文档库 最新最全的文档下载
当前位置:文档库 › Cytotoxic and antioxidant dihydrobenzofuran neolignans from

Cytotoxic and antioxidant dihydrobenzofuran neolignans from

Cytotoxic and antioxidant dihydrobenzofuran neolignans from
Cytotoxic and antioxidant dihydrobenzofuran neolignans from

Cytotoxic and antioxidant dihydrobenzofuran neolignans from the seeds of Crataegus pinnati ?da

Xiao-Xiao Huang a ,b ,c ,Chen-Chen Zhou a ,c ,Ling-Zhi Li a ,b ,c ,Ying Peng d ,Li-Li Lou e ,Sen Liu a ,c ,Dian-Ming Li f ,Takshi Ikejima g ,Shao-Jiang Song a ,b ,c ,?

a

Department of Natural Products Chemistry,Shenyang Pharmaceutical University,Shenyang 110016,PR China

b

State Key Laboratory of Bioactive Substance and Function of Natural Medicines,Institute of Materia Medica,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,PR China c

Key Laboratory of Structure-Based Drug Design and Discovery,Ministry of Education,Shenyang Pharmaceutical University,Shenyang 110016,PR China d

School of Pharmacy,Shenyang Pharmaceutical University,PR China e

Harbin Pharmaceutical Group Co.,LTD General Pharmaceutical Factory,Harbin 150046,PR China f

Harbin Pharmaceutical Group Co.,LTD Second Chinese Medicine Factory,Harbin 150078,PR China g

China –Japan Research Institute of Medical Pharmaceutical Sciences,Shenyang Pharmaceutical University,PR China

a r t i c l e i n f o a

b s t r a

c t

Article history:

Received 16July 2013

Accepted in revised form 10September 2013Available online 20September 2013Eight new dihydrobenzofuran neolignans,pinnatifidanin C I –VIII (1–8),together with two known analogs (9–10)were isolated from the seeds of Crataegus pinnatifida .Their structures were elucidated by spectroscopic analyses,especially 1D,2D NMR and CD spectra.The cytotoxic activities of all isolates against human cancer cell lines were assayed,and most interestingly,compound 10revealed preferred cytotoxicity on the HT-1080cell line and displayed much stronger inhibitory activity (IC 50=8.86μM)compared with positive control 5-fluorouracil (IC 50=35.62μM).Meanwhile,antioxidant activities of all the isolates were evaluated using 2,2-diphenyl-1-pikrylhydrazyl (DPPH)and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)(ABTS)assays,and the results showed that most of the isolates exhibited potent antioxidant activity.

?2013Elsevier B.V.All rights reserved.

Keywords:

Crataegus pinnatifida

Dihydrobenzofuran neolignans Cytotoxicities

Antioxidant activities

1.Introduction

Crataegus pinnatifida Bge.,locally called hawthorn,is a type of fruit-bearing plant commonly found in China,Europe and North America.The genus Crataegus is classified in the tribe Crataegeae ,which belongs to the sub-family Maloideae of the Rosaceae family [1].In traditional Chinese medicine (TCM),hawthorn fruits are primarily used to improve circulation,remove blood stasis and treat indigestion,hyper-lipidemia and hypertension.In Europe,the fruits,leaves and flowers were traditionally used in the treatment of heart

problems for their antispasmodic,cardiotonic,hypotensive and antiatherosclerotic effects.So far,more than 160compounds have been isolated from Crataegus ,including flavonoids,terpenes,lignans and organic acids [1–5].Most of the previous phytochemical investigations of hawthorn have almost exclu-sively focused on the leaves [2,3],fruits [4]and flowers [5]and not on the seeds.Herein,we carried out the continued search for biologically active and structurally unique compounds,which resulted in the isolation of ten dihydrobenzofuran neolignans including eight new neolignans together with two known analogs from the seeds of hawthorn.

This paper describes the structural elucidation of eight new isolated neolignans (1–8),named pinnatifidanin C I –VIII (Fig.1),on the basis of 1D,2D NMR,CD and HRESIMS data,as well as the cytotoxic and antioxidant activity evaluation of all isolates obtained.

Fitoterapia 91(2013)217–223

?Corresponding author at:School of Traditional Chinese Materia Medica,Shenyang Pharmaceutical University,103Wenhua Road,Shenyang,Liaoning 110016,PR China.Tel.:+862423986088;fax:+862423986510.

E-mail address:songsj99@https://www.wendangku.net/doc/186253665.html, (S.-J.

Song).0367-326X/$–see front matter ?2013Elsevier B.V.All rights reserved.https://www.wendangku.net/doc/186253665.html,/10.1016/j.?tote.2013.09.011

Contents lists available at ScienceDirect

Fitoterapia

j o u r na l h o me p a g e :w ww.e l s e v i e r.c o m /l oc a te /f i t o t

e

2.Experimental

2.1.General experimental procedures

Optical rotations were obtained by using a JASCO DIP-370digital polarimeter.The UV spectra were measured on a Shimadzu UV-1700spectrometer.The spectra CD were obtained using MOS 450detector from BioLogic.The FT-IR spectra were obtained on a Bruker IFS-55spectrometer.1H NMR,13C NMR,HMBC,HSQC and NOESY spectra were recorded on Bruker ARX-300and Bruker AV-600spectrometers with TMS as an internal standard.HRESIMS experiments were performed on an Agilent G6520Q-TOF spectrometer.The chromatographic silica gel (200–300mesh)was produced from Qingdao Ocean Chemical Factory,and ODS (50μm)was produced by YMC Co.Ltd.Sephadex LH-20was produced by GE Healthcare.Macroporous adsorption resin D101was produced by Cangzhou Bon Adsorber Technology Co.,Ltd.Semipreparative RP-HPLC isolation was achieved with an Agilent 1100instrument using YMC 5μm C18column (250mm ×10mm).Peak detection was made with a refractive index detector (RID).DPPH and ABTS assays were performed on Varioskan Flash Multimode Reader (Thermo scientific).2.2.Plant material

The seeds of hawthorn were collected from Shijiazhuang,Hebei province,PR China,in June 2011,and were identified by professor Jin-Cai Lu (Department of Natural Products Chemistry,Shenyang Pharmaceutical University,PR China.).A voucher specimen (No.20110701)has been deposited in the Herbarium of Shenyang Pharmaceutical University,Liaoning,PR China.2.3.Extraction and isolation

The air-dried seeds of hawthorn (30kg)were crushed to pieces and refluxed with 70%ethanol for 3times ×30L ×4h.The solvent was evaporated under vacuum.Then,the extract (1500g)was suspended in H 2O (20L)and partitioned with ethyl acetate (3×20L).The ethyl acetate extract (420g)was suspended in H 2O (5L)and then chromatographed over D101macroporous resin column (12×60cm)using H 2O –EtOH (from 100:0to 5:95)as eluents.The H 2O –EtOH (70:30)fraction (128g)was subjected to silica gel CC (12×60cm)and eluted with CH 2Cl 2–MeOH (from 100:0to 50:50)to afford eight fractions (1–8).Fraction 4(18.2g)was further purified over an ODS CC (10×60cm)using MeOH –H 2O as the mobile phase with a gradient (from 95:5to 50:50)to afford five fractions (F 4-1–F 4-5)based on HPLC analysis.F 4-2(4.1g)was subjected to another silica gel column (2×30cm)and eluted with CH 2Cl 2–MeOH (from 95:5to 85:15)to afford eleven fractions (F 4-2-1–F 4-2-11)based on TLC analysis.F 4-2-2was subjected to semipreparative HPLC eluted with MeOH –H 2O (42:58)to yield 1(12mg).F 4-2-3was subjected to semi-preparative HPLC eluted with MeOH –H 2O (30:70)to yield 2(16mg).F 4-2-5was subjected to semipreparative HPLC eluted with MeOH –H 2O (32:68)to yield 3(25mg)and 4(11mg).F 4-2-4was subjected to semipreparative HPLC eluted with CH 3CN –H 2O (24:76)to yield 5(10mg)and 6(7mg).F 4-2-7was subjected to semipreparative HPLC eluted with CH 3CN –H 2O (20:80)to yield 7(33mg)and 8(3mg).F 4-2-2was subjected to semipreparative HPLC eluted with MeOH –H 2O (42:58)to yield 9(170mg).F 4-2-1was subjected to ODS CC (1.5×25cm)eluted with a gradient system (MeOH –H 2O,45:55,1L)to yield 10(370mg).

Pinnatifidanin C I (1):yellow oil;[α]20D ?6.3(c =0.03,MeOH);CD (MeOH)nm:238(3.66);UV (MeOH)λmax (log ε):230(3.73),278(2.32)nm;IR (KBr)v max :3361,2940,1841,1662,1315,1158,1030,898,628cm ?1;HRESIMS m /z 397.1257[M +Na]+(calcd for C 20H 22O 7Na,397.1258);1H and 13C NMR,see Tables 1and 3.

Pinnatifidanin C II (2):yellow oil;[α]20D +11.2(c =0.04,MeOH);CD (MeOH)nm:240(?4.50);UV (MeOH)λmax (log ε):229(3.60),279(2.16)nm;IR (KBr)v max :3366,

2937,

Fig.1.Structures of compounds 1–10.

218X.-X.Huang et al./Fitoterapia 91(2013)217–223

1688,1594,1323,1164,1111,1026,898cm ?1;HRESIMS m /z 413.1205[M +Na]+(calcd for C 20H 22O 8Na,413.1207);1H and 13C NMR,see Tables 1and 3.

Pinnatifidanin C III (3):yellow oil;[α]20D ?21.2(c =0.08,MeOH);CD (MeOH)nm:242(3.44);UV (MeOH)λmax (log ε):228(3.32),280(2.01)nm;IR (KBr)v max :3415,2934,1606,1518,1275,1117,855,819,775cm ?1;HRESIMS m /z 429.1510[M +Na]+(calcd for C 21H 26O 8Na,429.1520);1H and 13C NMR see Tables 1and 3;1H NMR (CDCl 3,600MHz),see Supplemen-tary data.

Pinnatifidanin C IV (4):yellow oil;[α]20D +10.2(c =0.03,MeOH);CD (MeOH)nm:240(?3.89);UV (MeOH)λmax (log ε):230(3.12),278(2.45)nm;IR (KBr)v max :3434,2932,1620,1519,1383,1116,1032,855,620cm ?1;HRESIMS m /z 429.1510[M +Na]+(calcd for C 21H 26O 8Na,429.1520);1H and 13

C NMR see Tables 1and 3;1H NMR (CDCl 3,600MHz),see Supplementary data.

Pinnatifidanin C V (5):yellow oil;[α]20D ?8.5(c =0.02,MeOH);CD (MeOH)nm:239(3.99);UV (MeOH)λmax (log ε):229(3.71),280(2.81)nm;IR (KBr)v max :3436,2853,1627,1384,1121,1035,619cm ?1;HRESIMS m /z 443.1666[M +Na]+(calcd for C 22H 28O 8Na,443.1676);1H and 13C NMR,see Tables 2and 3.

Pinnatifidanin C VI (6):yellow oil;[α]20D +7.0(c =0.02,MeOH);CD (MeOH)nm:239(?2.87);UV (MeOH)λmax (log ε):228(2.40),280(1.66)nm;IR (KBr)v max :3384,2936,1606,1518,1276,1125,1032,855,819,740,636cm ?1;HRESIMS m /z 433.1678[M +Na]+(calcd for C 22H 28O 8Na,433.1676);1H and 13C NMR,see Tables 2and 3.

Pinnatifidanin C VII (7):yellow oil;[α]20D +12.5(c =0.06,MeOH);CD (MeOH)nm:241(?4.87);UV (MeOH)λmax (log ε):228(2.63),278(1.75)nm;IR (KBr)v max :3368,2936,1603,1513,1269,1032,820,785,641cm ?1;HRESIMS m /z 427.1728[M +Na]+(calcd for C 22H 28O 7Na,427.1727);1H and 13

C NMR,see Tables 2and 3.

Pinnatifidanin C VIII (8):yellow oil;[α]20D +6.5(c =0.02,MeOH);CD (MeOH)nm:238(?3.15);UV (MeOH)λmax (log ε):227(3.42),281(2.46)nm;IR (KBr)v max :3385,2936,1512,1270,1032,858,819,640cm ?1;HRESIMS m /z 341.0998[M +Na]+(calcd for C 17H 18O 6Na,341.0996);1H and 13C NMR date,see Tables 2and 3.2.4.Cytotoxic activity [6]

In order to measure the cytotoxic activity,each tested compound and 5-fluorouracil (positive control)were dissolved in DMSO and diluted with the medium to the test concentra-tions.Briefly,cells were cultured at 37°C and dispersed in replicates in 96-well plates with HeLa,HepG2,HT-1080,A375-S2,MCF-7,U-937,K562and HL60for 24h.Fresh medium with compounds at different concentrations was then added to individual wells and incubated for 48h,with 5-fluorouracil as the positive control.After 48h,the cell was incubated with MTT solution (0.5mg/mL)for an additional 4h at 37°C.The produced formazan crystals were solubilized with DMSO and the optical density of solution was measured at 492nm using a Spectra Shell reader (Tecan,Austria).2.5.Antioxidant activity

2.5.1.DPPH radical scavenging activity [7,8]

Radical scavenging activity of 1–10and vitamin E (positive control)was determined using DPPH as a reagent with modification by using 96-well plates.A 0.1mM solution of DPPH radical in ethanol was prepared and then 100μL of this solution was mixed with 100μL of sample solution.The mixture was incubated for 30min in a dark room at room temperature.Scavenging capacity was read spectrophoto-metrically by monitoring the decrease in absorbance at 517nm.The percentage of scavenged DPPH was calculated

Table 11

H NMR data of compounds 1–4.No.11,a

22,a

32,b

42,b

12 6.92(1H,br.s) 6.93(1H,br.s) 6.98(1H,d,1.9)

6.96(1H,d,1.8)

34 6.77(1H,br.s) 6.77(1H,br.s)5 6.79(1H,d,8.1)

6.77(1H,d,8.1)

6 6.77(1H,br.s) 6.77(1H,br.s) 6.86(1H,dd,8.1,1.9) 6.84(1H,dd,8.1,1.8)

7 5.58(1H,d,6.8) 5.61(1H,d,6.8) 5.55(1H,d,6.4) 5.53(1H,d,6.4)

8 3.53–3.66(1H,m) 3.55–3.58(1H,m) 3.31–3.25(1H,m) 3.30–3.24(1H,m)

9 3.70–3.73(2H,m) 3.62–3.69(2H,m) 3.78–3.85(2H,m) 3.76–3.84(2H,m)1′2′7.44(1H,br.s)

7.50(1H,br.s)

6.89(1H,br.s)

6.88(1H,br.s)

3′4′5′6′7.60(1H,br.s)7.64(1H,br.s) 6.89(1H,br.s) 6.88(1H,br.s)7′ 4.14(1H,d,6.6) 4.15(1H,dd,6.4)8′ 3.09(2H,t,6.4) 3.56–3.62(1H,m) 3.67–3.73(1H,m) 3.66–3.74(1H,m)9′

3.77(2H,t,6.4) 3.69–3.73(2H,m) 3.47–3.56(2H,m) 3.46–3.56(2H,m)3-OCH 3 3.84(3H,s) 3.75(3H,s) 3.83(3H,s) 3.82(3H,s)3′-OCH 3 3.74

(3H,

s)

3.84(3H,s)

3.89(3H,s) 3.88(3H,s)7′-OCH 3

3.27(3H,s) 3.26(3H,s)

1

for 600MHz,2for 300MHz.Coupling constants (J )in Hz are given in parentheses;chemical shift values are expressed in ppm.a

Measured in DMSO-d 6.b

Measured in CD 3OD.

219

X.-X.Huang et al./Fitoterapia 91(2013)217–223

using the following equation:DPPH scavenging activity (%)=[1?(S ?SB)/(C ?CB)]×100%where S,SB,C and CB are the absorbencies of the sample,the blank sample,the control and the blank control,respectively.

2.5.2.ABTS radical scavenging activity [9]

The radical scavenging activity of the isolated compounds was carried out using an improved ABTS decolorization assay with some modification.ABTS radical cation (ABTS ?+)was produced by reacting 7mM stock solution of ABTS with 2.45mM potassium persulfate (final concentration)and allowing the mixture to stand in the dark at room temperature for 12–16h before use.The ABTS ?+solution was diluted with ethanol,to an absorbance of 0.7±0.02at 734nm.An ethanolic solution (50μL)of the samples at various concen-trations was mixed with 150μL diluted ABTS ?+solution.After reaction at room temperature for 20min,the absor-bance at 734nm was measured.Lower absorbance of the reaction mixture indicates higher ABTS ?+scavenging activ-ity.The capability to scavenge the ABTS ?+was calculated using the formula given below:ABTS ?+scavenging activity (%)=[1?(S ?SB)/(C ?CB)]×100%where S,SB,C and CB are the absorbencies of the sample,the blank sample,the control,and the blank control,respectively.3.Results and discussion

Compound 1was obtained as yellow oil.The molecular formula of 1was determined as C 20H 22O 7from its positive HRESIMS ion at m /z 397.1257[M +Na]+(calcd for C 20H 22O 7Na,397.1258).The 1H NMR spectrum of 1showed the presence of a 1,3,5-trisubstituted benzene ring [δH :6.92(1H,br.s),6.77(1H,br.s)and 6.77(1H,br.s)],a 1,3,4,5-tetrasubstituted benzene ring [δH :7.44(1H,br.s)and 7.60(1H,br.s)],two methoxyl group protons attached to the aromatic ring at δ3.84(3H,s)and 3.74(3H,s)compared with the literature [10].A sequence of oxygenate methine –

Table 313

C NMR data (150MHz)of compounds 1–8.No.1a 2a 3b 4b 5b 6b 7b 8a 1131.6131.6133.6133.6134.5134.5134.6132.72110.5110.5110.5110.5110.5110.6110.5110.33147.7147.6149.2149.2149.1149.1149.1147.54115.4115.4147.5147.5147.5147.6147.6115.25146.8146.8116.1116.1116.1116.2116.3146.26118.6118.7119.7119.7119.7119.8119.8118.5788.488.489.289.289.289.289.286.3852.352.355.255.255.355.355.353.6962.762.664.764.664.864.765.063.01′129.7129.0134.5134.4134.3134.4137.5151.92′112.0112.8112.8112.8112.9112.9112.0100.13′143.6143.5145.5145.5145.5145.5145.5143.64′152.0152.2149.1149.0149.1149.2148.9140.25′131.0129.6130.1130.1130.0130.1130.0129.26′118.8118.9117.4117.3117.3117.2116.1103.1

7′197.3198.485.585.583.683.680.38′41.274.077.177.177.177.242.39′57.2

64.3

63.9

63.9

63.964.059.91″65.465.464.92″

15.615.615.63-OCH 355.755.756.356.356.456.456.455.63′-OCH 355.755.8

56.756.756.7

56.7

56.7

55.5

7′-OCH 3

57.157.1

a Measured in DMSO-d 6.b

Measured in CD 3OD.

Table 21

H NMR data of compounds 5–8.No.52,b

62,b

71,b

82,a

12 6.98(1H,d,1.8)

6.96(1H,d,1.8)

6.96(1H,d,1.8)

6.89(1H,br.s)34 6.74(1H,br.s)

5 6.79(1H,d,8.2)

6.77(1H,d,8.1)

6.77(1H,d,8.1)

6 6.85(1H,dd,8.2,1.8) 6.84(1H,dd,8.1,1.8) 6.84(1H,dd,8.1,1.8) 6.74(1H,br.s)

7 5.55(1H,d,6.4) 5.53(1H,d,6.5) 5.52(1H,d,6.5) 5.32(1H,d,6.8)

8 3.50–3.52(1H,m) 3.50–3.52(1H,m) 3.48–3.52(1H,m) 3.20–3.40(1H,m)c

9 3.75–3.84(2H,m) 3.75–3.84(2H,m) 3.76–3.82(2H,m) 3.60–3.70(1H,m)1′2′ 6.90(1H,br.s)

6.88(1H,br.s)

6.84(1H,br.s)

6.28(1H,d,1.9)

3′4′5′6′ 6.88(1H,br.s) 6.88(1H,br.s) 6.84(1H,br.s)

6.28(1H,d,1.9)

7′ 4.27(1H,d,6.4) 4.26(1H,d,6.2) 4.39(1H,dd,8.3,5.4)8′ 3.66–3.69(1H,m) 3.66–3.69(1H,m) 1.96–2.02(1H,m)1.76–1.81(1H,m)9′ 3.48–3.51(2H,m) 3.47–3.51(2H,m) 3.62–3.66(2H,m)1″ 3.43–3.46(2H,m) 3.43–3.46(2H,m) 3.33–3.35(2H,m)2″

1.20(3H,t,7.0) 1.18(3H,t,7.0) 1.16(3H,t,7.0)3-OCH 3 3.83(3H,s) 3.82(3H,s) 3.82(3H,s) 3.74(3H,s)3′-OCH 3

3.88(3H,s)

3.87(3H,s) 3.87(3H,s)

3.71(3H,s)

1

for 600MHz,2for 300MHz.Coupling constants (J )in Hz are given in parentheses;chemical shift values are expressed in ppm.a

Measured in DMSO-d 6.b

Measured in CD 3OD.c

Overlapped signals.

220

X.-X.Huang et al./Fitoterapia 91(2013)217–223

methine–oxygenate methylene proton signals atδ5.58(1H, d,J=6.8Hz),3.53–3.66(1H,m)and3.70–3.73(2H,m) indicated that1had a dihydrobenzofuran neolignan skele-ton in combination with its13C NMR spectrum data.The13C NMR spectrum of1(Table3)showed twenty carbon signals. Aside from the carbon signals from the two methoxy groups, the remaining eighteen carbon signals supported the presence of twelve aromatic,a carbonyl and five aliphatic carbons.The HMBC correlations(Fig.2)of H-8′atδ3.09with C-7′,C-9′and of H-9′atδ3.77with C-7′and C-9′confirmed that compound1possessed a3-hydroxy-1-phenylpropan-1-one unit.Meanwhile,the positions of the two methoxyls were confirmed by the HMBC correlations.A relative-trans configura-tion was determined by the coupling constant J7,8(6.8Hz)in accordance with literature reports[11,12].The CD spectrum showed a positive Cotton effect(Δε2383.66),so it was found that compound1had the7S,8R-configuration[12]and named pinnatifidanin C I.

Compound2had the molecular formula C20H22O8,as determined by the HRESIMS at m/z413.1205[M+Na]+ (calcd for C20H22O8Na,413.1207).Its13C NMR spectroscopic data were similar to those of1except for the reductive proton and the obvious downfield shift of C-8′(+32.8ppm) and C-9′(+7.1ppm),indicating that one proton of H-8′was substituted by a hydroxyl group.The coupling constant J7,8 (6.8Hz)in the1H NMR of2suggested a relative-trans configuration[11,12].The CD spectrum showed a negative Cotton effect at240nm,so it was found that compound2 had the7R,8S-configuration[12].Thus,the structure of2was established as shown in Fig.1and named pinnatifidanin C II.

Compound3was obtained as yellow oil with the molecular formula C21H26O8,based on quasi-molecular ion m/z429.1510 [M+Na]+(calcd for C21H26O8Na,429.1520)from HRESIMS mass spectral analysis.The1H NMR spectra showed the presence of a1,3,4-trisubstituted benzene ring[δH:6.98(1H, d,J=1.9Hz),6.79(1H,d,J=8.1Hz)and6.86(1H,dd, J=1.9,8.1Hz)]and a1,3,4,5-tetrasubstituted benzene ring [δH: 6.89(1H,br.s)and 6.89(1H,br.s)].The13C NMR spectrum of3showed twenty one carbon signals.Aside from the carbon signals from the three methoxy groups,the remaining eighteen carbon signals supported the presence of twelve aromatic and six aliphatic carbons.Careful comparison of the NMR data of3with those of1and2revealed that compound 3is a dihydrobenzofuran neolignan.The positions of the three methoxyls were confirmed by the HMBC correlations(Fig.2). The coupling constant J7,8(6.4Hz)in the1H NMR of3suggested a relative-trans configuration[11,12].Meanwhile the coupling constant between H-7′and H-8′(J=6.6Hz in CD3OD and J=8.1Hz in CDCl3)suggested a threo conformation of C-7′/C-8′[13,14].The CD spectrum showed a positive Cotton effect(Δε2423.44)which suggested a7S,8R-configuration[12]. Based on the above evidence,the structure of compound3 was unambiguously established as shown in Fig.1and named pinnatifidanin C III.

Compound4was proposed to have the molecular formula C21H26O8based on HRESIMS.The1H NMR and13C NMR spectroscopic data were in good agreement with those of3, suggesting that the planar structure of4was the same as that of compound3.The coupling constant J7,8(6.4Hz)in the1H NMR of4suggested a relative-trans configuration[11,12].The coupling constant J7′,8′(6.4Hz in CD3OD and7.9Hz in CDCl3)in the1H NMR of4suggested a relative-threo configuration[13,14]. The CD spectrum showed a negative Cotton effect(Δε240?3.89),which indicated the absolute configurations of4to be 7R,8S-configuration[12].Thus,compound4was defined as an optical isomer of3and given the trivial name pinnatifidanin C

IV. 221

Compound5was isolated as yellow oil.Its HRESIMS spectrum showed the quasi-molecular ion m/z[M+Na]+ 443.1666(calcd for C22H28O8Na,443.1676)consistent with the molecular formula C22H28O8.Its1H NMR and13C NMR spectroscopic data were similar to those of3except for the reduction of a methoxy group and the addition of an ethoxyl group in5(Fig.1).The coupling constant J7,8(6.4Hz)in the1H NMR of5suggested a relative-trans configuration[11,12],and the coupling constant between H-7′and H-8′(J=6.4Hz in CD3OD)suggested a threo conformation of C-7′/C-8′[13,14]. Meanwhile,the CD spectrum showed a positive Cotton effect (Δε2393.99),so it was found that compound5had the7S,8R-configuration[12].Accordingly,5was proposed to be a new neolignan and had been accorded the trivial name pinnatifidanin C V.

Compound6was assigned as C22H28O8from the HRESIMS, and its1H NMR and13C NMR spectroscopic data were identical with those of6,suggesting that the planar structure of6was the same as that of5.A trans configuration of6was confirmed by the J7,8value of6.5Hz in the1H NMR spectrum[11,12]. Meanwhile,the coupling constant between H-7′and H-8′(J=6.2Hz in CD3OD)indicated that6had the threo configuration between C-7′and C-8′[13,14].Furthermore, the CD cotton curve of6was opposite to that of5,which indicated that the configuration of dihydrofuran ring was 7R,8S[12].Thus,compound6was defined as an optical isomer of5and named pinnatifidanin C VI.

Compound7had the molecular formula C22H28O7,as indicated by HRESIMS combined with the NMR data.Its13C NMR spectroscopic data were similar to those of5except for the reductive proton and the obvious chemical shift of C-8′(-34.9ppm)and C-9′(?4.1ppm),indicating that8′-OH was substituted by a hydrogen proton(Fig.1).The relative configuration of H-7and H-8was determined as trans by the coupling constant J7,8(6.5Hz)in the1H NMR[11,12].The CD spectrum showed a negative Cotton effect(Δε241?4.87),which indicated that the configuration of7was7R,8S-configuration [12].Thus,the structure of7was established as shown in Fig.1 and named pinnatifidanin C VII.

Compound8was obtained as a light yellow oil,and the molecular formula of8was deduced as C17H18O6by HRESIMS.The1H NMR spectroscopic data indicated the presence of a benzofuran-type lignan moiety[δH5.32(1H,d,J=6.8Hz), 3.20–3.40(1H,m)and 3.60–3.70(2H,m)],which was supported by resonances in the13C NMR spectrum(δC86.3, 53.6,63.0).Furthermore,its1H NMR showed the presence of a1,3,5-trisubstituted benzene ring[δH6.89(1H,s),6.74(1H, br.s)and6.74(1H,br.s)],a1,3,4,5-tetrasubstituted benzene ring[δH6.28(1H,d,J=1.9Hz)and6.28(1H,d,J=1.9Hz)] and two methoxyl protons attached to the aromatic ring atδ3.74(3H,s)and3.71(3H,s).According to the HMBC spectrum, the above fragments were connected as shown in Fig.2.Since the coupling constant of H-7was6.8Hz,the relative configura-tion of C-7and C-8was regarded as trans-configuration[11,12]. The CD spectrum showed negative Cotton effects at238nm,so it was found that compound8had the7R,8S-configuration[12] and named pinnatifidanin C VIII.

By comparing physical and spectroscopic data with literatures,the two known constituents were identified as 7R,8S-dihydrodehydroconiferyl alcohol(9)[15]and7R,8S-balanophonin(10)[16].

Many types of biological activity have been reported on dihydrobenzofuran neolignan.In previous investigations, dihydrobenzofuran neolignans had served as a lead compound for antitumoral agents,and their structure–activity relation-ships were studied[17–24].It was reported that the double bond in the C-7′/8′side chain was the antitumor activity group of dihydrobenzofuran neolignans and the reduction of the double bond caused a greater than ten-fold decrease of activity [17,18,24].

All isolated compounds were assayed for their in vitro cytotoxicity against three human cancer cell lines,including A375-S2,HL60and K562using the MTT method,and only compound10displayed potent cytotoxic activities.Then, compound10was evaluated against other five types of human cancer cell lines,including HeLa,HepG2,HT-1080, MCF-7and U-937by MTT method.5-Fluorouracil was used as the reference drug.The results of cell viability inhibition were shown in Table4.From the above-mentioned evidence, we also conclude that the presence of double bond in C-7′/C-8′next to the aromatic ring(π–πconjugation)may increase the cytotoxic activity of dihydrobenzofuran neolignans.The

Table4

Inhibition effects on the growth of tumor cells in vitro(IC50,μM).

IC50(μM)

Compound Cell line

HeLa MCF-7HepG2A375-S2HT1080HL60U937K562

1–––N50–N50–N50

2–––N50–N50–N50

3–––N50–N50–N50

4–––N50–N50–N50

5–––N50–N50–N50

6–––N50–N50–N50

7–––N50–N50–N50

8–––N50–N50–N50

9–––N50–N50–N50 1046.68N5030.9630.548.8636.71N50N50

5-Fu a7.3411.5040.34 6.6735.6210.0523.9323.55“–”Means not tested.

a5-Fu(5-fluorouracil)was used as positive control.

222X.-X.Huang et al./Fitoterapia91(2013)217–223

results of the cytotoxicity of isolates in our study may support the viewpoint what Apers et al.reported[24].Particularly, compound10revealed preferred cytotoxicity against the HT-1080cell line and displayed much stronger inhibitory activity(IC50=8.86μM)compared with positive control 5-fluorouracil(IC50=35.62μM).

The antioxidant effects of the isolates were assessed using the DPPH and ATBS assays(Table5).All isolates(IC50N90μg/mL) were found to be less active than the positive control vitamin E (IC50=9.96μg/mL)in the DPPH assay.But in the ATBS assay,most of the dihydrobenzofuran neolignans showed significant activity of IC50b15μg/mL,which were compa-rable to the positive control vitamin E(IC50=9.30μg/mL). It has been reported that the antioxidant activity is correlated to the number of free phenolic hydroxyl groups,and the antioxidant activity may dramatically decrease as led by the absence or blocking of the hydroxyl groups by methyl group [25,26].In our study,compound9showed the strongest antioxidant activities(IC50=98.65μg/mL in the DPPH assay and IC50=7.29μg/mL in the ATBS assay)among all the tested compounds,by comparison,compound8exhibited significantly reduced antioxidant activities(IC50N200μg/mL in the DPPH assay and IC50=23.58μg/mL in the ATBS assay),suggesting that the antioxidant activity of this type of neolignan was probably related to the3-phenylpropan-1-ol unit.In con-sideration of the structures of neolignans(1–10),we found that the loss of the side chain and the existence of hydroxyl group,methyl group or carbonyl group in the side chain(in the C-7′or C-8′)may cause the reduction of antioxidant activity of dihydrobenzofuran neolignans.

Acknowledgments

Financial supported by the Program for State Key Labora-tory of Bioactive Substance and Function of Natural Medicines (GTZX201208),the Innovative Research Team of the Ministry of Education and Program for Liaoning Innovative Research Team in University,the Scientific Research Starting Foundation (20121106)for Doctors of Liaoning province of PR China and the Foundation(L2012358)from the Project of Education Department of Liaoning province of PR China are gratefully acknowledged.Authors thank Li W.and Sha Y.of Shenyang Pharmaceutical University for the supporting recording of NMR spectra.Appendix A.Supplementary data

Supplementary data to this article can be found online at https://www.wendangku.net/doc/186253665.html,/10.1016/j.fitote.2013.09.011.

References

[1]Edwards JE,Brown PN,Talent N,Dickinson TA,Shipley PR.A review of

the chemistry of the genus Crataegus.Phytochemistry2012;79:5–26.

[2]Song SJ,Li LZ,Gao PY,Yuan YQ,Wang RP,Liu KC,et al.Isolation of

antithrombotic phenolic compounds from the leaves of Crataegus pinnatifida.Planta Med2012;78:1967–71.

[3]Huang XX,Guo DD,Li LZ,Lou LL,Li DM,Zhou CC,et al.Biochem Syst

Ecol2013;48:1–5.

[4]Ahn KS,Hahm MS,Park EJ,Lee HK,Kim IH.Corosolic acid isolated from

the fruit of Crataegus pinnatifida var.psilosa is a protein kinase C inhibitor as well as a cytotoxic agent.Planta Med1998;64:468–70. [5]Sendker J,Petereit F,Lautenschl?ger M,Hellenbrand N,Hensel A.

Phenylpropanoid-substituted procyanidins and tentatively identified procyanidin glycosides from hawthorn(Crataegus spp.).Planta Med 2013;79:45–51.

[6]Liu FZ,Ren JW,Tang JS,Liu XZ,Che YS,Yao XS.Cyclohexanone

derivatives with cytotoxicity from the fungus Penicillium commune.

Fitoterapia2013;87:78–83.

[7]Sharma OP,Bhat TK.DPPH antioxidant assay revisited.Food Chem

2009;113:1202–5.

[8]Ivanov SA,Nomura K,Malfanov IL,Sklyar IV,Ptitsyn LR.Isolation of a

novel catechin from Bergenia rhizomes that has pronounced lipase-inhibiting and antioxidative properties.Fitoterapia2011;82:212–8. [9]Ye Y,Guo Y,Luo YT,Wang YF.Isolation and free radical scavenging

activities of a novel biflavonoid from the shells of Camellia oleifera Abel.

Fitoterapia2012;83:1585–9.

[10]Li X,Luo JG,Wang XB,Luo J,Wang JS,Kong LY.Phenolics from

Leontopodium leontopodioides inhibiting nitric oxide production.

Fitoterapia2012;83:883–7.

[11]Lemière G,Gao M,Groot AD,Dommisse R,Lepoivre J,Pieters L,et al.

3′,4-Di-O-methylcedrusin:synthesis,resolution and absolute configu-ration.J Chem Soc Perkin Trans I1995:1775–9.

[12]Matsuda N,Sato H,Yaoita Y,Kikuchi M.Isolation and absolute structures

of the neolignan glycosides with the enantiometric aglycones from the leaves of Viburnum awabuki K.KOCH.Chem Pharm Bull1996;44:1122–3.

[13]Spassov SL.Nuclear magnetic resonance spectra,configuration and

conformation of diastereomers:3-substituted2,3-diphenylpropanoic acids and their methyl esters.Tetrahedron1969;25:3631–8.

[14]Nascimento IR,Lopes LMX.2,3-Dihydrobenzofuran neolignans from

Aristolochia pubescens.Phytochemistry1999;52:345–50.

[15]Seidel V,Bailleul F,Waterman PG.Novel oligorhamnosides from the

stem bark of Cleistopholis glauca.J Nat Prod2000;63:6–11.

[16]Warashina T,Nagatani Y,Noro T.Further constituents from the bark of

Tabebuia impetiginosa.Phytochemistry2005;66:589–97.

[17]Pieters L,Dyck SV,Gao M,Bai R,Hamel E,Vlietinck A,et al.Synthesis

and biological evaluation of dihydrobenzofuran lignans and related compounds as potential antitumor agents that inhibit tubulin poly-merization.J Med Chem1999;42:5475–81.

[18]Apers S,Paper D,Bürgermeister J,Baronikova S,Dyck SV,Lemière G,

et al.Antiangiogenic activity of synthetic dihydrobenzofuran lignans.J Nat Prod2002;65:718–20.

[19]Tsai IL,Hsieh CF,Duh CY.Additional cytotoxic neolignans from Persea

obovatifolia.Phytochemistry1998;48:1371–5.

[20]Tsai IL,Chen JH,Duh CY,Chen IS.Cytotoxic neolignans from the stem

wood of Machilus obovatifolia.Planta Med2000;66:403–7.

[21]Tsai IL,Chen JH,Duh CY,Chen IS.Cytotoxic neolignans and butanolides

from Machilus obovatifolia.Planta Med2001;67:559–61.

[22]Sawasdee K,Chaowasku T,Lipipun V,Dufat TH,Michel S,Likhitwitayawuid

K.Neolignans from leaves of Miliusa mollis.Fitoterapia2013;85:49–56. [23]Miert SV,Dyck SV,Schmidt TJ,Brun R,Vlietinck A,Lemière G,et al.

Antileishmanial activity,cytotoxicity and QSAR analysis of synthetic dihydrobenzofuran lignans and related benzofurans.Bioorg Med Chem 2005;13:661–9.

[24]Apers S,Vlietinck A,Pieters L.Lignans and neolignans as lead compounds.

Phytochem Rev2003;2:201–17.

[25]Abdel-Mageed WM,Backheet EY,Khalifa AA,Ibraheim ZZ,Ross SA.

Antiparasitic antioxidant phenylpropanoids and iridoid glycosides from Tecoma mollis.Fitoterapia2012;83:500–7.

[26]Hamerski L,Bomm MD,Silva DHS,Young MCM,Furlan M,Eberlin MN,

et al.Phenylpropanoid glucosides from leaves of Coussarea hydrangeifolia (Rubiaceae).Phytochemistry2005;66:1927–32.

Table5

Free radical scavenging activity of compounds1–10.

Compound DPPH(IC50,μg/mL)ABTS(IC50,μg/mL)

1149.2013.22

2165.8915.45

3160.9810.37

4127.9013.02

5140.3110.58

6158.9711.62

7144.3013.78

8N20023.58

998.657.29

10137.0924.90

Vitamin E a9.969.30

a Vitamin E was used as positive control.223

X.-X.Huang et al./Fitoterapia91(2013)217–223

聚氨酯新材料项目职业病危害检测评价分析

聚氨酯新材料项目职业病危害检测评价分析 根据5中华人民共和国职业病防治法6和5建设项目职业病危害评价规范6等法律法规、卫生标准要求, 我们对某聚氨酯( PU )新材料工程项目职业病危害控制效果进行评价。现将评价结果报告如下。 1 评价内容、方法 1. 1 评价内容1 分析评价该项目生产或操作过程中产生的有毒有害物质、生产性噪声等职业病危害因素的种类、分布、浓度或强度及其对工人健康的影响。o 分析评价职业病防护措施实施情况, 包括总平面布置、生产工艺及设备布局、车间建筑设计卫生要求、卫生工程防护设施的控制效果、应急救援措施、个人防护设施, 辅助卫生用室设置、职业卫生管理措施等。 1. 2 评价方法按5建设项目职业病危害评价规范6 [ 1] 要求,用检查表和定量分级法评价该扩建项目中职业病危害因素对健康的影响、职业病防护措施实施情况[2] 。 1. 2. 1 职业卫生检测方法按5全国疾病预防控制机构工作规范6 [ 3] ( 2001年版)选择采样点。粉尘浓度检测用称重法( DS-21B 粉尘采样器), 噪声强度检测用直读方法( AWA6218B 噪声统计分析仪), TDI和二氯甲烷的检测用色谱分析法; CO2 用直读式仪器法。 1. 3 控制效果评价主要依据1 5中华人民共和国职业病防治法6 ( 2002- 05- 01); o 5建设项目职业病危害评价规范6 [ 1] ;. 5工业企业设计卫生标准6 [4] GBZ 1- 2002; . 5工作场所有害因素职业接触限值6 [ 5] GBZ 2- 2002; . 委托方提供的有关技术文件和资料。 2 结果分析 2. 1 项目工程分析及主要职业病危害因素 2. 1. 1 项目工程分析该新建项目主要产品为聚氨酯软泡塑料,生产工艺流程如下: 将原料罐的物料聚醚( PPG)、甲苯-2, 4二异氰酸酯(TDI)、三乙烯二胺、硅油、辛酸亚锡、水、色料、填料、阻燃剂、抗氧化剂、CO2 按一定量的配比经计量泵送入混合头。通过自控仪表装置将混合头的物料送入发泡头, 发泡头的压力为2. 5MPa, 通过发泡段输送带经走纸装置、红外线加热装置和真空抽气装置, 成形后由输送带送入切割输送带, 得成品, 发泡温度控制在20~ 24 c,再将成品经平切机分别切出所需成品。 2. 1. 2 主要职业病危害因素根据现场职业卫生调查, 该新建工程项目主要职业病危害因素有粉尘、TDI、二氯甲烷、CO2 及噪声等等。 2. 2 现场检测结果分析 2. 2. 1 作业场所粉尘对生产车间颜料粉碎机、混配槽等作业岗位粉尘浓度进行检测, 并按5生产性粉尘作业危害程度分级6 [ 6] ( GB 5817- 86)对粉尘危害程度进行分级, 结果见表1。

石墨电极的原料及制造工艺

石墨电极的原料及制造工艺 一、石墨电极的原料 1、石墨电极 是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。2、石墨电极的原料 生产石墨电极的原料有石油焦、针状焦和煤沥青 (1)石油焦 石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑多孔,主要元素为碳,灰分含量很低,一般在%以下。石油焦属于易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 石油焦按硫分的高低区分,可分为高硫焦(含硫%以上)、中硫焦(含硫%%)、和低硫焦(含硫%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 (2)针状焦 针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在以上),在偏光显微镜下可观察到各向异性的纤维状结构,因而称之为针状焦。 针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青原料生产的煤系针状焦。 (3)煤沥青 煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为-cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。 煤沥青在炭素工业中作为粘结剂和浸渍剂使用,其性能对炭素制品生产工艺和产品质量影响极大。粘结剂沥青一般使用软化点适中、结焦值高、β树脂高的中温或中温改质沥青,浸渍剂要使用软化点较低、 QI低、流变性能好的中温沥青。 二、石墨电极的制造工艺

浇注型聚氨酯..

浇注型聚氨酯 1概述 聚氨酯弹性体(PUE,PolyurethaneElastomer)是一类综合性能优良的高分子合成材料,包含有浇注型聚氨酯弹性体(CPU)、热塑型聚氨酯弹性体(TPU)和混炼型聚氨酯弹性体(MPU),微孔聚氨酯弹性体、聚氨酯防水材料、鞋底材料、铺装材料等。 CPU 在加工前成型前为粘性液体,故有“液体橡胶”之称,它是以液态低聚物多元醇、异氰酸酯和小分子扩链剂为原料,使用液体混合浇注的加工成型方法,经扩链交联反应得到固化交联的高弹性产物。CPU 成型工艺简单,形成的弹性体分子完整程度高,最大限度发挥了聚氨酯弹性体的特点,综合性能也优于 MPU 和 TPU,因而成为聚氨酯弹性体中产量最大、应用范围最广的品种。在许多工业领域中,CPU 正在逐步地取代传统金属和硫化橡胶,取得越来越广泛的应用。浇注法也是本课题制备聚氨酯弹性体采用的方法。MPU 加工的第一步是合成高粘度、储存稳定、可以混炼加工的聚氨酯生胶(线性分子,分子量为 20 000~30 000),然后在开炼机或密炼机中将其与硫化剂、促进剂、补强性填料等相混合,经成型最后硫化成具有弹性体物理化学性能的聚氨酯弹性体,可以看到,MPU 的加工方法和传统橡胶相似,因而是最早获得工业生产和应用的一种聚氨酯弹性体,但 MPU 的性能比 CPU 和 TPU 差,硬度一般在 ShoreA55~A80,工艺复杂,产量较小。TPU 常采用一步法生产,即将聚合物多元醇、二异氰酸酯和小分子扩链剂混合,在双螺杆反应器中反应,然后切粒和干燥,使用塑料挤出、注射成型的加工方法进行生产。TPU 的数均分子量较大,硬度较高。 聚氨酯弹性体是由相对分子质量大的聚醇软段和相对分子质量低的二异氰酸酯与二胺或二醇合成的硬段所构成的弹性体。软段提供弹性体的韧性、弹性和低温性能;硬段贡献弹性体的刚性、强度以及耐热性[1]。 聚氨酯弹性体具有优异的综合性能,因而广泛应用于各种领域。聚氨酯胶辊、胶轮、筛板、密封件等仍然是浇注型聚氨酯弹性体的重要产品,质量在提高、品种在增加、应用领域在扩大是其发展趋势。阻燃、耐热、阻尼、低摩擦型等聚氨酯弹性体具有广阔的市场空间和发展前景,已引起业界的高度重视。 聚氨酯弹性体分子中有大量的极性基团,同时氨基甲酸酯键可以使分子链之间形成较强的氢键交联。有效地防止了应力作用下分子链之间的滑移,使其不仅具有较高的力学性能、突出的耐磨性,还具有耐油、耐水、耐臭氧、耐辐射、耐低温、气密性 1

石墨电极在黄磷冶炼中的应用

石墨电极在黄磷冶炼中的应用 近年来我国的黄磷企业迅速扩增,其产品不仅遍及全国各地,而且已形成了大量出口的趋势。黄磷冶炼行业的崛起,为炭素厂家又增加了一大市场。仅我国西南地区年产黄磷制品就近百万吨,年耗石墨电极约3万t。因此,石墨电极如何适用于电炉冶炼黄磷的技术课题,已经提到电极生产厂家的面前。人造石墨电极具有良好的导电、导热、耐高温氧化、耐腐蚀性能,是黄磷冶炼炉理想的导电电极。石墨电极的生产工艺过程,一般是将石油焦、沥青焦等炭质原料经煅烧后,再加粘结剂沥青进行混捏、凉料后经挤压成型而形成生制品,生制品再经过1 300 ℃焙烧后成为半成品,半成品再经过2 300 ℃石墨化、机械加工而得到石墨电极成品。目前,炭素企业生产的石墨电极,其部分规格的理化指标列于表1。表1 石墨电极的主要理化指标 规格/mm 品种电阻率/μΩ.m 体积密度/kg/cm3 抗折强度/MPa 弹性模量/GPa 热膨胀系数/×10-6/℃灰分/% 本体接头本体接头本体接头本体接头本体接头 600 UHP 6.5 4.5 1.66 1.75 10.0 18.0 14.0 22.0 1.40 1.20 0.5 500 HP 7.0 6.5 1.60 1.70 9.8 14.0 12.0 14.0 2.20 2.40 0.3 500UHP NP 9.0 8.5 1.52 1.68 6.4 12.7 9.3 13.7 2.90 3.20 0.5 1 黄磷冶炼与石墨电极的消耗 工业上依黄磷冶炼中的热源不同,黄磷冶炼方法可分为电炉法和高炉法。目前我国的黄磷冶炼工业主要以电炉法为主,这种冶炼方法实收率高,产品纯度高。电炉法生产是将磷矿石、硅石和焦炭的混合料加入电炉内,由通过炉盖的石墨电极(作为导电极)将电能转变成热能,从而把混合料加热至熔融状态,使元素磷升华后再将含磷气体进行冷凝、分离和精制而得到元素磷。黄磷冶炼的工艺过程如图1。

《第三类体外诊断试剂产品技术要求附录编写要求》(征求意见稿)

第三类体外诊断试剂产品技术要求 附录编写要求(征求意见稿) 一、前言: 根据《体外诊断试剂注册管理办法》(国家食品药品监督管理总局令第5号,以下简称《办法》)第四章的规定,第三类体外诊断试剂(IVD)的产品技术要求中应当以附录形式明确主要原材料、生产工艺及半成品要求。《办法》第七章要求,已注册的体外诊断试剂,其注册证及附件载明内容发生变化,注册人应当向原注册部门申请注册变更,产品技术要求(包括附录)属于注册证的附件,申请人应对其中发生变化的内容提出注册变更申请。体外诊断试剂产品种类繁多,预期用途及方法学各异,即使是同类产品,不同的生产企业在原料的选择及制备、生产工艺及半成品检定方面也可能存在较大差异。因此,有必要制定相应的指导性文件,对技术要求附录的内容进行规范。 本文内容旨在指导注册申请人对第三类体外诊断试剂产品技术要求附录的准备及撰写,同时也为技术审评部门对注册申报资料的技术审评提供参考。本文是对第三类体外诊断试剂技术要求附录的一般要求,申请人应依据产品的具体特性确定其中内容是否适用,若不适用,在做出科学合理性解释的前提下,可以依据产品特性对具体内容进行修订。本文内容依据现行法律法规并参考《中国生物制品规程》(2000年版)制定,随着相关法规和标准体系的不断完善,本文内容也将适时进行修订或调整。

二、适用范围 本文针对不同方法学的第三类体外诊断试剂技术要求附录中的主要材料、生产工艺及半成品检定等内容进行规范,明确附录内容编写要求,适用于第三类体外诊断试剂注册、延续注册及注册变更申请。 三、基本要求 (一)主要材料 1.通用要求。 主要原材料来源一般有两种途径,生产企业自行制备或外购于其他供货商。申请人在编写产品技术要求附录时,针对不同来源的原材料须明确的内容也不相同,具体要求如下。 (1)企业外购原材料:生产企业应明确供货商名称,供货商应相对固定,不得随意更换。生产企业还应确定主要原材料的质量控制标准,下面对几种常见的原材料进行描述。 a、抗原:应明确抗原名称、生物学来源、供货商名称等信息,应对抗原技术指标的要求进行详述。 b、抗体:应描述抗体名称、克隆号、生物学来源,供货商名称及刺激免疫原等信息,应对抗体技术指标的要求进行详述。 c、引物、探针:应明确所有引物、探针的供货商、核酸序列及主要技术指标要求。 (2)企业自制原材料:生产企业应明确原材料的制备原理,摘要性描述制备过程,确定主要原材料的质量控制标准。 a、抗原:如为天然抗原,例如病原体检测试剂所用抗原应明确

新型聚氨酯固化剂的研究与发展

新型聚氨酯固化剂的研究与发展 张修景(菏泽学院化学与化工系,山东菏泽274015) 摘要:阐述了颜色低于铁钴比色计1号,游离TDI含量小于0.5%,贮存稳定性达2年以上的新型聚氨酯固化剂的生产工艺;确定了含羟基丙烯酸树脂与该固化剂的质量比为:m(含羟基丙烯酸树脂)∶m(新型聚氨酯固化剂)=10∶4~6;分析了碱性物质是导致聚氨酯固化剂成胶的原因;提出了保证聚氨酯固化剂低色值、低游离TDI含量和高贮存稳定性的方法。 关键词:新型聚氨酯固化剂;色值;游离TDI含量;稳定性 0.引言 国内科研单位及相关企业、院校对于聚氨酯固化剂的研究做了大量工作,朱吕民[1]介绍了色泽为8号(铁钴比色计)TDI加成物的制法;彭红为,等[2-3]报道的产品的游离TDI含量高达3.0%~5.0%,配制的涂料在施工过程中对人体伤害很大,环境污染严重,不仅远远高出世界卫生组织游离TDI含量≤0.5%的要求,而且很难达到我国《室内装饰装修材料溶剂型木器涂料中有害物质限量》GB18581—2001强制标准中≤0.7%的规定。国外通常采用薄膜蒸发法,如Bayer公司采用该技术产品的游离TDI含量<0.5%。国内相关研究[4-10]对于降低游离TDI做了大量积极工作,并提出了在聚氨酯生产中推行清洁生产的建议和措施,但实现工业化生产的报道很少。赵文斌,等[10]的产品通过热重分析(TG)显示,改性TDI三聚体的热稳定性有一定下降。为此,本文研究了颜色低于铁钴比色计1号,游离TDI<0.5%,贮存稳定性达2年以上的TDI-TMP加成物,找到了该固化剂与含羟基丙烯酸树脂的最佳配比,可赋于漆膜多种优良的性能。 1.实验部分 1.1原料 甲苯二异氰酸酯(TDI):80/20,国产;三羟甲基丙烷(TMP):美国产;乙酸丁酯:工业一级品,无水;二月桂酸二丁基锡、缩二脲:工业一级品;磷酸(85%)、三正丁基膦、对硝基苯甲酰氯:分析纯;氮气(99199%)。 1.2反应原理 TDI-TMP加成物主要是指3分子的甲苯二异氰酸酯(TDI)与1分子的三羟甲基丙烷(TMP)的加成物,反应如式1。 1.3方法 新型聚氨酯固化剂的中试配方见表1。

石墨电极

石墨电极 石墨电极(graphite electrode) 以石油焦、沥青焦为颗粒料,煤沥青为黏结剂,经过}昆捏、成型、焙烧、石墨化和机械加工而制成的一种耐高温的石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温为热源,使炉料熔化进行炼钢,其他一些电冶炼或电解设备也常使用石墨电极为导电材料。2000年全世界消耗石墨电极100万t左右,中国2000年消耗石墨电极25万t左右。利用石墨电极优良的物理化学性能,在其他工业部门中也有广泛的用途,以生产石墨电极为主要品种的炭素制品工业已经成为当代原材料工业的重要组成部门。 简史早在1810年汉佛莱?戴维(Humphry Davy)利用木炭制成通电后能产生电弧的炭质电极,开辟了使用炭素材料作为高温导电电极的广阔前景,1846年斯泰特(Stair)和爱德华(Edwards)用焦炭粉及蔗糖混合后加压成型,并在高温下焙烧从而制造出另一种炭质电极,再将这种炭质电极浸在浓糖水中以提高其体积密度,他们获得了生产这种电极的专利权。1877年美国克利夫兰(Cleveland)的勃洛希(C.F.Brush)和劳伦斯(https://www.wendangku.net/doc/186253665.html,wrence)采用煅烧过的石油焦研制低灰分的炭质电极获得成功。1899年普利查德(O.G.Pritchard)首先报道了用锡兰天然石墨为原料制造天然石墨电极的方法。1896年卡斯特纳(H.Y.Gastner)获得了使用电力将炭质电极直接通电加热到高温,而生产出比天然石墨电极使用性能更好的人造石墨电极的专利权。1897年美国金刚砂公司(Carborundum Co.)的艾奇逊(E.G.Acheson)在生产金刚砂的电阻炉中制造了第一批以石油焦为原料的人造石墨电极,产品规格为22mm×32m mX380mm,这种人造石墨电极当时用于电化学工业生产烧碱,在此基础上设计的“艾奇逊”石墨化炉将由石油焦生产的炭质电极及少量电阻料(冶

石墨电极的生产工艺流程和质量指标的及消耗原理知识讲解

石墨电极的生产工艺流程和质量指标的及 消耗原理

目录 一、石墨电极的原料及制造工艺 二、石墨电极的质量指标 三、电炉炼钢简介及石墨电极的消耗机理 石墨电极的原料及制造工艺 ●石墨电极是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混 捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。生产石墨电极的原料有石油焦、针状焦和煤沥青 ●石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑 多孔,主要元素为碳,灰分含量很低,一般在0.5%以下。石油焦属于 易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 ●石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟 焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 ●石油焦按硫分的高低区分,可分为高硫焦(含硫1.5%以上)、中 硫焦(含硫0.5%-1.5%)、和低硫焦(含硫0.5%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 ●针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石 墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在1.75以上),在偏光显微镜下可观察到各向异性的纤维状结 构,因而称之为针状焦。 ●针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具 有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 ●针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青 原料生产的煤系针状焦。 ●煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合 物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为1.25-1.35g/cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。

腰果酚应用研究进展..

12应用化学(职教本科1班彭思20120651 腰果酚应用研究进展 摘要:本文从官能团改性方面,综述了近几年国内外腰果酚衍生物的化学合成及在材料与精细化学品中的潜在应用,其中包括腰果酚酚羟基、腰果酚苯环及腰果酚侧链的改性。 关键词:腰果酚;腰果壳油;衍生物;应用;进展 前言:随着全球化石资源日趋减少,可再生资源的开发利用越来越引起人们的重视[1]。腰果壳液(CNSL)是腰果加工中的一种副产品,其含量约占腰果的25%-30%,世界年产量约50万吨,是一种价廉丰富的可再生资源[2-3]。CNSL 的最主要成分是腰果酚(cardanol)(1),含量可达90%。从结构来看,腰果酚属于苯酚的衍生物,在苯酚的间位被15个碳的直链(含0-3个碳碳双键)所取代(图1)(如无特殊说明,本文其它图中的R基团都代表腰果酚的侧链)。腰果酚可改性合成很多衍生物,包括功能小分子与聚合物,它们在涂料、摩擦材料、抗氧化剂、杀虫杀菌剂等方面都极具应用价值[4]。本文主要从腰果酚所含的三种官能团出发,总结通过酚羟基、苯环、不饱和侧链上的反应来制备各种有价值的腰果酚衍生物。 1利用腰果酚的羟基制备腰果酚衍生物 1.1腰果酚的酯类衍生物 腰果酚分子中含有活泼的酚羟基,可通过酯化、醚化反应制备相应的衍生物。例如张中云等[5]在-15℃左右使腰果酚与ClCN反应,生成腰果酚氰酸酯(2),2再与双酚A型氰酸酯(NCO-BPA-OCN)反应,制得了新型热固性树脂(图2)。由于树脂中引进了腰果酚所含的15个碳的柔性链,有效地提高了氰酸酯树脂的柔韧性,同时提高了其介电性能和耐吸水性能。

林金火课题组[6]用马来酸酐和腰果酚反应得到马来酸腰果酚单酯,然后与乙二醇进一步发生酯化反应 (图3),最后将酯化产物进行缩甲醛化反应,合成了同时具有软段结构(顺丁烯二酸乙二醇酯结构单元)和硬段结构(酚醛结构单元)的多羟基腰果酚醛树脂,该树脂具有优良的涂膜性能;所得的多羟基腰果酚醛树脂 也可与聚氨酯预聚体组成性能优良的双组分聚氨酯漆,可改善普通腰果漆的柔韧性和附着力。 为了制备新型抗氧化剂,Lomonaco等[7]用腰果酚和强心酚(cardol,腰果壳油的另一种成分)与二乙氧基硫代磷酰氯反应,制备了相应的硫代磷酸酯化合物(3)和(4)(图4)。将所制硫代磷酸酯在聚甲基丙烯酸甲酯中掺入1%的量,结果聚合物的热稳定性提高了很多。特别是化合物4中既含有硫代磷酸酯结构,又含有酚羟基结构,同时具有一类和二类抗氧化剂的功能,因此对材料的热稳定性提高最明显。

聚氨酯

聚氨酯基本理论知识 一. 聚氨酯(polyurethane)大分子主链上含有许多氨基甲酸酯基: 它由二(或多)异氰酸酯、二(或多)元醇与二(或多)元胺通过逐步聚合反应生成,除了氨基甲酸酯基(简称为氨酯基)外,大分子链上还往往含有 醚基 、酯基、脲基、 酰胺基 等基团,因此大分子间很容易生成氢键。 二.聚氨酯主要原料 N H C O O O C O O NH O NH NH O

1、异氰酸酯及其结构特征 一、结构特点 在分子结构中含有异氰酸酯基团(-N=C=O)的化合物,均称为异氰酸酯(isocyanate),其结构通式如下:R-(NCO)n式中R为烷基、芳基、脂环基等;n=1、2、3….整数。在聚氨酯材料合成中,主要使用n≥2的异氰酸酯化合物。 二、异氰酸酯的分类 (1)异氰酸酯基团数量 1.异氰酸酯 异氰酸酯(Isocyanate)是一大类含有异氰酸基(—N=C=O)的 有机化合物。异氰酸酯基由于其累积双键和碳原子两边的电负性很 大的氮氧原子作用,使之具有很高的反应活性,能与绝大多数含活 泼氢的物质发生反应。常用的异氰酸酯主要有芳香族类和脂肪类两种。⑴芳香族类的主要有:TDI(2, 4—甲苯二异氰酸酯或2, 6—甲 苯二异氰酸酯)、MDI(二苯基甲烷- 4, 4’二异氰酸酯)、NDI (1, 5—萘二异氰酸酯)、PAPI(多亚甲基多苯基多异氰酸酯)等;芳 香族多异氰酸酯合成的聚氨酯树脂户外耐候性差,易黄变和粉化, 属于“黄变性多异氰酸酯”,但价格低,来源方便,在我国应用广泛,如TDI常用于室内涂层用树脂;聚氨酯树脂中90%以上属于芳香族

多异氰酸酯。与芳基相连的异氰酸酯基对水和羟基的活性比脂肪基异氰酸酯基团更活泼。基于TDI 的聚氨酯由于高的苯环密度,其力学性能也较脂肪族多异氰酸酯的聚氨酯更为优异。以下是一些常用的产品。 (1)甲苯二异氰酸酯(tolulene diisocyanate ,TDI ) 甲苯二异氰酸酯是最早开发、应用最广、产量最大的二异氰酸酯单体;根据其两个异氰酸酯(—NCO )基团在苯环上的位置不同,可分为2,4-甲苯二异氰酸酯(2,4-TDI,简称2,4-体)和2,6-甲苯二异氰酸酯(2,6-TDI ,2,6-体)。 室温下,甲苯二异氰酸酯为无色或微黄色透明液体,具有强烈的刺激性气味。市场上有3种规格的甲苯二异氰酸酯出售,T-65为2,4-TDI 、2,6-TDI 两种异构体质量比为65%/35%的混合体;T-80为2,4-TDI 、2,6-TDI 两种异构体质量比为80%/20%的混合体,其产量最高、用量最大,性价比高,涂料工业常用该牌号产品;T-100为2,4-TDI 含量大于95%的产品,2,6-TDI 含量甚微,其价格较贵。2,4-TDI 其结构存在不对称性,由于-CH3的空间位阻效应,4位上的-NCO 的活性比2位上的-NCO 的活性大,50℃反应时相差约8倍,随着温度的提高,活性越来越靠近,到100 ℃时,二者即具有相同的活性。因此,设计聚合反应时,可以利用这一特点合成出结构规整的聚合物。TDI 的弱点是蒸汽压大,易挥发,毒性大,通常将其转变成齐聚物(oligomer )后使用;而且由其合成的聚氨酯制品存在比较严重的黄变性。黄变性的原因在于芳香族聚氨酯的光化学反应,生成芳胺,进而转化成了醌式或偶氮结构的生色团。2,4-TDI 凝固点6-20度,TDI 的含量越高凝固点。 NCO CH 3NC O O CH 3 OCN 2,6-TDI 2,4-TDI

碳素材料简介

碳素材料简介 炭和石墨材料是以碳元素为主的非金属固体材料,其中炭材料基本上由非石墨质碳组成的材料,而石墨材料则是基本上由石墨质碳组成的材料。为了简便起见,有时也把炭和石墨材料统称为炭素材料(或碳材料)。 主要分类: 碳素散热片是以不干胶的形色直接将碳素散热片贴在芯片表面,碳素散热片因其柔软可与所贴附对象十分紧密的粘合,另外因其高热传导性(树脂的5-15倍)、横向的高热传导性(铜的两倍),与传统使用中的导热硅胶、硅胶片、金属片等比较,高碳素散热片能将热量均匀扩散更大幅度的散热。 高热传导平面用散热片: 利用其平面的高热传导性(铜的两倍),可将热迅速传递到金属壳以及散热型材上,降低发热点的温度,从而达到更好的散热效果。 炭素制品按产品用途可分为石墨电极类、炭块类、石墨阳极类、炭电极类、糊类、电炭类、炭素纤维类、特种石墨类、石墨热交换器类等。石墨电极类根据允许使用电流密度大小,可分为普通功率石墨电极、高功率电极、超高功率电极。炭块按用途可分为高炉炭块、铝用炭块、电炉块等。炭素制品按加工深度高低可分为炭制品、石墨制品、炭纤维和石墨纤维等。炭素制品按原

料和生产工艺不同,可分为石墨制品、炭制品、炭素纤维、特种石墨制品等。炭素制品按其所含灰分大小,又可分为多灰制品和少灰制品(含灰分低于l%)。 我国炭素制品的国家技术标准和部颁技术标准是按产品不同的用途和不同的生产工艺过程进行分类的。这种分类方法,基本上反映了产品的不同用途和不同生产过程,也便于进行核算,因此其计算方法也采用这种分类标准。下面介绍炭素制品的分类及说明。 主要制品 碳素行业的上游企业主要有:1、无烟煤的煅烧企业;2、煤焦油加工生产企业;3、石油焦生产及煅烧企业。炭和石墨制品: (一)石墨电极类 主要以石油焦、针状焦为原料,煤沥青作结合剂,经煅烧、配料、混捏、压型、焙烧、石墨化、机加工而制成,是在电弧炉中以电弧形式释放电能对炉料进行加热熔化的导体,根据其质量指标高低,可分为普通功率、高功率和超高功率。石墨电极包括:(1)普通功率石墨电极。允许使用电流密度低于17A/厘米2的石墨电极,主要用于炼钢、炼硅、炼黄磷等的普通功率电炉。 (2)抗氧化涂层石墨电极。表面涂覆一层抗氧化保护层的石墨电极,形成既能导电又耐高温氧化的保护层,降低炼钢时的电极消耗。

(整理)体外诊断试剂分析性能评估系列指导原则.

附件: 《体外诊断试剂分析性能评估系列指导原则(征求意见稿)》

目录 1.体外诊断试剂分析性能评估指导原则――编制说明 2.体外诊断试剂分析性能评估指导原则——检测限 3.体外诊断试剂分析性能评估指导原则——线性范围 4.体外诊断试剂分析性能评估指导原则——可报告范围 5.体外诊断试剂分析性能评估指导原则——准确度(回收实验) 6.体外诊断试剂分析性能评估指导原则——准确度(方法学比对) 7.体外诊断试剂分析性能评估指导原则——精密度 8.体外诊断试剂分析性能评估指导原则——干扰实验 9.体外诊断试剂分析性能评估指导原则——稳定性 10.体外诊断试剂分析性能评估指导原则——参考值(参考区

间) 附件1: 体外诊断试剂分析性能评估指导原则 编制说明 《体外诊断试剂注册管理办法(试行)》颁布后,体外诊断试剂产品的注册过程中要求提供申报产品的分析性能评估资料,产品性能评估是产品研发、制定产品标准等过程的重要技术支持研究过程,并可能对产品的质量造成一定的影响。 目前国际上对体外诊断试剂的性能评估通常是以美国临床实验室标准化组织(Clinical and Laboratory Standards Institude以下称为CLSI)的相关标准为依据,也是美国FDA 推荐采用的评价标准,但我国还没有相关的标准及指导原则的要求。 为进一步明确体外诊断试剂分析性能评估的技术要求,

我中心组织有关专家起草产品分析性能评估指导原则,以明确体外诊断试剂产品性能评估的技术要求。体外诊断试剂产品性能评估包括检测限、线性范围、可报告范围、准确度(回收实验)、准确度(方法学比较)、精密度、干扰实验、稳定性、参考区间共九个项目。起草的主要依据CLSI发布的以下标准: 1. C28-A2: How to define and determine reference intervals in the clinical laboratory; Approved Guideline-Second Edition. 2. EP5-A: Evaluation of precision performance of clinical chemistry devices; Approved Guideline. 3. EP6-A: Evaluation of the linearity of quantitative measurement procedures; A Statistical Approach; Approved Guideline. 4. EP7-A: Interference testing in clinical chemistry; Approved Guideline. 5. EP9-A2: Method comparison and bias estimation using patient samples; Approved Guideline-Second Edition. 每项性能的主要研究方法均采用以上标准和国内实际采用的评价方法相结合的方法。 我中心对于专家起草的指导原则的初稿进行了适当的文字调整,之后将分析性能评估指导原则发给十位相关专业的专家征求意见。意见返回后我们对专家的回复意见进行了

石墨电极编程作业

目的: 为了完善公司的编程管理制度,电脑文档管理,编程方法,加工参数,程序单制做,各种类型的工件的刀路编写能有固定.统一的制度及方法。以达到公司各类型产品制做周期准时,确保生产编排运作正常,产品质量稳定,赢得客户信任。和提高编程技术人员编程技能之目的。 目录: 1.电脑管理制度。 2.图档管理及NC程序管理规范。 3.程序单编写归定。 4.一般类型电极编程技巧及实例。 5.超行程电极的编程方法。 6.喇叭网孔电极编程方法。 7.EROWA制具使用方法。 8.长条(小电极用)夹具组使用方法。 电脑管理制度 1.1 每台电脑责任人必须管理好所用电脑及其各组件之保护及保养,

以确保无遗失,无损坏,能够长期正常运作。 1.2 电脑外表面必须每天清理.主机箱每周清理一次。 1.3 电脑不得私自更改.添加及删除用户名和密码。 1.4 未经主管批准.不得安装工作必须使用的软件之外的任何电脑程序及软件.如:游戏.音乐.非本公司常用编程软件等。 1.5不得私自拷贝.删除公司电脑内的任何资料。 1.6电脑如有硬件方面故障要及时填写“电脑维修申请单”交由电脑 部处理。 图档管理及NC程序管理规范 电极编程技巧及实例 特别说明:骨位电极侧面光刀一般选用平底刀或平底R角刀,其加工步距一定要跟据骨位斜度设定加工下切步距.我公司归定为:从0到0.5度每刀下切0.22MM, 从0.5到1度每刀下切0.2MM, 从1到2度每刀下切0.17MM, 从2到5度每刀下切0.12---0.15MM,如斜度大于5度可跟据电极型壮选合理的刀具及步距(一般用球头刀)。 扫顶程序:(目的:铲掉高度方向多余材料)每个电极必须要有扫顶程序,编程用“偏置粗加工策略”分2层加工,每层下2MM,高度方

聚氨酯用新型抗氧化剂

聚氨酯用新型抗氧化剂 氨纶(聚氨酯弹性纤维)具有高断裂伸长(400%以上) 、低模量和高弹性回复率,目前已是一种广泛应用于各类纺织品、服装面料的功能性化纤,可以说在高端服装面料上“无氨不成布”。自1959年美国杜邦工业化生产以来,迄今全球已有60万吨产能,其中,中国占60%以上。目前,氨纶生产工艺最主要的是干法纺丝,少部分是熔融纺丝。干法纺丝的生产方法是将MDI 和PTMEG 预聚,再以二元胺扩链,最后封端,以上化学反应都是在DMAC 溶剂中进行的,反应完的氨纶原液经由高温纺丝甬道抽丝,去除并回收溶剂,而纺出的氨纶单丝则经过加捻,上油,熟化后成为氨纶产品。氨纶丝的耐热、耐UV 都不是很好,所以需要在生产中额外添加耐老化助剂(一般在聚合结束后添加),以达到用户的要求。因干法工艺的加工温度较高,要求添加剂具有很好的耐高温挥发,耐溶剂抽提的性能。 常用的氨纶耐老化助剂有: 紫外线吸收剂:通常使用苯并三唑类紫外线吸收剂234 化学名称:2-(2’-羟基-3’,5’-二[1,1-二甲基苯基]) –苯并三唑 化学结构式: 抗氧化剂:通常使用受阻酚类抗氧剂245,1790或GA-80 抗氧剂245: 化学名称:双[β(3-叔丁基-5-甲基-4-羟基苯基)丙酸]三甘醇酯 化学结构式: O O O O O O O H OH 抗氧剂1790: 化学名称:1,3,5-三(4-叔丁基-3-羟基-2,6-二甲基苄基)1,3,5-三嗪-2,4,6-(1H,3H,5H)-三酮 化学结构式: 抗氧剂GA-80: N N N O H N N N O O O OH O H OH

化学名称:3,9-双[1,1-二甲基-2-[(3-叔丁基-4-羟基-5-甲基苯基)丙酰氧基]乙基] -2,4,8,10-四氧杂螺[5.5]十一烷 化学结构式: 耐NOx 助剂:通常使用脲肼类添加剂CHN-150 化学名称:双(N,N-二甲基肼碳酰-4-氨基苯基)甲烷 化学结构式: N H N H O N H N N H N O 台湾双键化工是世界排名前列的耐老化添加剂生产商,目前,紫外线吸收剂234生产量亚洲最大,脲肼类添加剂生产量全球最大,同时也一直致力于开发特种新型的氨纶抗氧剂。 其实,近十多年来,氨纶用抗氧剂并没有改进和突破,基本上维持着美系(英威达)工艺主要使用1790,韩系(晓星)工艺和国内东洋纺工艺主要使用245,日清纺工艺使用GA-80的格局,究其原因还是国内的氨纶厂对于聚合工艺与耐候性能之间的关系了解不够,工艺和设备技术供应商相关技术开发开放程度不高以及添加剂供应商的新品研发能力不够有关。其实,近十年来,在聚氨酯领域的耐老化添加剂市场格局有了显著的改观,大量新型、高效的耐老化助剂推出已使得聚氨酯制品的耐老化、黄变的性能发生了很大改善。双键化工见证和领导了聚氨酯耐黄变市场的发展,在最容易黄变的聚氨酯海绵的耐候应用方面可以说无出其右,还是氨纶用紫外线吸收剂的最大供应商。对于氨纶抗氧剂的开发,双键化工也一直努力进取,近期推出了新型抗氧剂Chinox 30N 。 因专利审核的原因,双键化工还未公布Chinox 30N 的化学结构,但据介绍这是一种多官能基,大分子量的受阻酚抗氧剂,具有很好的耐热挥发性和耐迁移析出的效果,同时拥有很高的耐热氧化功效。添加了Chinox 30N 的氨纶丝或TPU 具有很好的耐热氧化性能和很好的耐室内氧化变色的特性。在氨纶生产中,抗氧剂的添加量通常需要至少0.5-1%以上,而使用Chinox 30N 基本在0.5%即可达到很好的耐热氧化和室内耐黄变的效果。 以和氨纶结构最接近的聚醚型TPU 作为参照物,抗氧剂Chinox 30N 比245具有更优的 测试方法 实验数据 废气烟熏 50℃×16小时 烘箱老化 70℃×168小时 室内放置 1周 室内放置 3周 黄色指数 △YI 30N 2.18 2.98 1.46 1.64 245 4.67 3.79 2.49 5.29 色差指数 △E 30N 2.87 3.05 2.12 2.26 245 3.44 3.45 2.42 3.30 实物照片:室内放置3周后TPU 试片的颜色变化:

2016年 北京市 高考化学 试卷及解析

2016年北京市高考化学试卷 一、选择题. 1.(3分)我国科技创新成果斐然,下列成果中获得诺贝尔奖的是()A.徐光宪建立稀土串级萃取理论 B.屠呦呦发现抗疟新药青蒿素 C.闵恩泽研发重油裂解催化剂 D.侯德榜联合制碱法 2.(3分)下列中草药煎制步骤中,属于过滤操作的是()A.冷水浸泡B.加热煎制C.箅渣取液D.灌装保存 A.A B.B C.C D.D 3.(3分)下列食品添加剂中,其使用目的与反应速率有关的是()A.抗氧化剂B.调味剂C.着色剂D.增稠剂 4.(3分)在一定条件下,甲苯可生成二甲苯混合物和苯.有关物质的沸点、熔点如表: 1

对二甲苯邻二甲苯间二甲苯苯 沸点/℃138******** 熔点/℃13﹣25﹣476 下列说法不正确的是() A.该反应属于取代反应 B.甲苯的沸点高于144℃ C.用蒸馏的方法可将苯从反应所得产物中首先分离出来 D.从二甲苯混合物中,用冷却结晶的方法可将对二甲苯分离出来 5.(3分)K2Cr2O7溶液中存在平衡:Cr2O72﹣(橙色)+H2O?2CrO42﹣(黄色)+2H+.用K2Cr2O7溶液进行下列实验: 结合实验,下列说法不正确的是() A.①中溶液橙色加深,③中溶液变黄 B.②中Cr2O72﹣被C2H5OH还原 C.对比②和④可知K2Cr2O7酸性溶液氧化性强 D.若向④中加入70%H2SO4溶液至过量,溶液变为橙色 2

6.(3分)在两份相同的Ba(OH)2溶液中,分别滴入物质的量浓度相等的H2SO4、NaHSO4溶液,其导电能力随滴入溶液体积变化的曲线如图所示.下列分析不正确的是() A.①代表滴加H2SO4溶液的变化曲线 B.b点,溶液中大量存在的离子是Na+、OH﹣ C.c点,两溶液中含有相同量的OH﹣ D.a、d两点对应的溶液均显中性 7.(3分)用石墨电极完成下列电解实验. 实验一实验二 装 置 现象a、d处试纸变蓝;b处变红,局部褪 色;c处无明显变化 两个石墨电极附近有气泡产生;n 处有气泡产生;… 下列对实验现象的解释或推测不合理的是() 3

2020年体外诊断试剂验收标准

体外诊断试剂验收标准 一、机构与人员(岗前培训合格上岗) 注:检验学相关专业,医学检验,化学检验,分析检验等 相关工作经验,医疗机构检验室,学校检验室,医疗器械生产企业检验室等 企业负责人(大专以上) 质管经理(主管检验师,检验学相关专业,≥3年相关工作经验) 质管员(质管经理兼任) 验收员(检验学中专以上学历) 储运经理 养护、 保管员(储运经理兼任,高中以上学历) 运输员(储运经理兼任,高中以上学历) 行政经理 财务(行政经理兼任) 信息管理(行政经理兼任) 业务经理 购销员(业务经理兼任,高中以上学历) 售后(检验学专业,中专以上学历)

二、制度文件 医疗器械(含体外诊断试剂)质量管理文件目录 制度 一、质量方针 二、质量责任 三、质量否决管理制度 四、质量信息管理制度 五、文件管理及控制管理制度 六、质量管理体系内部评审管理制度 七、质量管理培训及考核管理制度 八、卫生及人员健康管理制度 九、设施设备维护及验证和校准管理制度 十、首营企业和首营品种的审核管理制度 十一、供应商及采购商审核管理制度 十二、医疗器械(含体外诊断试剂)采购及销售管理制度 十三、医疗器械(含体外诊断试剂)收货及验收和贮存管理制度十四、医疗器械(含体外诊断试剂)出入库及运输管理制度 十五、医疗器械(含体外诊断试剂)有效期管理制度 十六、不合格医疗器械(含体外诊断试剂)管理制度

十七、医疗器械(含体外诊断试剂)退货及换货管理制度 十八、质量跟踪管理制度 十九、医疗器械(含体外诊断试剂)质量投诉、事故调查和处理报告管理制度 二十、客户信息反馈管理制度 二十一、医疗器械(含体外诊断试剂)不良事件监测和报告管理制度二十二、医疗器械(含体外诊断试剂)召回管理制度 二十三、医疗器械(含体外诊断试剂)电子监管及上报管理制度 二十四、计算机信息系统维护及使用管理制度 二十五、医疗器械(含体外诊断试剂)售后服务的管理制度 二十六、记录及凭证管理制度 程序 一、质量文件管理程序 二、医疗器械(含体外诊断试剂)购进程序 三、医疗器械(含体外诊断试剂)验收程序 四、医疗器械(含体外诊断试剂)储存程序 五、医疗器械(含体外诊断试剂)销售程序 六、医疗器械(含体外诊断试剂)出库及运输程序 七、医疗器械(含体外诊断试剂)售后服务程序

聚氨酯防水涂料在建筑领域的应用及发展前景

聚氨酯防水涂料在建筑领域的应用及发展前景 摘要:建筑防水涂料是一种重要的建筑材料。作为功能性建筑材料之一,防水涂料在我国建筑工程的投入每年呈递增趋势。近年来, 我国防水涂料的研制取得了很大进步, 并不断由溶剂型向乳液型和反应型, 由低档向高弹性、高耐久性、功能性方向发展,大力研究开发和推广高性能、高耐侯、环保型和多功能防水涂料, 重点发展环保型聚氨脂、丙烯酸、橡胶改性沥青和水泥基渗透结晶型防水涂料。其中聚氨酯防水涂料是一种性能优良,开发前景一片光明的新型防水材料,它在固化后形成无接缝、完整的涂膜防水层,从而提高了工程抗渗防水能力。 关键字:防水涂料, 1聚氨酯防水涂料性质 1.1成分 聚氨酯防水涂料是双组份反应型高分子涂膜防水材料,它是由预聚体甲料和固化液乙料按重量比1∶2.5均匀混合,在常温下经过彻底的缩合、聚合反应,形成的一种具有空间网状结构、富有弹性、无接缝、橡胶状的薄膜层,从而达到防水抗渗的目的。 聚氨酯防水涂料通常为液态双组分反应固化型涂料或单组分潮气固化型涂料。双组分聚氨酯防水涂料的甲组分是端羟基封闭的多异氰酸酯预聚体,乙组分是固化剂,施工时甲、乙两组分混合均匀,施工后在数小时内能够形成具有弹性的无缝防水涂膜。聚氨酯防水涂料可以常温施工,常温固化,操作简便,涂膜的黏结力强,具有良好的物理力学性能和优异的防水、耐酸、耐碱和耐老化性能,适用于屋面、地下室和其他结构部位的防水施工,特别适用于造型复杂的屋面防水工程。 1.2特点 聚氨酯防水涂料的防水涂层能在一定范围内适应基层的开裂,具有一定的弹性。尤其是针对各种易变形的部位,在特殊工艺施土后能形成柔性防水层。这种防水涂层具有良好的防水性能以及较高的延伸率,在耐腐蚀方面效果优良且粘结强度高。施工时,采用冷施土,工艺简便、维修方便。 2.聚氨酯防水涂料应用

相关文档
相关文档 最新文档