文档库 最新最全的文档下载
当前位置:文档库 › 初中数学竞赛专题培训(24):整数的整除性

初中数学竞赛专题培训(24):整数的整除性

初中数学竞赛专题培训(24):整数的整除性
初中数学竞赛专题培训(24):整数的整除性

初中数学竞赛专题培训第二十四讲* 整数的整除性

整数的整除性问题,是数论中的最基本问题,也是国内外数学竞赛中最常出现的内容之一.由于整数性质的论证是具体、严格、富有技巧,它既容易使学生接受,又是培养学生逻辑思维和推理能力的一个有效课题,因此,了解一些整数的性质和整除性问题的解法是很有必要的.

1.整除的基本概念与性质

所谓整除,就是一个整数被另一个整数除尽,其数学定义如下.

定义设a,b是整数,b≠0.如果有一个整数q,使得a=bq,那么称a能被b整除,或称b整除a,并记作b|a.如果不存在这样的整数q,使得a=bq,则称a不能被b整除,或称b不整除a,记作b a.

关于整数的整除,有如下一些基本性质:

性质1若b|a,c|b,则c|a.

性质2若c|a,c|b,则c|(a±b).

性质3若c|a,c b,则c(a±b).

性质4若b|a,d|c,则bd|ac.

性质5若a=b+c,且m|a,m|b,则m|c.

性质6若b|a,c|a,则[b,c]|a(此处[b,c]为b,c的最小公倍数).特别地,当(b,c)=1时,bc|a(此处(b,c)为b,c的最大公约数).

性质7若c|ab,且(c,a)=1,则c|b.特别地,若p是质数,且p|ab,则p|a或p|b.

性质8若a≠b,n是自然数,则(a-b)|(a n-b n).

性质9若a≠-b,n是正偶数,则(a+b)|(a n-b n).

性质10若a≠-b,n是正奇数,则(a+b)|(a n+b n).

2.证明整除的基本方法

证明整除常用下列几种方法:(1)利用基本性质法;(2)分解因式法;(3)按模分类法;(4)反证法.下面举例说明.

例1证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.

分析要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.

证设三个连续的奇数分别为2n-1,2n+1,2n+3(其中n是整数),于是

(2n-1)2+(2n+1)2+(2n+3)2+1

=12(n2+n+1).

所以

12|[(2n-1)2+(2n+1)2+(2n+3)2].

又n2+n+1=n(n+1)+1,而n,n+1是相邻的两个整数,必定一奇一偶,所以n(n+1)是偶数,从而n2+n+1是奇数,故

24 [(2n-1)2+(2n+1)2+(2n+3)2].

例2若x,y为整数,且2x+3y,9x+5y之一能被17整除,那么另一个也能被17整除.

证设u=2x+3y,v=9x+5y.若17|u,从上面两式中消去y,得

3v-5u=17x.①

所以 17|3v.

因为(17,3)=1,所以17|v,即17|9x+5y.

若17|v,同样从①式可知17|5u.因为(17,5)=1,所以17|u,即17|2x+3y.

q>1.求pq 的值.

解若p=q,则

不是整数,所以p≠q.不妨设p<q,于是

是整数,所以p只能为3,从而q=5.所以

pq=3×5=15.

例4试求出两两互质的不同的三个自然数x,y,z,使得其中任意两个的和能被第三个数整除.

分析题中有三个未知数,我们设法得到一些方程,然后从中解出这些未知数.

最小的一个:

y|(y+2x),所以y|2x,于是

数两两互质,所以x=1.

所求的三个数为1,2,3.

例5设n是奇数,求证:

60|6n-3n-2n-1.

分析因为60=22×3×5,22,3,5是两两互质的,所以由性质6,只需证明22,3,5能被6n-3n-2n-1整除即可.对于幂的形式,我们常常利用性质8~性质10,其本质是因式分解.

证 60=22×3×5.由于n是奇数,利用性质8和性质10,有

22|6n-2n,22|3n+1,

所以22|6n-2n-3n-1, 3|6n-3n, 3|2n+1,

所以3|6n-3n-2n-1,5|6n-1,5|3n+2n,

所以5|6n-1-3n-2n.

由于22,3,5两两互质,所以60|6n-3n-2n-1.

我们通常把整数分成奇数和偶数两类,即被2除余数为0的是偶数,余数为1的是奇数.偶数常用2k表示,奇数常用2k+1表示,其实这就是按模2分类.又如,一个整数a被3除时,余数只能是0,1,2这三种可能,因此,全体整数可以分为3k,3k +1,3k+2这三类形式,这是按模3分类.有时为了解题方便,还常把整数按模4、模5、模6、模8等分类,但这要具体问题具体处理.

例6若整数a不被2和3整除,求证:24|(a2-1).

分析因为a既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k,6k+1,6k+2,6k+3,6k+4,6k+5这六类.由于6k,6k+2,6k+4是2的倍数,6k+3是3的倍数,所以a只能具有6k+1或6k+5的形式,有时候为了方便起见,也常把6k +5写成6k-1(它们除以6余数均为5).

证因为a不被2和3整除,故a具有6k±1的形式,其中k 是自然数,所以a2-1=(6k±1)2-1=36k2±12k=12k(3k±1).由于k 与3k±1为一奇一偶(若k为奇数,则3k±1为偶数,若k为偶数,则3k±1为奇数),所以2|k(3k±1),于是便有24|(a2-1).

例7求证:3n+1(n为正整数)能被2或22整除,但不能被2的更高次幂整除.

证按模2分类.若n=2k为偶数,k为正整数,则

3n+1=32k+1=(3k)2+1.

由3k是奇数,(3k)2是奇数的平方,奇数的平方除以8余1,故可设(3k)2=8l+1,于是

3n+1=8l+2=2(4l+1).

4l+1是奇数,不含有2的因数,所以3n+1能被2整除,但不能被2的更高次幂整除.

若n=2k+1为奇数,k为非负整数,则

3n+1=32k+1+1=3·(3k)2+1

=3(8l+1)+1=4(6l+1).

由于6l+1是奇数,所以此时3n+1能被22整除,但不能被2的更高次幂整除.

在解决有些整除性问题时,直接证明较为困难,可以用反证法来证.

例8已知a,b是整数,a2+b2能被3整除,求证:a和b 都能被3整除.

证用反证法.如果a,b不都能被3整除,那么有如下两种情况:

(1)a,b两数中恰有一个能被3整除,不妨设3|a,3b.令a=3m,b=3n±1(m,n都是整数),于是

a2+b2=9m2+9n2±6n+1

=3(3m2+3n2±2n)+1,

不是3的倍数,矛盾.

(2)a,b两数都不能被3整除.令a=3m±1,b=3n±1,则

a2+b2=(3m±1)2+(3n±1)2

=9m2±6m+1+9n2±6n+1

=3(3m2+3n2±2m±2n)+2,

不能被3整除,矛盾.

由此可知,a,b都是3的倍数.

例9设p是质数,证明:满足a2=pb2的正整数a,b不存在.

证用反证法.假定存在正整数a,b,使得

a2=pb2

令(a,b)=d,a=a1d,b=b1d,则(a1,b1)=1.所以

与(a1,b1)=1矛盾.

例10设p,q均为自然数,且

求证:29|p.

证注意到29是质数.令a=10×11× (19)

所以 ap=29q·b,

29|a·p,29是质数,且29a,所以29|p.

练习二十四

1.求证:对任意自然数n,2×7n+1能被3整除.

2.证明:当a是奇数时,a(a2-1)能被24整除.

3.已知整数x,y,使得7|(13x+8y),求证:7|(9x+5y).4.设p是大于3的质数,求证:24|(p2-1).

5.求证:对任意自然数n,n(n-1)(2n-1)能被6整除.6.求证:三个连续自然数的立方和能被9整除.

7.已知a,b,c,d为整数,ab+cd能被a-c整除,求证:ad+bc也能被a-c整除.

专题02 数的整除性

专题02 数的整除性 阅读与思考 设a,b是整数,b≠0,如果一个整数q使得等式a=bq成立,那么称a能被b整除,或称 b整除a,记作b|a,又称b为a的约数,而a称为b的倍数.解与整数的整除相关问题常用到以下知识: 1.数的整除性常见特征: ①若整数a的个位数是偶数,则2|a; ②若整数a的个位数是0或5,则5|a; ③若整数a的各位数字之和是3(或9)的倍数,则3|a(或9|a); ④若整数a的末二位数是4(或25)的倍数,则4|a(或25|a); ⑤若整数a的末三位数是8(或125)的倍数,则8|a(或125|a); ⑥若整数a的奇数位数字和与偶数位数字和的差是11的倍数,则11|a. 2.整除的基本性质 设a,b,c都是整数,有: ①若a|b,b|c,则a|c; ②若c|a,c|b,则c|(a±b); ③若b|a,c|a,则[b,c]|a; ④若b|a,c|a,且b与c互质,则bc|a; ⑤若a|bc,且a与c互质,则a|b.特别地,若质数p|bc,则必有p|b或p|c. 例题与求解 【例1】在1,2,3,…,2 000这2 000个自然数中,有_______个自然数能同时被2和3整除,而且不能被5整除. (“五羊杯”竞赛试题) 解题思想:自然数n能同时被2和3整除,则n能被6整除,从中剔除能被5整除的数,即为所求. 【例2】已知a,b是正整数(a>b),对于以下两个结论: ①在a+b,ab,a-b这三个数中必有2的倍数; ②在a+b,ab,a-b这三个数中必有3的倍数.其中( ) A.只有①正确B.只有②正确 C.①,②都正确D.①,②都不正确 (江苏省竞赛试题) 解题思想:举例验证,或按剩余类深入讨论证明.

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集第二十六讲含参数的一元二次方程的整数根问题 对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12, 解得m=2.这时x1=6,x2=4. 解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知 所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37,73, 只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1,3,5. 例3设m是不为零的整数,关于x的二次方程 mx2-(m-1)x+1=0 有有理根,求m的值. 解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令 Δ=(m-1)2-4m=n2, 其中n是非负整数,于是 m2-6m+1=n2,

初中数学竞赛专题辅导因式分解一

因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4) =-2x n-1y n[(x2n)2-2x2n y2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5)

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

整数的整除性

整数的整除性 竞赛讲座02 - .的有关概念、性质 整除的定义:对于两个整数a、d,若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。 若d不能整除a,则记作da,如2|6,46。 性质 )若b|a,则b|,且对任意的非零整数有b|a )若a|b,b|a,则|a|=|b|; )若b|a,c|b,则c|a )若b|ac,而=1=1表示a、b互质,则b|c; )若b|ac,而b为质数,则b|a,或b|c; )若c|a,c|b,则c|,其中、n为任意整数 例1x,y,z均为整数,若11|,求证:11|。 证明∵4+3=11 而11|11, 且11|, ∴11|4 又=1 ∴11|.

整除性问题的证明方法 利用数的整除性特征 例2设72|的值。 解72=8×9,且=1,所以只需讨论8、9都整除的值。 若8|,则8|,由除法可得b=2。 若9|,则9|,得a=3。 利用连续整数之积的性质 ①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。 ②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。 这个性质可以推广到任意个整数连续之积。 例3证明:对任何整数n都为整数,且用3除时余2。 证明 ∵为连续二整数的积,必可被2整除. ∴对任何整数n均为整数, ∵为整数,即原式为整数. 又∵ n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质, ∴是能被3整除的整数.

故被3除时余2. 例4一整数a若不能被2和3整除,则a2+23必能被24整除. 证明∵a2+23=+24,只需证a2-1可以被24整除即可. ∵2.∴a为奇数.设a=2+1, 则a2-1=2-1=42+4=4. ∵、+1为二个连续整数,故必能被2整除, ∴8|4,即8|. 又∵,a,为三个连续整数,其积必被3整除,即3|a=a,∵3a,∴3|.3与8互质,∴24|,即a2+23能被24整除. 利用整数的奇偶性 下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题. 例5求证:不存在这样的整数a、b、c、d使: a?b?c?d-a=① a?b?c?d-b=② a?b?c?d-c=③ a?b?c?d-d=④ 证明由①,a=. ∵右端是奇数,∴左端a为奇数,bcd-1为奇数. 同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a必为偶数,与①式右端为奇数

初中数学竞赛专题培训(4):代数式的化简与求值

初中数学竞赛专题培训第四讲分式的化简与求值 分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值. 例1 化简分式: 分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多. =[(2a+1)-(a-3)-(3a+2)+(2a-2)] 说明本题的关键是正确地将假分式写成整式与真分式之和的形式. 例2 求分式 当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b), 可将分式分步通分,每一步只通分左边两项. 例3 若abc=1 ,求 分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法. 解法1 因为abc=1,所以a,b,c都不为零. 解法2 因为abc=1,所以a≠0,b≠0,c≠0. 例4 化简分式:

分析与解 三个分式一齐通分运算量大,可先将每个分式的分 母分解因式,然后再化简. 说明 互消掉的一对相反数,这种化简的方法叫“拆项相消”法, 它是分式化简中常用的技巧. 例5 化简计算(式中a ,b ,c 两两不相等): 似的,对于这个分式,显然分母可以分解因式为(a -b)(a -c),而分子又恰好凑成(a -b)+(a -c),因此有下面的解法. 解 说明 本例也是采取“拆项相消”法,所不同的是利用 例6 已知:x+y+z=3a(a ≠0,且x ,y ,z 不全相等),求 分析 本题字母多,分式复杂.若把条件写成 (x -a)+(y -a)+(z -a)=0,那么题目只与x -a ,y -a ,z -a 有关,为简化计算,可用换元法求解. 解 令x -a=u ,y -a=v ,z -a=w ,则分式变为 u 2+v 2+w 2 +2(uv+vw+wu)=0. 由于x ,y ,z 不全相等,所以u ,v ,w 不全为零,所以u 2 +v 2 +w 2 ≠0,从而有 说明 从本例中可以看出,换元法可以减少字母个数,使运算 过程简化. 例7 化简分式: 适当变形,化简分式后再计算求值. (x -4)2 =3,即x 2 -8x+13=0. 原式分子=(x 4 -8x 3 +13x 2 )+(2x 3 -16x 2 +26x)+(x 2 -8x+13)+10 =x 2 (x 2 -8x+13)+2x(x 2 -8x+13)+(x 2 -8x+13)+10

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

初中数学竞赛辅导训练试题及答案

初中数学竞赛辅导练习题 1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D) c b c a > 2、如果方程()0012 >=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)5 3、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)18 4、已知0≠abc ,并且 p b a c a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组? ??<-≥-080 9b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数 对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个 6、计算 的值是( )。(A )1(B )-1(C )2(D )- 2。 7、△ABC 的周长是24,M 是AB 的中点,MC =MA =5,则△ABC 的面积是( )。 (A )12;(B )16;(C )24;(D )30。 8、设 ,将一次函数 与 的图象画在同一平面直角坐标 系内,则有一组 的取值,使得下列4个图中的一个为正确的是( )。 9、如图,在等腰梯形ABCD 中,AB∥DC,AB =998,DC =1001,AD =1999,点P 在线 段AD 上,则满足条件∠BPC=90°的点P 的个数为( )。 (A )0;(B )1;(C )2;(D )不小于3的整数。 (A )0;(B )1;(C )2;(D )3。 二、填空题: 6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。 9、已知方程( ) 015132832 2 2 2 =+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a =___________。 10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。 1.设15+=m ,那么m m 1 + 的整数部分是 . 2.在直角三角形ABC 中,两条直角边AB,AC 的长分别为1厘米,2厘米,那么直角

初中数学竞赛专题培训 -生活中的数学(2)

初中数学竞赛专题培训第三十讲生活中的数学(四)──买鱼的学问 鱼是人们喜欢吃的一种高蛋白食物,所以谁都希望买到物美价廉的鱼.假定现在商店里出售某种鱼以大小论价,大鱼A每斤1.5元,小鱼B每斤1元.如果大鱼的高度为13厘米,小鱼的高度为10厘米(图2-171),那么买哪种鱼更便宜呢? 有人可能觉得大鱼A和小鱼B高度之比为13∶10,差不了许多,而小鱼的价格却比大鱼便宜许多,因此,买小鱼比较合算.这种想法是合理的吗?我们还是用数学来加以分析吧! 在平面几何中,我们已经知道以下定理. 定理1 相似形周长的比等于相似比. 定理2 相似形面积的比等于相似比的平方. 例1 已知:△ABC∽△A′B′C′,并且AB=2c,BC=2a,AC=2b,A′B′=3c, B′C′=3a,A′C′=3b.求证:△ABC和△A′B′C′周长的比是2∶3(图2-172). 证△ABC的周长是 2a+2b+2c=2(a+b+c), △A′B′C′的周长是 3a+3b+3c=3(a+b+c), 所以△ABC和△A′B′C′的周长的比是 2(a+b+c)∶3(a+b+c)=2∶3. 例2 图2-173是两个相似矩形,如果它们的相似比是3∶4,求证:它们面积的比是32∶42. 证矩形ABCD的面积是3a·3b=32ab,矩形A′B′C′D′的面积是4a·4b=42ab,所以矩形ABCD和矩形A′B′C′D′的面积之比是 32ab∶42ab=32∶42. 从定理1和定理2,我们自然会想到:相似的两个立体的体积之比与它们的相似比有什么关系呢?为此,我们看下面的例子. 例3 图2-174是两个相似的长方体,它们的相似比为3∶5,求它们的体积之比. 解长方体(a)的体积是3a·3b·3c=33abc, 长方体(b)的体积是5a·5b·5c=53abc, 所以长方体(a)与长方体(b)的体积的比是 33abc∶53abc=33∶53 例4 图2-175是两个相似圆柱,它们的相似比为2∶3,求它们的体积之比. 解小圆柱的体积是 (2a)2π·2b=23a2bπ,大圆柱的体积是 (3a)2π·3b=33a2bπ,所以小圆柱与大圆柱的体积之比为23∶33. 定理3 相似形的体积之比,等于它的相似比的立方.

全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论

全国初中数学竞赛辅导(八年级)教学案全集 第二十一讲分类与讨论 分类在数学中是常见的,让我们先从一个简单的例子开始. 有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数? 因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论. 任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个. 上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论. 分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论. 例1求方程 x2-│2x-1│-4=0 的实根. x2+2x-1-4=0,

x 2-2x +1-4=0, x 1=3,x 2=-1. 说明 在去绝对值时,常常要分类讨论. 例2 解方程x 2-[x]=2,其中[x]是不超过x 的最大整数. 解 由[x]的定义,可得 x ≥[x]=x 2-2, 所以 x 2-x -2≤0, 解此不等式得 -1≤x ≤2. 现把x 的取值范围分成4个小区间(分类)来进行求解. (1)当-1≤x ≤0时,原方程为 x 2-(-1)=2, 所以x=-1(因x=1不满足-1≤x <0). (2)当0≤x <1时,原方程为 x 2=2. (3)当1≤x <2时,原方程为 x 2-1=2, 所以 (4)当x=2时,满足原方程.

全国初中数学知识竞赛辅导方案(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 全国初中数学知识竞赛辅导方案 王选民 为了在全国数学知识竞赛中取得优异成绩,将对学生辅导方案总结如下: 一、了解掌握优生的特点 一般我们选择参加竞赛的学生都是学优生,当我们与“优生”进行面谈时,应该清醒地认识到,他们能成为“优生”,是学生家长和老师共同教育的结果。尤其要看到这些“优生”的两重性:一方面,他们的行为习惯、学习习惯、学习成绩以及各种能力比一般学生在这个年龄容易出现的毛病外,也存在着他们作为老师的“好学生”、家长的“好孩子”所特有的一些毛病。 具体说来,“优生”一般具有以下特点: 1、思想比较纯正,行为举止较文明,自我控制的能力比较强,一般没有重大的违纪现象。 2、求知欲较旺盛,知识接受能力也较强,学习态度较端正,学习方法较科学,成绩较好。 3、长期担任学生干部,表达能力、组织能力以及其它工作能力都较强,在同学中容易形成威信。 4、课外涉及比较广泛,爱好全面,知识面较广。 5、由于智力状况比较好,课内学习较为轻松,因而容易自满,不求上进。 6、长期处于学生尖子的位置,比较骄傲自负,容易产生虚心。 7、有的“优生”之间容易产生互相嫉妒、勾心斗角的狭隘情绪和学习上的

不正当竞争。 8、从小就处在受表扬、获荣誉、被羡慕的顺境之中,因而他们对挫折的心理承受能力远不及一般普通学生。 以上几点,只是就一般“优生”的共性而,当然不一定每一个“优生”都是如此。 辅导优生的具体措施 1、创设能引导学优生主动参与的教育环境。 2、了解学生在兴趣、学习偏好、学习速度、学习准备以及动机等方面的情况。这些资料为教师制定活动和计划时的依据,也是“促进学生主动地、富有个性地学习的需要”。 3、为尖子设计学习方案。学优生学习新知识时,比其他学生花的时间少,他不需要很多的练习就已经理解新知识,因此,做的练习也少。让他们做那些已经理解的题目就很多难让学生体会到智力活动的乐趣。长此以往,反而可能在一定程度上降低学生对于智力生活的敏感性。教师应该备有不同层次介绍同一主题的资料,采用向学生布置分组作业的方法,从众多的方案和活动中选取与他们的知识、技能水平相当的项目,指定他们完成。 4、解决学优生心理问题:学优生在心理状态上,易产生骄气,居高临下,听不进半点批评,心理脆弱。在价值取向上,易产生唯我独尊,以自我为中心的个性倾向和价值取向,不把其他同学的感觉、好恶、需要放在一定的位置;在行为方式上,由于始终把自己当学优生,与一般同学不一样,束缚了自己,娱乐活动不愿参加,集体劳动怕吃苦。 针对这种状况,教学中应注意: 学优生学习成绩优异,但不能“一俊遮百丑”。在鼓励保持学习上的竞争姿态和上进好胜的同时,要创造条件和环境,磨练他们的意志,培养他们的创造能力,规范他们的行为意识。

初中数学竞赛专题培训

第一讲:因式分解(一) (1) 第二讲:因式分解(二) (4) 第三讲实数的若干性质和应用 (7) 第四讲分式的化简与求值 (10) 第五讲恒等式的证明 (13) 第六讲代数式的求值 (16) 第七讲根式及其运算 (19) 第八讲非负数 (23) 第九讲一元二次程 (27) 第十讲三角形的全等及其应用 (30) 第十一讲勾股定理与应用 (34) 第十二讲平行四边形 (37) 第十三讲梯形 (40) 第十四讲中位线及其应用 (43) 第十五讲相似三角形(一) (46) 第十六讲相似三角形(二) .......................................... 49 第十七讲* 集合与简易逻辑 (52) 第十八讲归纳与发现 (57) 第十九讲特殊化与一般化 (61) 第二十讲类比与联想 (65) 第二十一讲分类与讨论 (68) 第二十二讲面积问题与面积法 (72) 第二十三讲几不等式 (75) 第二十四讲* 整数的整除性 (79) 第二十五讲* 同余式 (82) 第二十六讲含参数的一元二次程的整数根问题 (85) 第二十七讲列程解应用问题中的量 (88) 第二十八讲怎样把实际问题化成数学问题 (92) 第二十九讲生活中的数学(三) ——镜子中的世界 (96) 第三十讲生活中的数学(四)──买鱼的学问 (99) 第一讲:因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决多数学问题的有力工具.因式分解法灵活,技巧性强,学习这些法与技巧,不仅是掌握因式分解容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-… -ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解(1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 w

【精品】全国初中数学竞赛辅导(初三分册全套

全国初中数学竞赛辅导(初三分册)全套

第一讲分式方程(组)的解法 分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根. 例1 解方程 解令y=x2+2x-8,那么原方程为 去分母得 y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0, y2-4xy-45x2=0, (y+5x)(y-9x)=0, 所以 y=9x或y=-5x.

由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1. 经检验,它们都是原方程的根. 例2 解方程 y2-18y+72=0, 所以 y1=6或y2=12. x2-2x+6=0.此方程无实数根. x2-8x+12=0,

所以 x1=2或x2=6. 经检验,x1=2,x2=6是原方程的实数根. 例3 解方程 分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为 整理得 去分母、整理得 x+9=0,x=-9. 经检验知,x=-9是原方程的根. 例4 解方程

分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为 即 所以 ((x+6)(x+7)=(x+2)(x+3). 例5 解方程 分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为

初中数学竞赛专题辅导因式分解(一)

初中数学竞赛专题辅导因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

整数与整除的基本性质一

第一讲 整数与整除的基本性质(一) 一、整数 基本知识: 关于自然数:1、有最小的自然数1;2、自然数的个数是无限的,不存在最大的自然数;3、两个自然数的和与积仍是自然数;4、两个自然数的差与商不一定是自然数。 关于整数:1整数的个数是无限的,既没有最小的整数,也没有最大的整数;2、两个整数的和、差、积仍是整数,两个整数的商不一定是整数。 十进制整数的表示方法 正整数可以用0,1,2,3,4,5,6,7,8,9十个数字中的一个或若干个组成一个排列表示,如67表示7106+?,四位数1254可以写成41051021012 3+?+?+?,同样地用字母表示的两位数ab b a +?=10,三位数f e d def +?+?=10102, n 位整数表示为121a a a a n n n --,(其中a i 是0,1,2,3,4,5,6,7,8,9中的某个数字,i= n , n – 1,…,2,1,其中a n 0≠)并且.1010 1211121a a a a a a a n n n n n n n ++?+?=----- 经典例题: 例1、用0、1、2、...、9这10个数字组成两个三位数和一个四位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能地小,那么这两个三位数及这个四位数的和是( ) )A 1995 )B 1683 )C 1579 )D 1401 解:为使和最小,四位数的千位应该是1,百位上的数为0,两个三位数上的百位应分别为2和3;若三个数十位上的数分别是4、5、6,则个位上的数分别是7、8、9,但7+8+9=18是个偶数,这与其和为奇数矛盾,故应调整为三个十位上的数应安排为4、5、7,个位分别为6、8、9,6+8+9为奇数,1046+258+379=1683,选 )B 例2、一个两位数,用它的个位、十位上的两个数之和的3倍减去2-,仍得原数,这个两位数是( ) )A 26 )B 28 )C 36 )D 38 解:设这个两位数为ab ,由题意,得b a b a +=++102)(3, 227+=∴b a 即 )1(27+=b a 由于)1(2+b 为偶数,∴a 必须为偶数,排

初中数学竞赛专题培训(7):根式及其运算

初中数学竞赛专题培训第七讲根式及其运算 二次根式的概念、性质以及运算法则是根式运算的基础,在进行根式运算时,往往用到绝对值、整式、分式、因式分解,以及配方法、换元法、待定系数法等有关知识与解题方法,也就是说,根式的运算,可以培养同学们综合运用各种知识和方法的能力.下面先复习有关基础知识,然后进行例题分析. 二次根式的性质: 二次根式的运算法则: 设a,b,c,d,m是有理数,且m不是完全平方数,则当且 仅 当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,则这两个代数式互为有理化因式. 例1 化简: 法是配方去掉根号,所以 因为x-2<0,1-x<0,所以 原式=2-x+x-1=1. =a-b-a+b-a+b=b-a. 说明若根式中的字母给出了取值范围,则应在这个范围内进行化简;若没有给出取值范围,则应在字母允许取值的范围内进行化简. 例2 化简: 分析两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解后,再化简.

解法1 配方法. 配方法是要设法找到两个正数x,y(x>y),使x+y=a,xy=b,则 解法2 待定系数法. 例4 化简: (2)这是多重复合二次根式,可从里往外逐步化简. 分析被开方数中含有三个不同的根式,且系数都是2,可以 看成 解设 两边平方得 ②×③×④得 (xyz)2=5×7×35=352. 因为x,y,z均非负,所以xyz≥0,所以 xyz=35.⑤ ⑤÷②,有z=7.同理有x=5,y=1.所求x,y,z显然满足①,所以 解设原式=x,则

解法1 利用(a+b)3=a3+b3+3ab(a+b)来解. 将方程左端因式分解有 (x-4)(x2+4x+10)=0. 因为 x2+4x+10=(x+2)2+6>0, 所以x-4=0,x=4.所以原式=4. 解法2 说明解法2看似简单,但对于三次根号下的拼凑是很难的,因此本题解法1是一般常用的解法. 例8 化简: 解(1) 本小题也可用换元法来化简. 解用换元法. 解直接代入较繁,观察x,y的特征有 所以

相关文档
相关文档 最新文档