文档库 最新最全的文档下载
当前位置:文档库 › 专题二次函数1

专题二次函数1

专题二次函数1
专题二次函数1

专题:二次函数1

例1.解析式、待定系数法

若()2

f x x bx c =++,且()10f =,()30f =,求()1f -的值.

变式1:若二次函数()2

f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点

坐标为(0,11),则

A .1,4,11a b c ==-=-

B .3,12,11a b c ===

C .3,6,11a b c ==-=

D .3,12,11a b c ==-=

变式2:若()()2

23,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______.

变式3:若二次函数()2

f x ax bx c =++的图像与x 轴有两个不同的交点()1,0A x 、

()2,0B x ,且2212269

x x +=

,试问该二次函数的图像由()()2

31f x x =--的图像向上平移几个单位得到?

例2.图像特征

将函数()2

361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最

大值或最小值,并画出它的图像.

变式1:已知二次函数()2

f x ax bx c =++,如果()()12f x f x =(其中12x x ≠),则

122x x f +??= ???

A .2b a -

B .b

a

- C . c D .244ac b a -

变式2:函数()2

f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、

()1f -、()1f 的大小关系是

A .()()()110f f f <-<

B .()()()011f f f <-<

C .()()()101f f f <<-

D .()()()101f f f -<< 变式3:已知函数()2

f x ax bx c =++的图像如右图所示,

请至少写出三个与系数a 、b 、c 有关的正确命题_________.

例3.单调性

已知函数()2

2f x x x =-,()()2

2[2,4]g x x x x =-∈.

(1) 求()f x ,()g x 的单调区间;

变式1:已知函数()2

42f x x ax =++在区间(),6-∞内单调递减,则a 的取值范围是

A .3a ≥

B .3a ≤

C .3a <-

D .3a ≤- 变式2:已知函数()()2

15f x x a x =--+在区间(12 ,1)上为增函数,那么()2f 的取

值范围是_________.

变式3:已知函数()2

f x x kx =-+在[2,4]上是单调函数,求实数k 的取值范围.

x

y

O

例4.最值

已知函数()2

2f x x x =-,()()2

2[2,4]g x x x x =-∈.

(2) 求()f x ,()g x 的最小值.

变式1:已知函数()2

23f x x x =-+在区间[0,m ]上有最大值3,最小值2,则m 的取

值范围是

A .[)1,+∞

B .[]0,2

C .[]1,2

D .(),2-∞ 变式2:若函数2

34y x =-+的最大值为M ,最小值为m ,则M + m 的值等于________. 变式3:已知函数()2

2

4422f x x ax a a =-+-+在区间[0,2]上的最小值为3,求a 的

值.

例5.奇偶性

已知函数()f x 是定义在R 上的奇函数,当x ≥0时,()()1f x x x =+.画出函数()f x 的图像,并求出函数的解析式.

变式1:若函数()()()

22

111f x m x m x =-+-+是偶函数,则在区间(],0-∞上()

f x 是

A .增函数

B .减函数

C .常数

D .可能是增函数,也可能是常数 变式2:若函数()()2

312f x ax bx a b a x a =+++-≤≤是偶函数,则点(),a b 的坐标

是________.

变式3:设a 为实数,函数1||)(2

+-+=a x x x f ,R x ∈.

(I)讨论)(x f 的奇偶性;(II)求)(x f 的最小值.

例6.图像变换

已知22

43,30()33,0165,16

x x x f x x x x x x ?++-≤

=-+≤

(1) 画出函数的图象;(2)求函数的单调区间;(3)求函数的最大值和最小值.

变式1:指出函数2

23y x x =-++的单调区间.

变式2:已知函数)(|2|)(2

R x b ax x x f ∈+-=.

给下列命题:①)(x f 必是偶函数;

② 当)2()0(f f =时,)(x f 的图像必关于直线x =1对称; ③ 若02≤-b a ,则)(x f 在区间[a ,+∞)上是增函数; ④)(x f 有最大值||2b a -.

其中正确的序号是________.

变式3:设函数,||)(c bx x x x f ++=给出下列4个命题: ①当c =0时,)(x f y =是奇函数;

②当b =0,c >0时,方程0)(=x f 只有一个实根;

③)(x f y =的图象关于点(0,c )对称;

④方程0)(=x f 至多有两个实根.

上述命题中正确的序号为 .

例7.值域

求二次函数2

()26f x x x =-+在下列定义域上的值域: (1)定义域为{}

03x Z x ∈≤≤;(2) 定义域为[]2,1-. 变式1:函数()2

()2622f x x x x =-+-<<的值域是

A .3220,2??-???

? B .()20,4- C .920,2??- ??? D .

920,2?

?- ???

变式2:函数y =cos2x +sin x 的值域是__________.

变式3:已知二次函数 f (x ) = a x 2 + bx (a 、b 为常数,且 a ≠ 0),满足条件 f (1 + x ) = f (1-x ),且方程 f (x ) = x 有等根.

(1)求 f (x ) 的解析式;

(2)是否存在实数 m 、n (m < n ),使 f (x ) 的定义域和值域分别为 [m ,n ] 和 [3m ,3n ],如果

存在,求出 m 、n 的值,如果不存在,说明理由.

例8.恒成立问题

当,,a b c 具有什么关系时,二次函数()2

f x ax bx c =++的函数值恒大于零?恒小于

零?

变式1:已知函数 f (x ) = lg (a x 2 + 2x + 1) .

(I)若函数 f (x ) 的定义域为 R ,求实数 a 的取值范围; (II)若函数 f (x ) 的值域为 R ,求实数 a 的取值范围.

变式2:已知函数2

()3f x x ax a =++-,若[]2,2x ∈-时,有()2f x ≥恒成立,求a

的取值范围.

变式3:若f (x ) = x 2 + bx + c ,不论 α、β 为何实数,恒有 f (sin α )≥0,f (2 + cos β )≤0.

(I) 求证:b + c = -1; (II) 求证: c ≥3;

(III) 若函数 f (sin α ) 的最大值为 8,求 b 、c 的值.

例9.根与系数关系

右图是二次函数()2

f x ax bx c =++的图像,它与x 轴交于点()1,0x 和()2,0x ,试确

定,,a b c 以及12x x ,12x x +的符号.

1

x 2

x x

y

1

O

1

变式1:二次函数b ax y +=2

与一次函数)(b a b ax y >+=在同一个直角坐标系的图像为

2

线

3

-=mx y 与

线

x m x y C m mx x y C )12(:,45:2221-+=-+=23,m +-

23:323C y x mx m =+--中至少有一条相交,则m 的取值范围是.

变式3:对于函数 f (x ),若存在 x 0 ∈ R ,使 f (x 0) = x 0 成立,则称 x 0 为 f (x ) 的不动点.如果函数 f (x ) = a x 2 + bx + 1(a > 0)有两个相异的不动点 x 1、x 2.

(I)若 x 1 < 1 < x 2,且 f (x ) 的图象关于直线 x = m 对称,求证m > 1

2 ;

(II)若 | x 1 | < 2 且 | x 1-x 2 | = 2,求 b 的取值范围.

D .

C .

x

y

O x

y

O O

O x

y

x

y

A .

B .

例10.应用

绿缘商店每月按出厂价每瓶3元购进一种饮料.根据以前的统计数据,若零售价定为每瓶4元,每月可销售400瓶;若每瓶售价每降低0.05元,则可多销售40瓶.在每月的进货量当月销售完的前提下,请你给该商店设计一个方安:销售价应定为多少元和从工厂购进多少瓶时,才可获得最大的利润?

变式1:在抛物线()2

f x x ax =-+与x 轴所围成图形的内接矩形(一边在x 轴上)中(如

图),求周长最长的内接矩形两边之比,其中a 是正实数.

变式2:某民营企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图一;B 产品的利润与投资的算术平方根成正比,其关系如图二(注:利润和投资单位:万元)

(1) 分别将A 、B 两种产品的利润表示为投资的函数关

系式;

(2) 该企业已筹集到10万元资金,并全部投入A ,B

两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润?其最大利润约为多少元(精确到1万元)?

二次函数的定义专项练习30题(有答案)

二次函数的定义专项练习 30 题(有答案) 1.下列函数中,是二次函数的有( ) ① y=1﹣ x 2② y= ③ y=x (1﹣x )④ y= ( 1﹣ 2x )( 1+2x ) A 1 个 B 2 个 C 3 个 D 4 个 5.若 y=(m 2+m ) 是二次函数,则 m 的值是( ) A m=1 ±2 B m=2 C m= ﹣ 1 或 D m=3 . . . m=3 . 6.下列函数 ,y=3x 2, ,y=x (x ﹣2),y=(x ﹣ 1)2﹣ x 2 中,二次函数的个数 为 ( 7.下列结论正确的是( ) 二次函数中两个变量的值是非零实数 二次函数中变量 x 的值是所有实数 2 形如 y=ax +bx+c 的函数叫二次函数 2 二次函数 y=ax +bx+c 中 a ,b ,c 的值均不能为零 8.下列说法中一定正确的是( ) A . y=ax 2 是二次函数 B . 二次函数自变量的取值范围是所有实数 C . 二次方程是二次函数的特例 D . 二次函数自变量的取值范围是非零实数 3.下列具有二次函数关系的是( ) A . 正方形的周长 y 与边长 x B . 速度一定时,路程 s 与时间 t C . 三角形的高一定时,面积 y 与底边长 x D . 正方形的面积 y 与边长 x 4.若 y= ( 2﹣ m ) 是二次函数,则 m 等于( ) 2.下列结论正确的是 ( ) D 不能确定 A C ﹣ 2 ±2 B 2 A . B . C . D .

2 A . 函数 y=ax 2+bx+c (其中 a ,b , c 为常数)一定是二次函数 B . 圆的面积是关于圆的半径的二次函数 C . 路程一定时,速度是关于时间的二次函数 D . 圆的周长是关于圆的半径的二次函数 2 9.函数 y=( m ﹣ n )x 2+mx+n 是二次函数的条件是( ) A . m 、n 是常数,且 m ≠0 B . m 、 n 是常数,且 m ≠n C . m 、n 是常数,且 n ≠0 D . m 、 n 可以为任何常数 10.下列两个量之间的关系不属于二次函数的是( ) A . 速度一定时,汽车行使的路程与时间的关系 B . 质量一定时,物体具有的动能和速度的关系 C . 质量一定时,运动的物体所受到的阻力与运动速度的关系 D . 从高空自由降落的物体,下降的高度与下降的时间的关系 11.下列函数中, y 是 x 二次函数的是( ) A y=x ﹣1 B y=x 2+ ﹣ 10 C 2 y=x +2x D 2 y =x ﹣ 1 . . . . 12.下面给出了 6 个函数: 其中是二次函数的有( ) A 1 个 B 2个 C 3 个 2 13.自由落体公式 h= gt 2(g 为常量),h 与 t 之间的关系是( ) A 正比例函数 B 一次函数 C 二次函数 D 以上答案都不对 14.如果函数 y= ( k ﹣ 3) +kx+1 是二次函数,那么 k 的值一定是 ___________ . 15.二次函数 y= ( x ﹣2) 2﹣ 3 中,二次项系数为 __________ ,一次项系数为 ___________ 为 _________ . 16.已知函数 y=(k+2) 是关于 x 的二次函数,则 k= __________ . 17.已知二次函数 的图象是开口向下的抛物线, m= ___________ . 22 18.当 m __________ 时,关于 x 的函数 y= (m 2﹣1)x 2+(m ﹣1) x+3 是二次函数. 2 2 2 19. y=(m 2﹣ 2m ﹣3)x 2+(m ﹣1)x+m 2是关于 x 的二次函数要满足的条件是 ___________ . ① y=3x 2﹣1;② y=﹣ x 2 ﹣3x ; ③ y= ; 2 ④ y=x (x +x+1 );⑤ y= ⑥ y= ,常数项

(完整版)二次函数复习课教学设计

二次函数复习课教学设计 和平中学任广香 一、教材分析 1.地位和作用: (1)二次函数是初中数学中最基本的概念之一,贯穿于整个初中数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届中考试题中,二次函数都是不可缺少的内容。 (2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。 (3)二次函数与一元二次方程知识的联系,使学生能更好地将所学知识融会贯通。 2.课标要求: ①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。 ②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。 ③会根据公式确定图象的顶点、开口方向和对称轴,平移,并能解决简单的实际问题。 ④会利用二次函数的图象求与x、y轴的交点坐标。 3.学情分析 (1)九年级学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。 (2)学生的分析、理解能力、学习新课时有明显提高。 (3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。 (4)学生能力差异较大,两极分化明显。 4.教学目标 认知目标: (1)掌握二次函数y=ax2+bx+c图像与系数符号之间的关系。 (2)通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力. 能力目标:提高学生对知识的整体合作能力和分析能力。 情感目标:制作动画增加直观效果,激发学生兴趣,感受数学之美.在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。 5.教学重点与难点: 重点:(!)掌握二次函数y=ax2+bx+c图像与系数符号之间的关系。 (2) 各类形式的二次函数解析式的求解方法和思路. 难点:(1)已知二次函数的解析式说出函数性质 (2)运用数形结合思想,选用恰当的数学关系式解决问题. 二、教学方法: 1.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为

二次函数专题测试题及详细答案(超经典)

复习二次函数 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线 =x D. 直线 2. 二次函数c bx ax y ++=2的图象如右图,则点),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值范围.

中考数学专题训练---二次函数的综合题分类含详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.(10分)(2015?佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画. (1)请用配方法求二次函数图象的最高点P的坐标; (2)小球的落点是A,求点A的坐标; (3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积; (4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标. 【答案】(1)(2,4);(2)(,);(3);(4)(,). 【解析】 试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标; (2)联立两解析式,可求出交点A的坐标; (3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解; (4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直 线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛 物线的解析式联立,得到方程组,解方程组即可求出点M的坐标. 试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4, 故二次函数图象的最高点P的坐标为(2,4); (2)联立两解析式可得:,解得:,或. 故可得点A的坐标为(,);

(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B. S△POA=S△POQ+S△梯形PQBA﹣S△BOA =×2×4+×(+4)×(﹣2)﹣×× =4+﹣ =; (4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积. 设直线PM的解析式为y=x+b, ∵P的坐标为(2,4), ∴4=×2+b,解得b=3, ∴直线PM的解析式为y=x+3. 由,解得,, ∴点M的坐标为(,). 考点:二次函数的综合题

二次函数七大综合专题

二次函数七大综合专题 二次函数与三角形的综合题

函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 (2016?益阳第21题) 如图,顶点为A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标. x y

考点:考查二次函数,三角形的全等、三角形的相似。 解析:(1 )∵抛物线顶点为A , 设抛物线对应的二次函数的表达式为2(1y a x =+, 将原点坐标(0,0)代入表达式,得1 3a =-. ∴抛物线对应的二次函数的表达式为:213y x =-+ . (2)将0y = 代入213y x =-+ 中,得B 点坐标为:, 设直线OA 对应的一次函数的表达式为y kx =, 将A 代入表达式y kx = 中,得k = , ∴直线OA 对应的一次函数的表达式为y x =. ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y b =+, 将 B 代入y b = +中,得2b =- , ∴直线BD 对应的一次函数的表达式为2y x =-. 由2213y x y x ?= -????=-?? 得交点D 的坐标为(3)-, 将0x = 代入2y =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , OB OD ==. 在△OAB 与△OCD 中,OA OC AB CD OB OD =?? =??=? , ∴△OAB ≌△OCD . (3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '?∽C DQ '?. ∴ PO C O DQ C Q '=', 25 = ,∴PO =, ∴ 点P 的坐标为(. 二次函数与平行四边形的综合题 7

完整版公开课一等奖二次函数复习课教案.doc

《二次函数复习》教学案 班级:初三 18 班年级:九设计者:李玲时间: 2015 年 10 月 16 日课题二次函数课型复习课 知识技能掌握二次函数的图象及其性质,能灵活运用数形结合知识解一些实际问题. 数学思考通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力. 教学目标 解决问题学生亲自经历巩固二次函数相关知识点的过程,体会利用数形结合线索解决问题策略的多样性. 经历探索二次函数相关题目的过程,体会数形结合思想、化归思想 情感态度在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活. 教学重点教学难点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.二次函数性质的灵活运用,能把相关应用问题转化为数学问题. 课前准备 (教具、活制作课件 动准备等) 教学过程 教学步骤师生活动设计意图 如图是抛物线y ax2bx c a 0 的图像,通过一个具体二次函数, 请尽可能多的说出一些结论。请学生说出尽可能多的结论,主要让学生回忆二次函数有 基础知识之 关基础知识.同学们之间可以自我构建 相互补充,体现团结协作精 神.同时发展了学生的探究意 识,培养了学生思维的广阔 性. 二次函数是生活中最常 见的一类函数,它有着自己固 有的性质,反映的是轴对称性 和增减性; 我们要突出反映二次函数的 轴对称性、顶点坐标,我们就基础知识之可以把一般式改写成顶点式;基础演练如果想知道抛物线与 x 轴两 个交点的情况,我们可以把一 般式写出交点式; 刚刚我们回顾了二次函数的 性质,我们发现二次函数的图 像能够直观地反映函数的特 性,而数又能细致刻画函数图

二次函数综合应用专题归纳训练一

二次函数综合应用专题归纳训练一 一、相似三角形的存在性问题 1.在平面直角坐标系中,一个二次函数的图像经过A(1,0)B(3,0)两点. (1)写出这个二次函数图像的对称轴; (2)设这个二次函数图像的顶点为D,与y轴交与点C,它的对称轴与x轴交与点E,连接AC、DE和DB.当△AOC与△DEB相似时,求这个二次函数的表达式. 二、等腰三角形的存在性问题 2.如图,直线3 y交x轴于A点,交y轴于B点,过A、B两点的抛物线交x =x 3+ 轴于另一点C(3,0). ⑴求抛物线的解析式 ⑵在抛物线的对称轴上是否存在点Q,使△ABQ 存在,求出符合条件的Q点坐标;若不存在,请说明理由.

3.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P是直线L上的一个动点,当△PAC的周长最 小时,求点P的坐标; (3)在直线L上是否存在点M,使△MAC为等腰三角 形?若存在,直接写出所有符合条件的点M的坐标; 若不存在,请说明理由.

三、平行四边形的存在性问题 4.(2014年山东泰安)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式; (2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N 的坐标,利用x表示出MN的长,利用二次函数的性质求解; (3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.

二次函数专题培优(含答案)

二次函数专题复习 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,.

二次函数专题复习教案

初中数学二次函数复习专题 〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向 〖大纲要求〗 1. 理解二次函数的概念; 2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会 用描点法画二次函数的图象; 3. 会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(ax +m)2 +k 的图象,了解特 殊与一般相互联系和转化的思想; 4. 会用待定系数法求二次函数的解析式; 5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点 坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。 内容 (1)二次函数及其图象 如果y=ax 2 +bx+c(a,b,c 是常数,a ≠0),那么,y 叫做x 的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向 抛物线y=ax 2 +bx+c(a ≠0)的顶点是)44,2(2a b ac a b --,对称轴是a b x 2-=,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。 抛物线y=a (x+h )2+k(a ≠0)的顶点是(-h ,k ),对称轴是x=-h. 〖考查重点与常见题型〗 1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x 为自变量的二次函数y =(m -2)x 2+m 2 -m -2额图像经过原点, 则m 的值是 2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角 坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数y =kx +b 的图像在第一、二、三象限内,那么函数 y =kx 2 +bx -1的图像大致是( ) 3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中 档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =5 3 ,求这条抛物线的解析式。 4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题, 如:

中考数学—二次函数的综合压轴题专题复习附答案

中考数学—二次函数的综合压轴题专题复习附答案 一、二次函数 1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D . (1)求该二次函数的解析式及点C ,D 的坐标; (2)点(,0)P t 是x 轴上的动点, ①求PC PD -的最大值及对应的点P 的坐标; ②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2 ||23y a x a x =-+的图像只有一个公共点,求t 的取值范围. 【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最 ,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或 332t ≤<或72t =. 【解析】 【分析】 (1)先利用对称轴公式x=2a 12a --=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式; (2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标; (3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ?-++≥=?--+

2017中考二次函数专题(含答案)

1.如图,抛物线y=x 2+bx+c 与直线y=x ﹣3交于A 、B 两点,其中点A 在y 轴上,点B 坐标为(﹣4,﹣5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC ⊥x 轴于点C ,交AB 于点D .(1)求抛物线的解析式;(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由.(3)当点P 运动到直线AB 下方某一处时,过点P 作PM ⊥AB ,垂足为M ,连接PA 使△PAM 为等腰直角三角形,请直接写出此时点P 的坐标. 2. 在直角坐标系xoy 中,(0,2)A 、(1,0)B -,将ABO ?经过旋转、平移变化后得到如图15.1所示的BCD ?. (1)求经过A 、B 、C 三点的抛物线的解析式;(2)连结AC ,点P 是位于线段BC 上方的抛物线上一动点,

若直线PC 将ABC ?的面积分成1:3两部分,求此时点P 的坐标;(3)现将ABO ?、BCD ?分别向下、向左以1:2的速度同时平移,求出在此运动过程中ABO ?与BCD ?重叠部分面积的最大值. 3. 如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .⑴若直线y =mx +n 经过B ,C 两点,求直线BC 和抛物线的解析式;⑵在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;⑶设点P 为抛物线的 图15.1 C D O B A x y

对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标. 4. 如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为 (-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2 )试探究抛物线上是 第25题图

三角函数与二次函数综合专题(含解析)

三角函数与二次函数综合卷2 1.如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论: ①∠AEF=∠BCE ; ②AF+BC >CF ; ③S △CEF =S △EAF +S △CBE ; ④若= ,则△CEF ≌△CDF . 其中正确的结论是 .(填写所有正确结论的序号) 2.已知:BD 是四边形 ABCD 的对角线,AB ⊥BC ,∠C=60°,AB=1, (1)求tan ∠ABD 的值; (2)求AD 的长. 3.海上有一小岛,为了测量小岛两端A 、B 的距离,测量人员设计了一种测量方法,如图所示,已知B 点是CD 的中点,E 是BA 延长线上的一点,测得AE = 10海里,DE =30海里,且DE ⊥EC ,cos ∠D (1)求小岛两端A 、B 的距离; (2)过点C 作CF ⊥AB 交AB 的延长线于点F ,求sin ∠BCF 的值. A B 4.如图,在△ABC 中,90ACB ∠=,AC BC =,点P 是△ABC 内一点,且135APB APC ∠=∠=.

A B C P (1)求证:△CPA ∽△APB ; (2)试求tan PCB ∠的值. 5.如图,在梯形A B CD 中,?=∠=∠ 90B A 点E 在AB 上,?=∠45AED ,6=DE ,7=CE . (1)求AE 的长; (2)求BCE ∠sin 的值. 6.如图,在△ABC 中, AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,AD=4. (1)求BC 的长; (2)求tan ∠DAE 的值. 7.如图,在Rt △ABC 中,∠ABO=90°,OB=4,AB=8内的图象分别交OA 、AB 于点C 和点D ,连结OD ,若4=?BOD S , (1)求反比例函数解析式; (2)求C 点坐标. 8.如图,在△ABC 中,BD ⊥AC 于点D , ,,并且. 求的长. AB =BD = 12 ABD CBD ∠=∠AC

二次函数专题讲解

二次函数专题讲解 一、知识综述: 1. 定义:一般地,如果 y ax 2 bx c (a,b,c 是常数, a 0) ,那么 y 叫做 x 的二次函数 2. 二次函数 y ax 2 bx c 用配方法可化成: y a x h 2 k 的形式,其中 h b ,k 4ac b 2a 3. 求抛物线的顶点、对称轴的方法 y a x h 2 k 的形式,得到顶点为 ( h , k ) ,对称轴是直 线 x h . 4. 二次函数由特殊到一般, 可分为以下几种形式: ① y ⑤ y ax 2 bx c . 它们的图像特征如下: 开口大小与| a |成反比,| a |越大,开口越小;| a |越小,开口越大。 5. 用待定系数法求二次函数的解析式 1)一般式: y ax 2 bx c . 已知图像上三点或三对 x 、 y 的值,通常选择一般式 2)顶点式: y a x h 2 k . 已知图像的顶点或对称轴,通常选择顶点式 ( 3)交点式:已知图像与 x 轴的交点坐标 x 1、 x 2 ,通常选用交点式: y a x x 1 x x 2 . 6. 二次函数图象的平移 左加右减(对 X ),上加下减(对 Y )。 二、考点分析及例题解析 考点一:二次函数的概念 4a 1)公式法: y ax 2 bx c a x b 2 2 2 b 4a c b2 ,∴顶点是( 2b a , 4ac 4a b 2 ),对称轴是直线 2a 4a x 2a 2)配方法:运用配方的方法,将抛物线的解析式化为 2 2 2 2 ax 2 ;② y a x 2 k ;③ y a x h 2 ;④ y a x h 2 k ;

二次函数综合题专题

二次函数专题一:二次函数与距离、角度的综合 1、已知抛物线y=x2?4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线。 (1)求平移后的抛物线解析式; (2)若直线y=m与这两条抛物线有且只有四个交点,求实数m的取值范围; (3)若将已知的抛物线解析式改为y=ax2+bx+c(a>0,b<0),并将此抛物线沿x轴方向向左平移?ba个单位长度,试探索问题(2). 2、如图,已知抛物线y=ax2+bx+c经过A(?3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H. (1)求该抛物线的解析式; (2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值; (3)如图(2),若E是线段AD上的一个动点(E与A. D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S. ①求S与m的函数关系式; ②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由。 3、如图,已知抛物线y=ax2+bx+2的图象经过点A和点B. (1)求该抛物线的解析式。 (2)把(1)中的抛物线先向左平移1个单位长度,再向上或向下平移多少个单位长度能使抛物线与直线AB只有

一个交点?写出此时抛物线的解析式。 (3)将(2)中的抛物线向右平移52个单位长度,再向下平移t个单位长度(t>0),此时,抛物线与x轴交于M、N 两点,直线AB与y轴交于点P.当t为何值时,过M、N、P三点的圆的面积最小?最小面积是多少? 4、已知抛物线y=ax2+bx+c的图象与x轴交于A. B两点(点A在点B的左边),与y轴交于点C(0,3),过点C作x轴的平行线与抛物线交于点D,抛物线的顶点为M,直线y=x+5经过D. M两点。 (1)求此抛物线的解析式; (2)连接AM、AC、BC,试比较∠MAB和∠ACB的大小,并说明你的理由。 5、在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点N(2,?5),过点N作x轴的平行线交此抛物线左侧于点M,MN=6. (1)求此抛物线的解析式; (2)点P(x,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当△DMN为直角三角形时,求点P 的坐标;

二次函数专题一:角度问题

二次函数专题一:角度 一、有关角相等 1、已知抛物线2 y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直 线5y x =+经过D 、M 两点.(1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系 就清楚了 b 、如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系 就确定了 c 、如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的 大小 d 、除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢, 全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何 快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C 、A 、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD∥x 轴且点C (0,3), ∴设点D 的坐标为(x ,3) .∵直线y= x+5经过D 点,∴3= x+5.∴x=-2.即点D(-2,3) . 根据抛物线的对称性,设顶点的坐标为M (-1,y ),又∵直线y= x+5经过M 点, ∴y =-1+5,y =4.即M (-1,4).∴设抛物线的解析式为2 (1)4y a x =++. ∵点C (0,3)在抛物线上,∴a=-1. 即抛物线的解析式为2 23y x x =--+.…………3分(2)作BP⊥AC 于点P ,MN⊥AB 于点N .由(1)中抛物线2 23y x x =--+可得 点A (-3,0),B (1,0), ∴AB=4,AO=CO=3,AC=∴∠PAB=45°. ∵∠ABP=45°,∴PA=PB=. ∴PC=AC-. 在Rt△BPC 中,tan∠BCP=PB PC =2.

二次函数专题完整版

二次函数专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题训练(三) 与函数有关的最值问题 类型之一 由不等关系确定的最值问题 1.某工厂以每吨3000元的价格购进50吨原料进行加工,两种加工方式如下表: 行) (1)设其中粗加工x 吨,共获利y 元,求y 与x 的函数关系式;(不要求写出自变量的取值范围) (2)如果必须在20天内加工完,如何安排生产才能获得最大利润最大利润是多少 类型之二 由一次函数确定的最值问题 2.某工厂计划为地震灾区生产A ,B 两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料0.5 m 3,一套B 型桌椅(一桌三椅)需木料0.7 m 3,工厂现有库存木料302 m 3. (1)有多少种生产方案? (2)现要把生产的全部桌椅运往地震灾区,已知每套A 型桌 椅的生产成本为100元,运费为2元;每套B 型桌椅的生产成本为120元,运费为4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费) 类型之三 由二次函数确定的最值问题 3.一个边长为4的正方形截去一个角后成为五边形ABCDE (如图Z -3-1),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 图Z -3-1 4.[2015·青岛]如图Z -3-2,隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角 坐标系,抛物线可以用y =-x 2 +bx +c 表示,且抛物线的点C 到墙面OB 的水平距离为3 m 时,到地面OA 的距离为m . (1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离; (2)一辆货运汽车载一长方体集装箱后高为6 m ,宽为4 m ,如果隧道内设双向行车道,那么这辆货车能否安全通过? (3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m ,那么两排灯的水平距离最小是多少米? 图Z -3-2

初三中考二次函数专题复习

中考二次函数专题复习 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 2. 2y ax c =+的性质: 上加下减。 3. y a x h =-的性质: 左加右减。 4. y a x h k =-+的性质:

1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取 的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当

二次函数全章分类专题练习(全套!!!)

专题训练1:二次函数2()y a x h k =++的图象与性质 1、二次函数2(3)2y x =--+的顶点坐标是 ,函数有最 值 . 2、将抛物线21 2 y x =向右平移2个单位,在向下平移一个单位,所得的抛物线是( ) A 、21(2)12y x =-- B 、21(2)12y x =-+ C 、21(2)12y x =++ D 、21 (2)12 y x =+- 3、对于抛物线21 (1)32 y x =-++,下面的结论:①抛物线的开口向下;②对称轴为直 线3x =③顶点坐标为(-1,3);④当1x >时,y 随x 的增大而减小.其中正确的个数 为( ) A 、0 B 、1 C 、2 D 、3 4、如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的 对称轴相同,则下列结论不正确的是( ) A 、k n = B 、h m = C 、k n > D 、0,0h n >< 5、已知二次函数2(2)(0)y a x c a =-+>,若自变量x 分别取2,3,0时,对应的函数值分别为123,,y y y ,则下列关于123,,y y y 的大小关系正确的是( ) A 、321y y y << B 、123y y y << C 、 213y y y << D 、312y y y << 6、若二次函数2()y a x m n =-+的图象如图所示,则一次函数y mx n =+的 图象不经过( ) A 、第四象限 B 、第三象限 C 、第二象限 D 、第一象限 7、已知函数23y x x m =-+(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程230x x m -+=的两个实数根是( ) A 、121,1x x ==- B 、121,2x x == C 、121,0x x == D 、121,3x x == 8、已知抛物线221y ax x =-+与x 轴没有交点,那么该抛物线的顶点所在的象限是 ( ) A 、第四象限 B 、第三象限 C 、第二象限 D 、第一象限 9、如图,是二次函数2y ax bx c =++的图象的一部分,且过点(3,0)A , 二次函数图象的对称轴是直线1x =,下列结论正确的是( ) A 、24b ac > B 、0ac > C 、0a b c -+> D 、420a b c ++<

相关文档
相关文档 最新文档