小数点第一位起向右每隔n位为一段,用撇号分开; 2、根据左边第一段里的数,求得开n次算术根的最高位上的数,假设这个数为a; 3、从第一段的数减去求得的最高位上数的n次方,在它们的差的右边写上第二段数作为第一个余数; 4、把n(10a)^(n-1)去除第一个余数,所得的整数部分试商(如果这个最大整数大于或等于10,就用9做试商); 5、设试商为b。如果(10a+b)^n-(10a)^n小于或等于余数,这个试商就是n次算术根的第二位;如果(10a+b)^n-(10a)^n大于余数,就把试商逐次减1再试,直到(10a+b)^n-(10a)^n小于或等于余数为止。 6、用同样的方法,继续求n次算术跟的其它各位上的数(如果已经算了k位数数字,则a要取为全部k位数字)。 例如计算987654321987654321的五次算术根,就算到小数点后四位。 3 9 7 1. 1 9 2 9 5√987'65432'19876'54321.00000'00000'00000'00000 243 ________________________________________________ 744 65432......................................74465432/(5×30^4)整数部分是18,用9作试商 659 24199......................................39^5-30^5 _____________________________________________ 85 41233 19876................................854123319876/(5×390^4)的整数部分是7,用7作试商 83 92970 61757................................397^5-390^5 ____________________________________________ 1 4826 2 58119 54321..........................1482625811954321/(5×3970^4)的整数部分是1,用1作试商 1 24265 57094 08851..........................3971^5-3970^5 ___________________________________________ 23997 01025 45470 00000....................23997010254547000000/(5×39710^4)的整数部分是1,用1作试商 12433 44352 06091 99551....................39711^5-39710^5 _________________________________________ 11563 56673 39378 00449 00000..............1156356673393780044900000/(5×397110^4)的整数部分是9,用9作试商 11191 17001 57043 20516 21599..............397119^5-397110^5 _________________________________________ 372 39671 82334 79932 78401 00000........3723967182334799327840100000/(5×3971190^4)的整数部分是2,用2

最新自然数幂次方和公式

1 2 自然数幂次方和的另一组公式 3 摘要:一般的自然数幂次方和公式是用n 的p+1次方的多项式表示,考虑到任 4 一多项式均可用k n C 表示,本文给出了自然数幂次方和用k n C 表示的方法,并且给 5 出了相应的系数完整表达式。这比多项式表达方便得多,因为多项式表达的系数 6 至今仍是递推公式表达。 7 8 9 由笔者的文章(注【1】)知,自然数幂次方和可以用关于n 的多项式表达,而 10 每一个多项式均可用k n C 表示的,因此可猜想自然数幂次方和也可以用k n C 表达出 11 来。 12 假设自然数幂次方和可以写成以下形式 13 ∑∑=++===p k k n k n k p n C A k S 1 111 。。。。。。(1) 14 那么同理可应有: 15 ∑∑=++--=-==p k k n k n k p n C A k S 1 11)1(1 1 1 16 那么: 17 ∑∑=+=++--=-=p k k n k p k k n k n n p C A C A S S n 1 1 1 11 1 18

[ ]∑∑==+++=-=p k k n k p k k n k n k p C A C C A n 1 1 111 19 20 ∑== p k k n k p C A n 1 21 因为对于充分大的自然数n 均使得上述式子成立,所以上式对应的应该是一个22 关于n 的p 次多项式,其中: 23 )1).....(1(k n n n C k n -+-= 24 这仅仅是一个多项式的写法,与排列组合无关, n 可为任意的数。 25 分别令n=1,2,3, 。。。。p-1时就有: 26 01 1 1 1 +=+ ==∑∑∑∑=+===t k k t k p t k k t k t k k t k p k k t k p C A C A C A C A t 27 ∑==t k k t k p C A t 1 )1...3,2,1(-=p t 。。。。。。。。 28 (2) 29 ∑-=-=1 1t k k t k p t C A t A )1...3,2,1(-=p t 。。。。。。。。 30 (3) 31 这是一个递推的数列,其中A 1=1 , 很显然,通过它可以求出所有的系数t A ,32 仿照笔者的文章(注【1】)可证明,由(3)式求出的系数t A ,使得公式(1)33 成立,即自然数幂次方和的公式由(1)(3)给出了。 34 其中(3)式是递推公式,那么能不能直接写出系数A t 的表达式呢,下35 面给出这个结论。 36

求一个数的n次方根

数值计算 探讨求解的几种方法

摘要 很多科学计算问题都遇到非线性方程的求解问题。设非线性方程为 ()0 m f x x n =-=方程的解*x 称为方程的根或函数()f x 的零点。对于非线性方程的求解一般没有特殊公式,因此研究其数值解法是很有必要的,在此以求一个数的n 次方根为例探讨几种求近似根的常用方法,即二分法、牛顿迭代法、简化牛顿迭代法法以及割线法。 一、算法设计 计算机配置内存:2G 处理器主频:2.53GHz MATLAB 版本:R2011b 1.1二分法 设()f x 在区间[,]a b 上连续,()()0f a f b ?<,则[,]a b 内有方程的根。取[,]a b 的中点01 ()2 x a b = +,将区间一分为二。若0()0f x =,则0x 就是方程的根,否则判别根*x 在0x 的左侧还是右侧。 若0()()0f a f x ?<,则*0(,)x a x ∈,令110,a a b x ==;若0()()0f a f x ?>,则*0(,)x x b ∈,令101,a x b b ==。 不论出现那种情况,11(,)a b 均为新的有根区间,它的长度只有原有根区间长度的一半,达到了压缩有根区间的目的。 对压缩了的有根区间,又可施行同样的步骤,再次压缩有根区间。如此反复进行下去,即可得一系列有根区间套 11[,][,][,]n n a b a b a b ???? 由于每一区间都是前一区间的一半,因此区间[,]n n a b 的长度为 1 ()2n n n b a b a -= -若每次二分时所取区间中点都不是根,则上述过程将无限的进行下去。当n →∞

两数N次方差的一般计算公式

两数N次方差的一般计算公式 在数学的学习中,有时候会碰到求两数的平方差的题目,在六年级的奥数学习中,通过面积和体积的计算公式,发现了相邻两数二次方和三次方的计算规律,后来我把它推演到不相邻两个数的N次方,发现同样有效。就如同二次方差用于计算面积差,三次方的差用于计算体积差一样,也许N次方的差在将来用于计算N维度的差。 推导过程: 一、由二次方看 首先,我们知道两个数的二次方的计算方法 已知一个数A的平方,求这个数相邻数的平方。 解答:如图,一个数A的平方如图中有色部分,即A^2;这个数的相邻数的平方可以看图中的白色方框包含的部分和绿色边框包含的部分,他们分别是: 5^2-4^2=5^(2-1)+4^(2-1)=5+4=9 几何上可以理解为:图中白色框的一边5与另一边4相加 4^2-3^2=4^(2-1)+3^(2-1)=4+3=7 几何上可以理解为:图中绿色框的一边3与另一边4的相加 所以对于相邻两数的二次方的差计算的一般公式如下: (A+1)^2-A^2=(A+1)^(2-1)*A^(2-2)+(A+1)^(2-2)*A^(2-1) 对于最外边白色框与里边绿色框的平方差,可通过图形看到 (A+1)^2-(A-1)^2=(A+1)^(2-1)* (A-1)^(2-2)*2+(A+1)^(2-2)*(A-1)^(2-1)*2 =[(A+1)^(2-1)* (A-1)^(2-2)+(A+1)^(2-2)*(A-1)^(2-1)]*2 几何上理解为:

长方向的A+1与[(A+1)-(A-1)]=2的面积、宽方向上A-1与[(A+1)-(A-1)]=2的面积,两块面积的和。 同理,推广到两个不相邻数P与Q的平方差,可表示为: P^2-Q^2=[P^(2-1)*Q^(2-2)+P^(2-2)*Q^(2-1)]*(P-Q) 二、再看三次方的情况 我们看相邻两个数的三次方的差的计算方法: 已知一个数A的三次方,求这个数相邻数的三次方。 设A的相邻数为A+1和A-1,则他们的三次方可以用一个三维立体图形形象地表示,如右图: (A+1)^3-A^3=(A+1)^(3-1)*A^(3-3)+(A+1)^(3-2)*A^(3-2)+(A+1)^(3-3)*A^(3-1) A^3-(A-1)^3=A^(3-1)*(A-1)^(3-3)+A^(3-2)*(A-1)^(3-2)+A^(3-3)*(A-1)^(3-1) 几何上的理解是: 长方向的A与高方向上的A厚度为1的体积、宽方向上的(A-1)与高方向上的A厚度为1的体积、长方向上的(A-1)与宽方向上的(A-1)厚度为1的体积,这三块体积之和。 对于不相邻两个数P、Q的三次方的差,可以看作是厚度为(P-Q)的形成体积的体积差,一般公式为: P^3-Q^3=[P^(3-1)*Q^(3-3)+P^(3-2)*Q^(3-2)+P^(3-3)*Q^(3-1)]*(P-Q) 三、推广到四次方 同样,可以知道相邻两个数的四次方之差公式:

幂的运算

幂的运算 第一部分:知识归纳,要点总结 (什么是——幂?) n a 1、 同底数幂的乘法(重点) 法则:同底数幂相乘,底数不变,指数相加。 公式表示:m n m n a a a += (m 、n 都是正整数)。 推导过程:()()m n m n a a a a a a a a a +== 。 关键:找准底数。 注意:①底数必须相同;②相乘时,底数没有变化;③指数相加的和作为最终结果幂的指数。 例:计算351010?= ,3m m ?= ,()()32 b b --= ,21n n b b += 。 推广及逆用(难点) 同底数幂的乘法可推广到三个或三个以上同底数幂的情况,即:m n p m n p a a a a ++= (m 、n 、p 都为正整数), m n p m n p a a a a +++= (m 、n ,…,p 都为正整数)。 反之,m n m n a a a += (m 、n 为正整数)亦成立。 2、 幂的乘方与积的乘方 ⑴幂的乘方 意义:指几个相同的幂相乘。如:()n m a 是n 个m a 相乘,读作a 的m 次幂的n 次方。 推导过程:。 法则(重点):()n m mn a a =(m 、n 都是正整数)。 ⑵积的乘方 意义:是指底数是乘积形式的乘方。如:()3ab ,()n ab 。 推导过程:()()()()()()n n n ab ab ab ab a a a b b b a b === 。

法则(重点):()n n n ab a b =(n 为正整数)。 3、 同底数幂的除法 法则:同底数幂相除,底数不变,指数相减。 公式表示:m n m n a a a -÷=(0a ≠,m 、n 为正整数,且m>n )。 例:62x x ÷= ,()5 3a a -÷= ,41n n a a ++÷= ,()()3211a a +÷+= 。 零指数幂与负整数指数幂的意义(重、难点) (1)零指数幂 ()010a a =≠, 即任何不等于0的数的0次幂都等于1。 (2)负整数指数幂 1p p a a -=(0a ≠,p 是正整数) 即任何不等于零的数的-p (p 是正整数)次幂,等于这个数的P 次幂的倒数。 第二部分:考点精析,方法指导 【典型例题1】已知23x =,求32 x +的值。 【典型例题2】计算3534x x x x x += 【典型例题3】若236m m x x x -= ,求2112m m -+的值。 【典型例题4】若2m =-,求()()3 24m m m --- 的值。

方根、指数、幂、对数基本运算公式及全部推导公式

方根、指数、幂、对数基本运算公式及全部推导公式 1.根式运算法则: (1) , , ; (2) , , (m a =≥0) a =≥0,P ≠0) (5) , 0),,a m n N =≥∈其中 2.指数运算法则: , , , , , , (7)1 (0)m m a a a -=≠, (8)1 n a = (9)m n a =(10) d b d b a c a c =?= 3.对数运算法则: i 性质:若a >0且a≠1,则 , , (3)零与负数没有对数, (4)log log 1a b b a ?= ⑥, (7)log log log 1a b c b c a ??= ii 运算法则: 若a >0且a≠1,M >0,N >0,b >0且b≠1,n ∈R 则 , ,

, log log (,01)m n a a n b b a b m =>≠且 (4) , log log n n a a m m =, 1log log n a a m m n = (5)换底公式 , a>0 a ≠1, b>0 b ≠1, N>0, (6)倒数公式 1 log ,0,1log a b b a a a = >≠, b>0 b ≠1 (7) 十进制对数 10log lg N N = , l g 10x N x N =?= (8)自然对数 log e N InN = , x InN x e N =?= , 1lim(1) 2.71828...n n e n →∞ =+≈ 4.指数与对数式的恒等变形: ; 。 5、指数方程和对数方程解题: ()(1)()log ,log ()()(f x b a a a b f x b f x b f x a =?==?=定义法) ()()(2)()(),log ()log ()()()0(f x g x a a a a f x g x f x g x f x g x =?==?=>转化法) ()()(3)b ()log ()log ,f x g x m m a f x a g x b =?=(取对数法) ()(4)log log ()log ()log ()/log ,f x a b a a a g x f x g x b =?=(换底法) 6、理解对数 ①两种log a b 理解方法 1、表示a 的“指数”,这个指数能让a 变成b 。 2、表示a 的多少次方等于b 。 ② log log (...)n a a m M M M =??? n 个 log log ...log a a a M M M =+++ n 个 log a n M =

n次方和及n次方差公式

n 次方和及n 次方差公式 (1)n 次方差公式: 123221()()n n n n n n n a b a b a a b a b ab b ------=-+++ ++,n N *∈ (2)n 次方和公式: 123221()()n n n n n n n a b a b a a b a b ab b -----+=+-++ -+,n N *∈,n 为奇数 注意:n 为偶数时,没有n 次方和公式 实际上, 12322211,()((1)(1)),n n n n n n n n n n n a b n a b a a b a b ab b a b n -------?+?+-++--+-=?-??为奇为偶 即n 为偶数时,立方和公式有两个: 123221123221()()()()n n n n n n n n n n n n a b a b a a b a b ab b a b a a b a b ab b -----------=-+++ ++=+-+++- 常用公式: 1.平方差公式:22()()a b a b a b -=+- 2.立方差公式:3322()()a b a b a ab b -=-++ 立方和公式:3322()()a b a b a ab b +=+-+ 3.四次方差公式:4432233223()() ()() a b a b a a b ab b a b a a b ab b -=-+++=+-+- 4.1231(1)(1)n n n n x x x x x x ----=-+++++,n N *∈ 1231(1)(1)n n n n x x x x x x ---+=+-+++-,n N *∈,n 为奇数

a的n次方加上b的n次方如何因式分解

a的n次方±b的n次方,怎么进行因式分解 解:①n为奇数时,a^n-b^n=0由唯一解a=b,a^n-b^n只能分解为两个因式相乘 a^n-b^n=[a^n-a^(n-1)b]+[a^(n-1)b-a^(n-2)b2]+…+[ab^(n-1)-b^n]=(a-b)[a^(n-1)+a^(n-2)b+…b^(n-1)] a^n+b^n=a^n-(-b)^n同理即可。 ②n为偶数时,a^n-b^n先使用平方差公式,指数变为奇数时,按①分解因式即可n是4的倍数时, a^n+b^n=[a^(n/2)]2+[b^(n/2]2+2a^(n/2)b^(n/2)-2a^(n/2)b^(n/2)=[a^(n/2)+b^(n/2)]2- [√2a^(n/4)b^(n/4)]2平方差公式分解即可。此外,a^n+b^n2实数范围无法分解, a=1,b=2,n=2时,a^n+b^n=1^2+2^2=5,a^2-b^2=1^2-2^2=-3, a=2,b=3,n=3时,a^n+b^n=2^3+3^3=35,a^n-b^n=2^3-3^3=-19, a=4,b=3,n=5时,a^n+b^n=4^5+3^5=1267,a^n+b^n=4^5-3^5=781. ......................... 由此可见,a^n+b^n,a^n-b^n的结果都是一些实数,其规律是很复杂的。如果需要对这些结果做变形,应该视需要和可能而定。可能的情况有 n是奇数时,a^n+b^n=(a+b)[(a^(n-1)-a^(n-2)b+a^(n-3)b^2-......+(-b)^(n-1)] n是偶数时,一般情况下a^n+b^n不能进一步变形。例如a^2+b^2,a^4+b^4,a^6+b^6=(a^2+b ^2)[a^4-(ab)^2+b^4)]...... a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+a^(n-3)b^2+......+b^(n-1)] a的n次方加上b的n次方如何因式分解 当n为奇数时: a^n+b^n=(a+b)[a^(n-1)-a^(n-2)b+a^(n-3)b^2-.......+a^2b^(n-3)-ab^(n-2)+b^(n-1)] 当n为3的倍数时:令n=3m,则 a^3m+b^3m=(a^m+b^m)(a^2m-a^mb^m+b^2m] n=5m ......... n为2的幂时无法分解

矩阵n次方的几种求法的归纳

矩阵n 次方的几种求法 1.利用定义法 () () ,,ij kj s n n m A a B b ??==则() ,ij s m C c ?=其1122...ij i j i j in nj c a b a b a b =+++ 1 n ik kj k a b ==∑称为A 与B 的乘积,记为C=AB ,则由定义可以看出矩阵A 与B 的乘积C 的第i 行第j 列的元素等于第一个矩阵A 的第i 行与第二个矩阵B 的第j 列的对应元素乘积之和,且由定义知:第一个矩阵的列数与第二个矩阵的行数要相[]1 同。 例1:已知矩阵34 125310210134A ??? ?=- ? ???,44 5 130621034510200B ??? ? ? = ? ? ??,求AB 解:设C AB ==() 34 ij c ?,其中1,2,3i =;1,2,3,4j = 由矩阵乘积的定义知: 111526533032c =?+?+?+?=121122543231c =?+?+?+?= 131321553030 c =?+?+?+?=14102051305 c =?+?+?+?= 21150623101c =-?+?+?+?= 22110224129c =-?+?+?+?= 23130125107c =-?+?+?+?= 24100021102c =-?+?+?+?= 310516334015c =?+?+?+?= 320112344222c =?+?+?+?= 330311354016c =?+?+?+?= 34001031403c =?+?+?+?= 将这些值代入矩阵C 中得:

C AB ==34 323130519721522163??? ? ? ??? 则矩阵A 的n 次方也可利用定义的方法来求解。 2.利用矩阵的分块来求解 这类方法主要是把一个大矩阵看成是由一些小矩阵组成,就如矩阵 由数组成的一样在运算中将这些小矩阵当做数一样来处理,再由矩阵乘法的定义来求解这些小矩阵的乘积所构成的矩阵。即设 () () ,,ij kj s n n m A a B b ??==把A ,B 分解成一些小矩阵: 1111l t tl A A A A A ?? ?= ? ???K M O M L ,1111 r l lr B B B B B ?? ? = ? ??? K M O M L ,其中ij A 是i j s n ?小矩阵且1,2...i t =,1,2...j l =,且12...t s s s s +++= ,12...l n n n n +++=;ij B 是j k n m ?小矩阵且1,2...j l =,1,2...k r =;且12...l n n n n +++=, 12...r m m m m +++=;令C AB ==1111r t tr C C C C ?? ? ? ??? K M O M L ,其中ij C 是i j s m ?小矩阵且1,2...i t =,1,2,...,j r =,且12...t s s s s +++=, 12...r m m m m +++=;其中1122...ij i j i j il lj C A B A B A B =+++。这里我们应注意:矩阵A 列的分法必须与矩阵B 行的分法一[]1 致。

笔算开立方和N次方

今年在某次物理竞赛中忘了带计算器,需要计算开立方。当时不知道怎么笔算,所以只好一位一位地试。因此,我便想研究出一种开立方的笔算方法(我知道现在有,但是苦于找不到,所以只好自己来了)。 在刚开始研究是我不知道该如何入手,所以就去找了初二时候的代数书,里面有开平方笔算法和推导过程。它是这么写的: 在这里,我“定义”a^b=a的b次方。 (10a+b)^2 = 100a^2+20ab+b^2 = 100a^2+b(20a+b) a代表的是已经计算出来的结果,b代表的是当前需要计算的位上的数。在每次计算过程中,100a^2都被减掉,剩下b(20a+b)。然后需要做的就是找到最大的整数b'使b'(20a+b')<=b(20a+b)。 因此,我就照着书里的方法,推导开立方笔算法。 (10a+b)^3 = 1000a^3+300a^2*b+30a*b^2+b^3 = 1000a^3+b[300a^2+b(30a%2 笔算开立方 一天,我遇到了一道需要用到310的近似值的物理题。我没带计算器或《中学数学用表》,只好逐个计算一些数的立方,并与10比较,好不容易才把小数点后第二位数字确定下来。这促使我寻求笔算开立方的方法。 笔算开平方的方法我是掌握的。我想笔算开立方的方法应该与它有些关联,不妨先把笔算开平方的主要步骤回忆一下:1.将被开方数的整数部分从个位起向左每两位分为一组; 2.根据最左边一组,求得平方根的最高位数; 3.用第一组数减去平方根最高位数的平方,在其差右

边写上第二组数; 4.用求得的最高位数的20倍试除上述余数,得出试商。再用最高位数的20倍与试商的和乘以试商,若所 得的积不大于余数,试商就是平方根的第二位数,若 大于,就减小试商再试。 5.用同样方法继续进行下去。 类似地,若要写出笔算开立方的法则,显然第1步中的“两”应改为“三”,第2、3步中的“平”应改为“立”,而第5步不变化。关键是第4步如何进行。 当天晚上,我想到完全平方公式是(a+b)2=a2+2ab+b2,完全立方公式是(a+b)3=a3+3a2b+3ab2+b3。于是我猜想“20倍”应该与“2ab”有关。我先后想出了几种可能的方法,经检验,都是行不通的。那么我有必要分析笔算开平方的本质。 以两位数ab为例,2 ab= (10a+b)2=100a2+20ab+b2。这里a代表平方根的最高位数,b代表试商。事实上,100a2已在第3步里被减去了。那么剩下的就是20ab+b2,即(20a+b)·b,也就是“求得的最高位数的20倍与试商的和再乘以试商”。这样,如果被开方数是(10a+b)2,那么最后所得的余数恰好为零;如果被开方数比(10a+b)2大,就把10a+b看作a继续进行下去。同样的道理,这个法则对多位数、一位数和小数也适用。 类似地,(10a+b)3=1000a3+300a2b+30ab2+b3,其中1000a3在开立方法则第3 步里被减去了。那么我就应该把求得的最高位数

复利计算公式

复利计算公式 F=P*(1+i)^n F=A((1+i)^n-1)/i P=F/(1+i)^n P=A((1+i)^n-1)/(i(1+i)^n) A=Fi/((1+i)^n-1) A=P(i(1+i)^n)/((1+i)^n-1) F:复利终值P:本金 A :每年末投资i:利率N:利率获取时间的整数倍复利的计算是对本金及其产生的利息一并计算,也就是利上有利。复利计算的特点是:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的。复利的计算公式是:S=P(1+i)^n 复利现值 复利现值是指在计算复利的情况下,要达到未来某一特定的资金金额,现在必须投入的本金。所谓复利也称利上加利,是指一笔存款或者投资获得回报之后,再连本带利进行新一轮投资的方法。复利终值 复利终值是指本金在约定的期限内获得利息后,将利息加入本金再计利息,逐期滚算到约定期末的本金之和。 例题 例如:本金为50000元,利率或者投资回报率为3%,投资年限为30年,那么,30年后所获得的利息收入,按复利计算公式来计算就是:50000×(1+3%)^30 由于,通胀率和利率密切关联,就像是一个硬币的正反两面,所以,复利终值的计算公式也可以用以计算某一特定资金在不同年份的实际价值。只需将公式中的利率换成通胀率即可。例如:30年之后要筹措到300万元的养老金,假定平均的年回报率是3%,那么,现在必须投入的本金是3000000×1/(1+3%)^30 每年都结算一次利息(以单利率方式结算),然后把本金和利息和起来作为下一年的本金。下一年结算利息时就用这个数字作为本金。复利率比单利率得到的利息要多。编辑本段复利率的计算主要分为2类:一种是一次支付复利计算:本利和等于本金乘以(1+i)的n次方,公式即F=P(1+i )^n;另一种是等额多次支付复利计算:本利和等于本金乘以(1+i)的n次方-1后再除以利息i,公式即 F=A((1+i)^n-1)/i 复利计算公式 时间:2011-09-19 作者:来源:新东方论坛 复利计算公式:本息=本金*{(1+利率)的N次方},N为相差年数 例题:某人将10万远存入银行,银行利息2%/年,2年后他从银行取钱,需缴纳利息税,税率为20%,则税后他能实际提取出的本金合计约为多少万元?() A.10.32 B.10.44 C.10.50 D10.61 两年利息为(1+2%)的平方*10-10=0.404税后的利息为0.404*(1-20%)约等于0.323,则提取出的本金合计约为10.32万元 计算复利的数学公式: 年收益是x%,那N年以后的收益是(1+x%)^N。 用excel可以自动计算,公式是:=power(1.08,n),1.08是1+年增长,n是年数。 简单的估算方式: 72法则-用来计算在给定年收益的情况下,约需要多少年投资才会翻倍。 举例说明:比如年收益是5%,那用72/5=14.4。也就是约14.4年可以将投资翻番(如果用标准公式计算结果为14.2年);如果年收益为7%,用72/7=10.3,也就是约10.3年投资可以翻一番(用公式计算为10.24年);如果年收益为10%,用72/10=7.2,也就是约7.2年投资可以翻一番(用公式计算为7.27年)……

幂级数求和函数方法概括与汇总

幂级数求和函数方法概括与汇总

————————————————————————————————作者:————————————————————————————————日期:

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

和10的n次方加减1有关的速算法及其证明。

和n 10±1有关的速算法及其证明 1、加减法中和n 10±1有关的速算法。 例1:287+1001=287+(310+1)=287+310+1=1287+1=1288 287+999=287+(310-1)=287+310-1=1287-1=1286 法则: 当有一个加数是n 10±1时,先用另一个加数加上n 10,再加上1或者减去1。口诀是:先加整,再看零;少加1要加上1,多加1要减去1。 例2:3596-1001=3596-(310+1)=3596-310-1=2596-1=2595 3596-999=3596-(310-1)=3596-310+1=2596+1=2597 法则: 当减数是n 10±1时,先减去n 10,再减去1或者加上1。口诀是:先减整,再看零;少减1要减去1,多减1要加上1。 2、乘除法中和n 10±1有关的速算法。 例3:429?999=429?(310-1)=429?310-429?1=429000-429=428571 53?99=53?(210-1)=53?210-53?1=5300-53=5247 法则:当有一个因数是n 10-1时,用另一个因数减去1作积的前半部分,用n 10减去积的前半部分作积的后半部分。 这是另一个因数是n 位数时的速算法。其实当另一个因数的位数少于n 位时速算方法也相同,但是当另一个因数的位数多于n 位时,速算方法稍有不同。 例4:4167?99=4167?(210-1)=4167?210-4167?1=416700-4167=412533 2673?9=2673?(110-1)=2673?110-2673?1=26730-2673=24057 法则:当另一个因数的位数多于n 位时,先用这个因数从个位起的n 位减去1的差作减数,用n 10作被减数,差作积的后半部分,再用这个因数减去它从最高位起多于n 位的部分,再减去1作积的前半部分。 法则虽然啰嗦难记,但是运用起来并不复杂,速度还是要比笔算快许多。 例5:429?1001=429?(310+1)=429?310+429?1=429000+429=429429 53?101=53?(210+1)=53?210+53?1=5300+53=5353 法则:当有一个因数是n 10+1时,把另一个因数连写两遍就得到积。

幂的运算方法总结

幂的运算方法总结 幂的运算的基本知识就四条性质,写作四个公式: ①a m×a n=a m+n ②(a m)n=a mn ③(ab)m=a m b m ④a m÷a n=a m-n 只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。 问题1、已知a7a m=a3a10,求m的值。 思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。 方法思考:只要是符合公式形式的都可套用公式化简试一试。 方法原则:可用公式套一套。 但是,渗入幂的代换时,就有点难度了。 问题2、已知x n=2,y n=3,求(x2y)3n的值。 思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。 因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728 方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。 方法原则:整体不同靠一靠。 然而,遇到求公式右边形式的代数式该怎么办呢? 问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。 思路探索:试逆用公式,变形出与已知同形的幂即可代入了。 简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300

方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。 方法原则:逆用公式倒一倒。 当底数是常数时,会有更多的变化,如何思考呢? 问题4、已知22x+3-22x+1=48,求x的值。 思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。 简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x =6×22x=48 ∴22x=8 ∴2x=3 ∴x=1.5 方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。 问题5、已知64m+1÷2n÷33m=81,求正整数m、n的值。 思路探索:幂的底数不一致使运算没法进行,怎样把它们变一致呢?把常数底数都变成质数底数就统一了。 简解:64m+1÷2n÷33m =24m+1×34m+1÷2n÷33m=24m+1-n×3m+1=81=34 ∵m、n是正整数∴m+1=4,4m+1-n=0 ∴m=3,n=13 方法思考:冪的底数是常数时,通常把它们分解质因数,然后按公式3展开,即可化成同底数冪了。 问题6、已知2a=3,2b=6,2c=12,求a、b、c的关系。 思路探索:求a、b、c的关系,关键看2a、2b、2c的关系,即3、6、12的关系。6是3的2倍,12是6的2倍,所以2c=2×2b=4×2a,由此可求。 简解:由题意知2c=2×2b=4×2a ∴2c=2b+1=2a+2 ∴c=b+1=a+2

家的n次方

家的N次方——关于家的教育智慧 家是社会的细胞,成千上万个家庭细胞共同构成了社会肌体。 “家和万事兴”是一切之根本,家和才能志同,志同才有力量,有了力量才能兴盛。 古人常说家国天下,没有家就没有国,没有国也就没有天下,家庭的地位不言而喻。 家教故事:二千多年前的“虎妈”教子之道 在中国儒家文化系统中,孟子是仅次于孔子的“亚圣”,能培养出这样一位“牛人”,“虎妈”孟母有着她的过人之处,三字经中的“昔孟母,择邻处,子不学,断机杼”为千家万户所传颂,孟母成了家庭教育成功者的偶像。 孟母三迁: 邹孟轲母,号孟母。其舍近墓。孟子之少也,嬉游为墓间之事,踊跃筑埋。孟母曰:“此非吾所以居处子也。”乃去。舍市傍,其嬉戏为贾人炫卖之事。孟母又曰:“此非吾所以处吾子也。”复徙居学宫之傍。其嬉游乃设俎豆,揖让进退。孟母曰:“真可以处居子矣。”遂居。及孟子长,学六艺,卒成大儒之名。君子谓孟母善以渐化。 释义: 孟子小时候,居住的地方离墓地很近,孟子学了些祭拜之类的事,玩起办理丧事的游戏。他的母亲说:“这个地方不适合孩子居住。”于是将家搬到集市旁,孟子学了些做买卖和屠杀的东西。母亲又想:“这个地方还是不适合孩子居住。”又将家搬到学宫旁边。孟子学习会了在朝廷上鞠躬行礼及进退的礼节。孟母说:“这才是孩子居住的地方。”就在这里定居下来了。等孟子长大成人后,学成六艺,获得大儒的名望,这都是孟母逐步教化的结果。 对我们的启示: 周边环境,特别是周围人的影响对孩子的健康成长具有至关重要的影响,如果说父母是孩子的第一个老师,那么由人构成的周边环境就是孩子的第二个老师。如果环境好,他们可能会成为孩子的良师益友;如果环境差,那么他们就极有可能成为孩子的恶师损友。 买肉啖子 孟子少时,东家杀豚,孟子问其母曰:“东家杀豚何为?”母曰:“欲啖汝。”其母自悔而言,曰;“吾怀娠是子,席不正不坐;割不正不食,胎之教也。今适有知而欺之,是教之不信也。”乃买东家豚肉以食之,明不欺也。 释义: 孟子少年时,有一次邻居杀猪,孟子问母亲:“邻居为什么杀猪?"孟母随口答了一句:"是要给你猪肉吃。"说完之后发现儿子当真了,为了兑现这句随口之言,孟母从并不宽裕的积蓄中拿出钱来买肉给儿子吃。 对我们的启示: 1、有些话不能乱说:对子女的承诺,要量力而行,做不到的就不要胡乱答应。再比如家长对于知识的正确与否实在没有把握,不妨实事求是地对孩子说,这个问题我也不是太清楚,核对答案后再回答你。这样做可能又是尊严,但总比让孩子以讹传讹要好很多。 2、有些事不能不做:在家庭教育中,家长有时难免会犯错误,犯了错要就要及时补救,“亡羊补牢,未为晚也”。孟母的可贵之处就在于她知错就改,一旦发现自己的过失,马上予以

幂级数求和法的归纳总结与推广

幂级数求和法的归纳总结与推广 摘要:本文研究的是如何对幂级数进行求和,主要从数学专业中的三个学科(常微分方程、初等数学、高等代数),分别通过微分方程法、初等数学中的杨辉三角法以及矩阵法对幂级数进行求和。对那些能用这三种方法进行求和的幂级数进行了一定的归纳和总结,并展开了一定的推广。通过对这三类方法的典型例题的求解,加深对方法的了解和运用,完善级数求和的知识体系。 关键词:级数求和,微分方程,矩阵,杨辉三角 引言 级数是高等数学的一个重要组成部分, 其理论是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期杰出的数学家刘徽于公元263 年创立了“割圆术”, 其要旨是用圆内接正多边形去逐步逼近圆, 从而求得圆的面积。这种“割圆术”就已建立了级数的思想方法, 即无限多个数的累加问题。而今, 级数的理论已发展的相当丰富和完整, 在工程实践中有着广泛的应用, 可用来表示函数、研究函数的性质, 也是其进行数值计算的一种工具。 同时级数也是研究函数的一个重要工具,在理论上和实际应用中都处于重要地位,这是因为:一方面能借助级数表示许多常用的非初等函数,微分方程的解就常用级数表示;另一方面又可将函数表为级数,从而借助级数去研究函数。在各种有力的解析工具中按其简单.灵活.明确以及使用的方便而言,毫无疑问第一位应属于函数级数。这个最重要的解析工具的思想很简单:我们想要研究的函数可以表示为其它的更为简单的。容易研究的函数的系列(即表示此函数为级数的部分和的极限。如果这个部分和在整个所研究的区间上完全趋近于所研究的函数,则我们就有理由从整个近似的部分和的性质来估计所研究函数的一些性质——尽管只是近似的研究。特别地,会对自变量的某个值近似计算这些部分和的值,我们同时也有办法近似计算所研究函数的相应的值。 用什么样的函数作为我们的展开式的元素最方便.最适合呢?即选什么函数作为表示所研究函数级数的项,最便于帮助我们研究函数?对此问题,当然不指望有唯一的答案适用于所有情形。这几乎完全取决于所研究的函数的性质以及我们对函数所提出的问题的性质,只是必须指出,有一种最重要的函数级数类值得推荐起作用,因为每一步都可以应用它们,这样就自然地要求创立相应的一般理论。这种函数级数就是幂级数(其中展开式的元素是自变量的整数次数幂——首先是非整数次幂)。 在幂级数收敛性的判断,求和问题等性质中,求和问题不免也是一处重要的知识点。幂级数求和的求解是一类难度较大技巧性较高的问题,更好地了解和掌握幂级数求和的方法和技巧对于学习幂级数具有更好的指导意义和学习价值。 幂级数求和,包括求某些数项级数的和,利用技术性质,展开定理、收敛定理等求函数项级数的和函数,函数的幂级数展开式、Fourier级数等,无疑是级数理论学习中的重要内容,在一定意义上对这部分知识掌握的程度,也是衡量学生数学能力、数学素质的一项检验指标。 而作为特殊函数项级数的幂级数,由于具有结构形式简单和近似表达函数的灵活性的优点,而作为一个极为有用的计算工具,数项级数的求和就是一个重要的应用。它的基本理论依据是在一致收敛条件下,函数项级数的和函数连续,可导、可积,即求和运算与极限运算求积运算、求导运算可以换序。而幂级数更具有收敛半径易求,在(-R,R)上内闭一致收敛以及在逐项求导或逐项积分收敛

相关文档
相关文档 最新文档