文档库 最新最全的文档下载
当前位置:文档库 › 74LS181实验报告

74LS181实验报告

74LS181实验报告
74LS181实验报告

学生实验报告

实验名称用Verilog HDL语句实现74LS181的功能

实验日期2013 年10月19号

学号

姓名

班级计算机科学与技术一班

一、实验目的与要求

1、了解运算器的组成结构;

2、掌握算术逻辑运算器的工作原理;

3、掌握简单运算器的数据传送通道

4、掌握用Verilog HDL实现简单运算器的设计

二、实验原理

74LS181的逻辑功能表

图中,S0到S3是四个控制端,用于选择进行何种运算。M用于控制ALU进行算术

运算还是逻辑运算。

当M=0时,M 对进位信号没有任何影响,Fi 值与操作数Ai ,Bi 以及地位向本位进位Cn+1有关,所以M=0时进行算术运算。操作数用补码表示,“加”只算术加,运算时考虑进位;“+”指逻辑加,不考虑进位;减法运算时,减法取反码运算后用加法器实现,结果输出为A 减B 减1在最末位产生一个强迫进位(加1),以得到A 减B 的结果。

当M=1时,封锁了各位的进位输出Cn+i=0,因此各位的运算结果Fi 仅与操作数Ai ,Bi 有关,此时进行逻辑运算。

三、实验内容与步骤

1.根据书85面的逻辑功能表编写Verilog HDL 语句,编译,仿真等步骤。

2.按照模式一电路图结构图设置对应的引脚参数。确认无误后,配置文件下载。

CLOCK9CLOCK5CLOCK2

CLOCK0

SPEAKER

扬声器

NO.1

PIO11-PIO8PIO15-PIO12PIO48

PIO49D15

D16HEX HEX

PIO32

PIO33

PIO34

PIO35

PIO36

PIO37

PIO38

PIO39

D1D2D3D4D5D6D7D8实验电路结构图

译码器

译码器

译码器

译码器

FPGA/CPLD 目标芯片1

2

3

4

5

6

7

8

PIO3-PIO0

PIO7-PIO4HEX HEX 键1

键2

键3

键4

键5

键6

键7

键8

PIO39-PIO32PIO31-PIO28

PIO27-PIO24PIO23-PIO20PIO19-PIO16

3.连接试验箱,开通电源,进行验证。

五、实验环境与设备

实验软件:Quartus ii 软件 实验设备:实验室试验箱 六、实验代码设计(含符号说明)

module NS74181(A,B,F,S,CN,CO,M); //端口名 input[3:0] A,B; input[3:0] S; input M,CN; output CO; output[3:0] F; reg[3:0] F;

reg[3:0] ta,tb; //用ta,tb 代替~A 和~B reg CO; //进位 always @(S) begin ta=~A; tb=~B; case(S) 'b0000: begin

if(M) F=ta;

else

begin

if(CN){CO,F}=A;

else {CO,F}=A+1;

end

end

'b0001:

begin

if(M) F=~(A|B);

else

begin

if(CN){CO,F}=A|B;

else {CO,F}=(A|B)+1;

end

end

'b0010:

begin

if(M) F=(ta)&B;

else

begin

if(CN){CO,F}=A|(tb);

else {CO,F}=A|(tb)+1;

end

end

'b0011:

begin

if(M) F=0;

else

begin

if(CN){CO,F}=-1;

else {CO,F}=0;

end

end

'b0100:

begin

if(M) F=~(A&B);

else

begin

if(CN){CO,F}=A+(A&(tb));

else {CO,F}=A+(A&(tb))+1;

end

end

'b0101:

begin

if(M) F=tb;

else

begin

if(CN){CO,F}=A&(tb)+(A|B);

else {CO,F}=A&(tb)+(A|B)+1;

end

end

'b0110:

begin

if(M) F=A^B;

else

begin

if(CN){CO,F}=(A-B)-1;

else {CO,F}=A-B;

end

end

'b0111:

begin

if(M) F=A&(tb);

else

begin

if(CN){CO,F}=(A&(tb))-1;

else {CO,F}=A&(tb);

end

end

'b1000:

begin

if(M) F=(ta)|B;

else

begin

if(CN){CO,F}=A+(A&B);

else {CO,F}=A+(A&B)+1;

end

end

'b1001:

begin

if(M) F=~(A^B);

else

begin

if(CN){CO,F}=A+B;

else {CO,F}=A+B+1;

end

end

'b1010:

begin

if(M) F=B;

else

begin

if(CN){CO,F}=(A|(tb))+(A&B);

else F=(A|(tb))+(A&B)+1;

end

end

'b1011:

begin

if(M) F=A&B;

else

begin

if(CN){CO,F}=(A&B)-1;

else {CO,F}=A&B;

end

end

'b1100:

begin

if(M) F =1;

else

begin

if(CN){CO,F}=A+A;

else {CO,F}=A+A+1;

end

end

'b1101:

begin

if(M) F=A|(tb);

else

begin

if(CN){CO,F}=(A|B)+A;

else {CO,F}=(A|B)+A+1;

end

end

'b1110:

begin

if(M) F=A|B;

else

begin

if(CN){CO,F}=(A|(tb))+A;

else {CO,F}=(A|(tb))+A+1;

end

end

'b1111:

begin

if(M) F=A;

else

begin

if(CN){CO,F}=A-1;

else {CO,F}=A;

end

end

endcase

end

endmodule

七、实验验证与测试

取S=0001,输入A=1,B=1,则当M为高电位时,输出结果为E,当M取低电位时,Cn=1时,输出为2,Cn=0时输出为3.

取S=0001,A=1,B=E,当M取低电位时,若Cn为0,输出结果为0,且有进位八,实验过程中出现的问题及处理情况(包括实验现象、原因分析、排故障的方法等)在本次实验当中首先出现的问题是不知如何锁定引脚,后来在同学的帮助下看懂了电路结构图,然后按照老师给的引脚对照表进行引脚锁定。

接着又发现有部分功能无法实现,在老师的提醒下,才发现然来是没有取反,以及没有打上括号,导致在优先级出现问题。

可能是软件的问题,是的A和B的取反功能无法实现,所以后来才会用ta和tb代替A和B的反。

至此,试验才算完成,在本次试验中,学习到了很多的知识,知道了按照哪种流程完成计算机组成原理实验,以及学会简单的使用Verilog HDL语句。做实验是一个需要很多耐性和细心的过程,切记不可急躁,有不懂的地方可以向老师和同学请教,有志者事竟成。

(整理)雷达原理实验指导书实验1-2

精品文档 雷达原理实验指导书 哈尔滨工程大学信息与通信工程学院 2013年3月

精品文档 目录 雷达原理实验课的任务和要求 (1) 雷达原理实验报告格式 (2) 实验一雷达信号波形分析实验 (3) 雷达信号波形分析实验报告 (5) 实验二. 数字式目标距离测量实验 (6) 数字式目标距离测量实验报告 (8)

雷达原理实验课的任务和要求 雷达原理实验课的任务是:使学生掌握雷达的基本工作原理和雷达测距、测角、测速的基本方法和过程;掌握雷达信号处理的基本要求,为了达到上述目的,要求学生做到: 1.做好实验前准备工作 预习是为做好实验奠定必要的基础,在实验前学生一定要认真阅读有关实验教材,明确实验目的、任务、有关原理、操作步骤及注意事项,做到心中有数。 2.严谨求实 实验时要求按照操作步骤进行,认真进行设计和分析,善于思考,学会运用所学理论知识解释实验结果,研究实验中出现的问题。 3.遵从实验教师的指导 要严格按照实验要求进行实验,如出现意外,要及时向老师汇报,以免发生意外事故。 4.注意安全 学生实验过程中,要熟悉实验室环境、严格遵守实验室安全守则。 5.仪器的使用 使用仪器前要事先检查仪器是否完好,使用时要严格按照操作步骤进行,如发现仪器有故障,应立即停止使用,报告老师及时处理,不得私自进行修理。 6.实验报告 实验报告包括下列内容:实验名称、实验日期、实验目的、简要原理、主要实验步骤的简要描述、实验数据、计算和分析结果,问题和讨论等。

雷达原理实验报告格式 一、封皮的填写: (1)实验课程名称:雷达原理 (2)实验名称:按顺序填写 (3)年月日: 二、纸张要求:统一采用A4大小纸张,左侧装订,装订顺序与实验顺序一致。 三、书写要求: (1)报告除实验图像必须打印外,其余可手写。 (2)实验结果图位于实验结果与分析部分,图像打印于纸张上部,下部空白处写实验分析。 (3)报告中图要有图序及名称,表要有表序及名称,每个实验的图序和表序单独标号(例如图1.1脉冲信号仿真波形;表1-1 几种信号的。。。)。 不合格者扣除相应分数。 (4)每个实验均需另起一页书写。 四、关于雷同报告:报告上交后,如有雷同,则课程考核以不及格处理。(每个实验均已列 出参数可选范围,不能出现两人所有参数相同情况)

激光雷达探测气溶胶实验报告

南京信息工程大学激光雷达探测气溶胶实验报告 姓名:周标 学号:20121359069 学院:物理与光电工程学院 专业:光信息科学与技术 二〇一四年十二月十二日

摘要:大气气溶胶影响着天气和气候的变化,通过用激光雷达对水平大气中的气溶胶进行连续观测,得到大气气溶胶浓度的高度分布数据,用Klett法反演和斜率法得到了气溶胶消光系数数值并利用MATLAB程序用计算机对所得实验数据快速方便地直接得出出测量结果和图示。 关键词:气溶胶;激光雷达;探测;Klett反演算法;斜率法;消光系数;MATLAB 前言 大气气溶胶是指悬浮在大气中直径为0.001—100μm的液体或固体微粒体系。对流层气溶胶的形成与地球表面的生态环境和人类活动直接相关。地面扬尘、沙尘暴、林火烟灰、花粉与种子、海水溅沫等是对流层气溶胶的自然源,人工源则是由工业、交通、农业、建筑等直接向对流层中排放的气溶胶粒子。同时,对流层大气中许多气态污染物的最终归宿是形成气溶胶粒子,如二氧化硫、氮氧化物、碳氢化合物等通过气粒转化生成气溶胶粒子。这些气溶胶粒子通过吸收和散射太阳辐射以及地球的长波辐射而影响着地球大气系统的辐射收支,它作为凝结核参与云的形成,从而对局地、区域乃至全球的气候有着重要的影响。对流层气溶胶粒子对激光的吸收和散射作用使它成为激光大气传输的重要消光因子。 激光雷达为大气气溶胶探测研究提供了有力的工具。数十年来,激光技术的不断发展为激光雷达大气气溶胶探测提供了所需要的光源。另一方面,信号探测和数据采集及其控制技术的发展使激光雷达在大气气溶胶的探测高度、空间分辨率、时间上的连续监测和测量精度等方面具有全面的优势,是其它探测手段不能比拟的。 本文介绍该激光雷达的总体结构、技术参数及其工作原理,同时给出了大气气溶胶的垂直消光系数廓线以及典型测量结果的分析和讨论。 1,研究的目的 大气中,尘埃、烟雾、云团等气溶胶粒子对大气的化学过程、辐射平衡、气候变化乃至人们的日常生活都有着非常重要的影响。因此,对大气气溶胶粒子的光学特性的探测研究一直是大气科学、气象探测和环境保护的一项重要任务。 近年来,中国经济的飞速发展已受到全世界的关注。然而,这种快速的经济增长也伴随着社会体系的变革,高度的工业化和城市化造成许多气溶胶粒子和温室气体被排放到大气,带来了一系列的环境问题,对可持续发展有着严重的负面影响,同时对人们的日常生活和身体健康存在着严重的威胁。如何获取环境变化的第一手资料,准确地提供大气物性及其变化

1--《地质雷达》实验报告(封面+报告模板) (1)

地质雷达实验报告 成绩: 系别:资源勘查与土木工程系 专业班级: 姓名: 学号: 指导教师: 年月日

实验项目名称:地质雷达的操作及应用 同组学生姓名: 实验地点:结构检测实验室91110 实验日期:年月日 1.1 实验目的 (1)了解地质雷达基本构造、性能和工作原理。 (2)掌握地质雷达的操作步骤和使用方法。 1.2 实验原理及方法 通过发射天线向地下发射宽频带高频电磁波。在传播过程中,当遇到存在电性差异的地下介质或目标体时,雷达波会发生反射返回地面,并由接收天线接收,并以波或图像的形式,存储在电脑中。 1.3 仪器设备 OKO-2俄罗斯地质雷达。

1.4 实验步骤 (1)连好数据线; (2)打开主机和天线上的电源开关; (3)运行采集软件; (4)设置参数; (5)数据采集并保存数据; (6)关机、拆线。 1.5 数据处理 主要包括两个方面:即增益和滤波。增益的目的是放大深部信号的增幅,使较弱的信号能被识别,滤波的种类很多,一般包括中值滤波、平均值滤波、带通滤波和巴特沃斯带通滤波等等。 1.6 注意事项 在运用雷达过程中,须掌握雷达工作的三个重要参数:环境电导率、介电常数和探测频率。 环境电导率σ是表征介质导电能力的参数,它决定了电磁波在介质中的穿透深度,其穿透深度随电导率的增加而减小,当介质的电导率σ>10-2S/m时,电磁波衰减极大,难于传播,雷达方法不宜使用,如:湿粘土、湿页岩、海水、海水冰、湿沃土、金属物等。 介电常数是影响应用效果的另一个重要因素,它决定了高频电磁波在介质中的传播速度,并且反射信号的强弱也取决于介电常数的差异。电磁波在介质中的传播速度可采用下式近似考虑:

雷达技术实验报告

雷达技术实验报告 雷达技术实验报告 专业班级: 姓名: 学号:

一、实验内容及步骤 1.产生仿真发射信号:雷达发射调频脉冲信号,IQ两路; 2.观察信号的波形,及在时域和频域的包络、相位; 3.产生回波数据:设目标距离为R=0、5000m; 4.建立匹配滤波器,对回波进行匹配滤波; 5.分析滤波之后的结果。 二、实验环境 matlab 三、实验参数 脉冲宽度 T=10e-6; 信号带宽 B=30e6; 调频率γ=B/T; 采样频率 Fs=2*B; 采样周期 Ts=1/Fs; 采样点数 N=T/Ts; 匹配滤波器h(t)=S t*(-t) 时域卷积conv ,频域相乘fft, t=linspace(T1,T2,N); 四、实验原理 1、匹配滤波器原理: 在输入为确知加白噪声的情况下,所得输出信噪比最大的线性滤波器就是匹配滤波器,设一线性滤波器的输入信号为) x: (t t x+ = t s n )( )( )(t 其中:)(t s为确知信号,)(t n为均值为零的平稳白噪声,其功率谱密度为 No。 2/

设线性滤波器系统的冲击响应为)(t h ,其频率响应为)(ωH ,其输出响应: )()()(t n t s t y o o += 输入信号能量: ∞<=?∞ ∞-dt t s s E )()(2 输入、输出信号频谱函数: dt e t s S t j ?∞ ∞--=ωω)()( )()()(ωωωS H S o = ωωωπωω d e S H t s t j o ?∞ -= )()(21)( 输出噪声的平均功率: ωωωπωωπd P H d P t n E n n o o ??∞∞ -∞∞-== )()(21)(21)]([22 ) ()()(21 )()(21 2 2 ωωωπ ωωπ ω ωd P H d e S H S N R n t j o o ? ? ∞ ∞ -∞ ∞-= 利用Schwarz 不等式得: ωωωπd P S S N R n o ? ∞ ∞ -≤) () (21 2 上式取等号时,滤波器输出功率信噪比o SNR 最大取等号条件: o t j n e P S H ωωωαω-=) ()()(* 当滤波器输入功率谱密度是2/)(o n N P =ω的白噪声时,MF 的系统函数为: ,)()(*o t j e kS H ωωω-=o N k α2= k 为常数1,)(*ωS 为输入函数频谱的复共轭,)()(*ωω-=S S ,也是滤波器的传输函数 )(ωH 。

雷达原理实验汇总

实验报告 哈尔滨工程大学 实验课程名称:雷达原理实验 姓名:班级:学号: 注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和 2、平均成绩取各项实验平均成绩 3、折合成绩按照教学大纲要求的百分比进行折合 2012年 5 月

雷达信号波形分析实验报告 2012年5月10日班级姓名评分 一、实验目的要求 1. 了解雷达常用信号的形式。 2. 学会用仿真软件分析信号的特性。 3.了解雷达常用信号的频谱特点和模糊函数。 二、实验内容 本实验是在PC机上利用MATLAB仿真软件进行常用雷达信号的仿真、设计。针对所设计的雷达信号分析其频谱特性和模糊函数。 三、实验参数设置 1、简单脉冲调制信号: 载频范围:0.75MHz 脉冲重复周期:200us 脉冲宽度:10us 幅度:1V 2、线性调频信号: 载频范围:90MHz 脉冲重复周期:250us 脉冲宽度:25us 信号带宽:16MHz 幅度:1V 四、实验仿真波形 简单脉冲调制信号实验结果:

图1.1简单脉冲调制信号(正弦)仿真结果将正弦变换成余弦后: 图1.2简单脉冲调制信号(余弦)仿真结果

线性调频信号实验结果: 图1.3线性调频信号仿真结果 五、实验成果分析 1、使用x2=exp(i*2*pi*f0*t);信号进行调制,从频谱图可以看出,脉冲经调制后只有和一个峰值,为一单频信号,而使用x2=cos(2*pi*f0*t);信号进行调制,则出现两个峰值,为两个频率分量。 2、在进行线性调频时,要计算出频率变化的斜率,然后进行调频计算。由仿真图可以看出仅有16MHZ的频带。 六、教师评语 教师签字

岩层实验报告

中国矿业大学矿业工程学院实验报告

《岩层控制》实验报告 实验一矿山岩体力学实验 注:包括岩石抗拉、抗压、抗剪三个内容。 岩石的抗拉强度试验 一、实验目的与要求 岩石在单轴拉伸载荷作用下达到破坏时所能承受的最大拉应力称为岩石的单轴抗拉强度。由于进行直接拉伸实验在准备试件方面要花费大量的人力、物力和时间,因此采用间接拉伸实验方法来测试岩石的抗拉强度。劈裂法是最基本的方法。 二、实验仪器 (1)钻石机或车床,锯石机,磨石机或磨床。 (2)劈裂法实验夹具,或直径2.0mm钢丝数根。 (3)游标卡尺(精度0.02mm),直角尺,水平检测台,百分表架和百分表。(4)材料实验机。 三、实验原理 图3-1显示的是在压应力作用下,沿圆盘直径y-y的应力分布图。在圆盘边缘处,沿y-y方向(σy)和垂直y-y(σx)方向均为压应力,而离开边缘后,沿y-y方向仍为压应力,但应力值比边缘处显著减少,并趋于平均化;垂直y-y方向变成拉应力。并在沿y-y的很长一段距离上呈均匀分布状态。虽然拉应力的值比压应力值低很多,但由于岩石的抗拉强度很低,所以试件还是由于x方向的拉应力而导致试件沿直径的劈裂破坏,破坏是从直径中心开始,然后向两端发展,反映了岩石的抗拉强度比抗压强度要低得多的事实。 χy r/R 0.5 -0.5x σyσx y 压缩拉伸应力值/MPa 160120804040 图3-1 劈裂实验应力分布示意图四、实验内容

(1) 了解试件的加工机具、检测机具,规程对精度的要求及检测方法; (2) 学会材料实验机的操作方法及拉压夹具的使用方法; (3) 学会间接测试岩石抗压强度及数据处理方法。 五、 实验步骤 (1) 测定前核对岩石名称和岩样编号,对试件颜色、颗粒、层理、裂隙、风 化程度、含水状态机加工过程中出现的问题进行描述,并填入记录表1-1内。 (2) 检查试件加工精度,测量试件尺寸,填入记录表内。 (3) 选择材料实验机度盘时,一般应满足下式:0.2 P 0< P max <0.8P 0 (4) 通过试件直径两端,沿轴线方向画两条互相平行的线作为加载基线。把试件放入夹具内,夹具上、下刀刃对准加载基线,用两侧夹持螺钉固定好试件,或用两根直径2.0mm 的钢丝放在加载基线上,钢丝间用橡皮筋固定。 (5) 把夹好试件的夹具或夹好钢丝的试件放入材料实验机的上、下承压板之间,使试件的中心线和材料实验机的中心线在一条直线上。 (6)开动材料实验机,施加数百牛载荷后,松开夹具两侧夹持螺钉,然后以0.03~0.05MPa/s 的速度加载,直至试件破坏。 (7)记录破坏载荷,对破坏后的试件进行摄影或描述。 六、 注意事项 (1) 记录试件的完整状态, (2) 选择合适的材料实验机及合适的实验机度盘值, (3) 夹具对试件的加载方向要与试件的轴线在一平面上, (4) 选择合适的加载速率。 七、 数据处理 表1-1 计算试件单向抗拉强度: R 1= 102?DL P π=5.98MPa 式中 R 1—试件的抗拉强度,MPa ; P —试件破坏载荷,kN; D —试件直径,cm; L —试件厚度,cm 。 八、误差分析 (1)试件自身各方面的影响; (2)系统误差;

现代雷达信号检测及处理

现代雷达信号检测报告

现代雷达信号匹配滤波器报告 一 报告的目的 1.学习匹配滤波器原理并加深理解 2.初步掌握匹配滤波器的实现方法 3.不同信噪比情况下实现匹配滤波器检测 二 报告的原理 匹配滤波器是白噪声下对已知信号的最优线性处理器,下面从实信号的角度 来说明匹配滤波器的形式。一个观测信号)(t r 是信号与干扰之和,或是单纯的干扰)(t n ,即 ? ??+=)()()()(0t n t n t u a t r (1) 匹配滤波器是白噪声下对已知信号的最优线性处理器,对线性处理采用最大信噪比准则。以)(t h 代表线性系统的脉冲响应,当输入为(1)所示时,根据线性系统理论,滤波器的输出为 ?∞ +=-=0)()()()()(t t x d h t r t y ?τττ (2) 其中 ?∞ -=0 0)()()(τττd h t u a t x , ?∞ -=0 )()()(τττ?d h t n t (3) 在任意时刻,输出噪声成分的平均功率正比于 [ ] ??∞∞=?? ? ???-=0 20202 |)(|2)()(|)(|τττττ?d h N d h t n E t E (4) 另一方面,假定滤波器输出的信号成分在0t t =时刻形成了一个峰值,输出信 号成分的峰值功率正比于 2 02 2 0)()()(? ∞ -=τττd h t u a t x (5) 滤波器的输出信噪比用ρ表示,则

[ ] ?? ∞ ∞ -= = 2 02 02 2 20|)(|2)()(| )(|) (τ ττ ττ?ρd h N d h t u a t E t x (6) 寻求)(τh 使得ρ达到最大,可以用Schwartz 不等式的方法来求解.根据Schwartz 不等式,有 ??? ∞ ∞ ∞ -≤-0 20 2 02 0|)(||)(|)()(τττττ ττd h d t u d h t u (7) 且等号只在 )()()(0*τττ-==t cu h h m (8) 时成立。由式(1)可知匹配滤波器的脉冲响应由待匹配的信号唯一确定,并且是该信号的共轭镜像。在0=t t 时刻,输出信噪比SNR 达到最大。 在频域方面,设信号的频谱为 ,根据傅里叶变换性质可知,匹配滤 波器的频率特性为 (9) 由式(9)可知除去复常数 c 和线性相位因子 之外,匹配滤波器的频率 特性恰好是输入信号频谱的复共轭。式 (2)可以写出如下形式: (10) (11) 匹配滤波器的幅频特性与输入信号的幅频特性一致,相频特性与信号的相位谱互补。匹配滤波器的作用之一是:对输入信号中较强的频率成分给予较大的加权,对较弱的频率成分给予较小的加权,这显然是从具有均匀功率谱的白噪声中过滤出信号的一种最有效的加权方式;式(11)说明不管输入信号有怎样复杂的非线性相位谱,经过匹配滤波器之后,这种非线性相位都被补偿掉了,输出信号仅保留保留线性相位谱。这意味着输出信号的各个频率分量在时刻达到同相位,同相相加形成输出信号的峰值,其他时刻做不到同相相加,输出低于峰值。 匹配滤波器的传输特性 ,当然还可用它的冲激响应 来表示,这时有:

雷达测速试验报告

雷达测距实验报告 1. 实验目的和任务 1.1 实验目的 本次实验目的是掌握雷达带宽同目标距离分辨率的关系,通过演示实验了解雷达测距基本原理,通过实际操作掌握相关仪器仪表使用方法,了解雷达系统信号测量目标距离的软硬件条件及具体实现方法。 1.2 实验任务 本次实验任务如下: (1)搭建实验环境; (2)获得发射信号作为匹配滤波的参考信号; (3)获得多个地面角反射器的回波数据,测量其各自位置,评估正确性; (4)获得无地面角发射器的回波数据,与(3)形成对比,并进行分析。 2. 实验场地和设备 2.1 实验场地和环境条件 本次实验计划在雁栖湖西校区操场进行,环境温度25℃,湿度40%。 实验场地如上图所示,除角反射器以外,地面上还有足球门、石块以及操场上运动的人等比较明显的目标。

2.2 实验设备 实验所需的主要仪器设备如下: (1) 矢量信号源SMBV100A ; (2) 信号分析仪FSV4; (3) S 波段标准喇叭天线; (4) 角反射器 (5) 笔记本电脑 2.3 设备安装与连接 设备连接关系图如下: 雷达波形文件雷达回波数据 时钟同步 计算机终端 SMBV100A 矢量信号源 FSV4信号分析仪 角反射器 交换机 图1 实验设备连接示意图 其中:蓝色连接线表示射频电缆,灰色连接线表示网线。 3. 实验步骤 3.1 实验条件验证 检查仪器工作是否正常,实验环境是否合适。 3.2 获取参考信号 1. 调节信号源参数,生成线性调频信号,作为匹配滤波的参考信号,然后通过射频电缆将信号源与频谱仪相连,利用频谱仪的A/D 对线性调频信号采样,并通过网线将数据传输给计算机,并保存为“b1.dat ”。参考信号的主要参数如下所示:

dsp实验报告

DSP 实验课大作业实验报告 题目:在DSP 上实现线性调频信号的脉冲压缩,动目标显示和动目标检测 (一)实验目的: (1)了解线性调频信号的脉冲压缩、动目标显示和动目标检测的原理,及其DSP 实现的整个流程; (2)掌握C 语言与汇编语言混合编程的基本方法。 (3)使用MATLAB 进行性能仿真,并将DSP 的处理结果与MATLAB 的仿真结果进行比较。 (二)实验内容: 1. MATLAB 仿真 设定信号带宽为B= 62*10,脉宽-6=42.0*10τ,采样频率为62*10Fs =,脉冲重复周期为-4T=2.4*10,用MATLAB 产生16个脉冲的线性调频信号,每个脉冲包含三个目标,速度和距离如下表: 对回波信号进行脉冲压缩,MTI ,MTD 。并且将回波数据和频域脉压系数保存供DSP 使用。 2.DSP 实现 在Visual Dsp 中,经MATLAB 保存的回波数据和脉压系数进行脉压,MTI 和MTD 。 (三)实验原理 1.脉冲压缩原理 在雷达系统中,人们一直希望提高雷达的距离分辨力,而距离分辨力定义为:22c c R B τ?==。其中,τ表示脉冲时宽,B 表示脉冲带宽。从上式中我们可以看

出高的雷达分辨率要求时宽τ小,而要求带宽B大。但是时宽τ越小雷达的平均发射功率就会很小,这样就大大降低了雷达的作用距离。因此雷达作用距离和雷达分辨力这两个重要的指标变得矛盾起来。然而通过脉冲压缩技术就可以解决这个矛盾。脉冲压缩技术能够保持雷达拥有较高平均发射功率的同时获得良好的距离分辨力。 在本实验中,雷达发射波形采用线性调频脉冲信号(LFM),其中频率与时延成正比关系,因此我们就可以将信号通过一个滤波器,该滤波器满足频率与时延成反比关系。那么输入信号的低频分量就会得到一个较大的时延,而输入信号的高频分量就会得到一个较小的时延,中频分量就会按比例获得相应的时延,信号就被压缩成脉冲宽度为1/B的窄脉冲。 从以上原理我们可以看出,通过使用一个与输入信号时延频率特性规律相反的滤波器我们可以实现脉冲压缩,即该滤波器的相频特性与发射信号时共轭匹配的。所以说脉冲压缩滤波器就是一个匹配滤波器。从而我们可以在时域和频域两个方向进行脉冲压缩。 滤波器的输出() h n= y n为输入信号() x n与匹配滤波器的系统函数() *(1) y n x n s N n =--。转换到频域就是--卷积的结果:* ()()*(1) s N n =。因此我们可以将输入信号和系统函数分别转化到频域:Y k X k H k ()()( Y k,然后将结果再转化到时域, h n H k →,进行频域相乘得() ()() x t X k →,()() 就可以得到滤波器输出:()() →。我们可用FFT和IFFT来实现作用域的 Y k y n 转换。原理图如下: 图1.脉冲压缩原理框图 2.MTI原理 动目标显示(MTI)技术是用来抑制各种杂波,来实现检测或者显示运动目标的技术。利用它可以抑制固定目标的信号,显示运动目标的信号。以线性调频

地质雷达实验报告封面报告

地质雷达实验报告封面 报告 Document number:PBGCG-0857-BTDO-0089-PTT1998

地质雷达实验报告 成绩: 系别:资源勘查与土木工程系 专业班级: 姓名: 学号: 指导教师: 年月日

实验项目名称:地质雷达的操作及应用 同组学生姓名: 实验地点:结构检测实验室91110 实验日期:年月日 实验目的 (1)了解地质雷达基本构造、性能和工作原理。 (2)掌握地质雷达的操作步骤和使用方法。 实验原理及方法 通过发射天线向地下发射宽频带高频电磁波。在传播过程中,当遇到存在电性差异的地下介质或目标体时,雷达波会发生反射返回地面,并由接收天线接收,并以波或图像的形式,存储在电脑中。 仪器设备 OKO-2俄罗斯地质雷达。

实验步骤 (1)连好数据线; (2)打开主机和天线上的电源开关; (3)运行采集软件; (4)设置参数; (5)数据采集并保存数据; (6)关机、拆线。 数据处理 主要包括两个方面:即增益和滤波。增益的目的是放大深部信号的增幅,使较弱的信号能被识别,滤波的种类很多,一般包括中值滤波、平均值滤波、带通滤波和巴特沃斯带通滤波等等。 注意事项 在运用雷达过程中,须掌握雷达工作的三个重要参数:环境电导率、介电常数和探测频率。 环境电导率σ是表征介质导电能力的参数,它决定了电磁波在介质中的穿透深度,其穿透深度随电导率的增加而减小,当介质的电导率σ>10-2S/m时,电磁波衰减极大,难于传播,雷达方法不宜使用,如:湿粘土、湿页岩、海水、海水冰、湿沃土、金属物等。

介电常数是影响应用效果的另一个重要因素,它决定了高频电磁波在介质中的传播速度,并且反射信号的强弱也取决于介电常数的差异。电磁波在介质中的传播速度可采用下式近似考虑: r C V ε≈ 式中: C ─ 电磁波在真空中的传播速度,C =ns (光速), r ε─ 介质的相对介电常数。 介质的介电常数主要受介质的含水量以及孔隙率的影响,相对介电常数与水含量的关系曲线,相对介电常数的范围为:1(空气)~81(水),多数干燥的地下介质,其相对介电常数值均小于10。 探测频率不但是制约探测深度的一个关键因素,同时也决定了探测的分辨率;探测频率越高,探测深度越浅,探测的垂直分辨率和水平分辨率越高。高频 电磁波在传播过程中发生衰减,其衰减的程度随电磁波频率的增加而增加,这也是造成探测频率越高,探测深度越浅的原因。因此,在实际工作时,必须根据目标体的探测深度选用合理的探测频率。 附图(不少于6张图片)

LFM脉冲压缩雷达标准实验报告

、实验室名称: 电子信息工程专业学位研究生实践基地 二、实验项目名称:LFM 脉冲压缩雷达的设计与验证 三、实验学时:20 四、实验原理: 1、LFM 脉冲信号和脉冲压缩处理 脉冲雷达是通过测量目标回波延迟时间来测量距离的,距离分辨力直接由脉 冲带宽确定。窄脉冲具有大带宽和窄时宽,可以得到高距离分辨力,但是,采用 窄脉冲实现远作用距离需要有高峰值功率, 在高频时,由于波导尺寸小,会对峰 值功率有限制,以避免传输线被高电压击穿,该功率限制决定了窄脉冲雷达有限 的作用距离。现代雷达采用兼具大时宽和大带宽的信号来保证作用距离和距离分 辨力,大时宽脉冲增加了雷达发射能量,实现远作用距离,另一方面,宽脉冲信 号通过脉冲压缩滤波器后变换成窄脉冲来获得高距离分辨力。 t t S (t ) Arect — exp j — T 其中的矩形包络为 1 2 1 2 2 B/T D BT 1时,LFM 脉冲信号的频域形式可近似表示为 进行脉冲压缩时的 LFM 脉冲信号为基带信号,其时域形式可表示为 式中的 为调频斜率,与调频带宽和时宽的关系如下式 时带积

2 / ] 巴f 电 2 2 其他 脉冲压缩滤波器实质上就是匹配滤波器,匹配滤波器是以输出最大信噪比为 准则设计出来的最佳线性滤波器。假设系统输入为x (t )Si (t) 口⑴,噪声n (t)为 均匀白噪声,功率谱密度为P n ()N 。,2 , s (t)是仅在[0,T ]区间取值的输入脉 冲信号。根据线性系统的特点,经过频率响应为 H()匹配滤波器的输出信号为 y(t) s o (t) n o (t),其中输入信号分量的输出为 s,(t) S( )H( )exp(j t)d 与此同时,输出的噪声平均功率为 N 叫 |H( )2d 2 则to 时刻输出信号信噪比可以表示为 ,2 S o (t 0)| N 2 S i ( )H( )e jt d N 0 H( )2d 要令上式取最大值,根据 Schwarz 不等式,则需要匹配滤波器频响为 H( ) KS i ( )exp( j t °) 对应的时域冲激响应函数形式为 h(t) Ks *(t 。t) 要使该匹配滤波器为因果系统,必须满足t0 T ,信噪比最大时刻的输出信 噪比取值是 S 2E N 0兀 量可以表示为下式: s o (t) s( )h(t )d K S i ( )s (t t 0 )d 当匹配滤波器冲激响应函数满足 (5-5)式时,通过匹配滤波器的输出信号分 exp j[ 2

地质雷达实验报告(封面+报告模板)

. .. ... 地质雷达实验报告 成绩: 系别:资源勘查与土木工程系 专业班级: 姓名: 学号: 指导教师: 年月日

实验项目名称:地质雷达的操作及应用 同组学生姓名: 实验地点:结构检测实验室实验日期:年月日 1.1 实验目的 (1)了解地质雷达基本构造、性能和工作原理。 (2)掌握地质雷达的操作步骤和使用法。 1.2 实验原理及法 通过发射天线向地下发射宽频带高频电磁波。在传播过程中,当遇到存在电性差异的地下介质或目标体时,雷达波会发生反射返回地面,并由接收天线接收,并以波或图像的形式,存储在电脑中。 1.3 仪器设备 OKO-2俄罗斯地质雷达。

1.4 实验步骤 (1)连好数据线; (2)打开主机和天线上的电源开关; (3)运行采集软件; (4)设置参数; (5)数据采集并保存数据; (6)关机、拆线。 1.5 数据处理 主要包括两个面:即增益和滤波。增益的目的是放大深部信号的增幅,使较弱的信号能被识别,滤波的种类很多,一般包括中值滤波、平均值滤波、带通滤波和巴特沃斯带通滤波等等。 1.6 注意事项 在运用雷达过程中,须掌握雷达工作的三个重要参数:环境电导率、介电常数和探测频率。 环境电导率σ是表征介质导电能力的参数,它决定了电磁波在介质中的穿透深度,其穿透深度随电导率的增加而减小,当介质的电导率σ>10-2S/m时,电磁波衰减极大,难于传播,雷达法不宜使用,如:湿粘土、湿页岩、海水、海

水冰、湿沃土、金属物等。 介电常数是影响应用效果的另一个重要因素,它决定了高频电磁波在介质中的传播速度,并且反射信号的强弱也取决于介电常数的差异。电磁波在介质中的传播速度可采用下式近似考虑: r C V ε≈ 式中: C ─ 电磁波在真空中的传播速度,C =0.30m/ns (光速), r ε─ 介质的相对介电常数。 介质的介电常数主要受介质的含水量以及隙率的影响,相对介电常数与水含量的关系曲线,相对介电常数的围为:1(空气)~81(水),多数干燥的地下介质,其相对介电常数值均小于10。 探测频率不但是制约探测深度的一个关键因素,同时也决定了探测的分辨率;探测频率越高,探测深度越浅,探测的垂直分辨率和水平分辨率越高。高频 电磁波在传播过程中发生衰减,其衰减的程度随电磁波频率的增加而增加,这也是造成探测频率越高,探测深度越浅的原因。因此,在实际工作时,必须根据目标体的探测深度选用合理的探测频率。 1.7 附图(不少于6图片)

雷达方程原理

一. 雷达方程 简单形式的雷达方程:min 2 e t 4 max )4(S GA P R πσ=(2.1)? σ∝4 max R (1) 接收机噪声 除系统热噪声引起的噪声功率之外,接收机会产生一定的噪声输出,要引入噪声系数 out out in in N S N S BG kT N F //a 0out n = = ,噪声系数也反映了信号通过接收机时的信噪比衰减情况。 重新整理雷达方程:min n 02 e t 4 max )/()4(N S BF kT GA P R πσ = (2.8)? min 4 max SNR R σ ∝ 可用于进行理想自由空间中的目标探测,分析目标的雷达截面积对目标探测产生的影响。 (2) 雷达脉冲积累 多脉冲积累用于提高信噪比,改善雷达的检测能力,降低虚警漏警概率。 n 个相同信噪比的脉冲进行理想情况下的积累后,总信噪比为单个脉冲信噪比的n 倍。但实际情况下,第二检波器会引入效率损耗,使信号能量变为噪声能量,积累效率 n 1i )/()/()(N S n N S n E = 。 将脉冲积累的信噪比代入原雷达方程得到:n n 02 e t 4 max )/()4(N S BF kT GA P R πσ = (2.33),也可 以由积累效率和单个脉冲信噪比表示为:1 n 02 e t 4 max )/()4() (N S BF kT n nE GA P R i πσ= (2.34)。 (3) RCS 起伏 观测复杂目标(如飞机)时,小的观察角变化将引起雷达到目标散射中心的距离和时间发生变化,从而引起各回波信号的相对相位发生变化,导致RCS 起伏。 引入起伏损耗f L ,用f L N S 1)/(代替1)/(N S 。当e n 个独立采样积累时, e n f e f L n L /1)()(=。 此时的雷达方程为:e n f i L N S BF kT n nE GA P R /11n 02 e t 4 max ) ()/()4() (πσ=(2.45)。 (4) 发射机功率 雷达的平均发射机功率av P 更能反映雷达的性能,可以用它代替峰值功率t P 。将p t av f P P τ=代入雷达方程得到:p i f N S F B kT n nE GA P R 1n 02 e av 4 max )/()()4() (τπσ= (2.51),一般情况下,可将τ B 设计为1。 (5) 其它情况 需要考虑的因素包括:系统损耗、地杂波、最高精度等。另外,针对不同目标(点目标或分

2015注册监理工程师继续教育公路工程试题答案1

1.单选题【本题型共60道题】 1.钢板桩的机械性能和尺寸应符合(D)。 A.实际要求 B.施工要求 C.设计要求 D.规定要求 2.建筑工程恢复施工时,应当向发证机关报告;中止施工满1年的工程恢复施工前,建设单位应当()。 A.重新办理开工报告的批准手续 B.重新申请领取施工许可证 C.报发证机关核验施工许可证 D.向发证机关申请延期施工许可证 3.根据强夯加固土体的触变恢复机理,强夯施工结束后应间隔一定时间方能对地基加固质量进行检验,以免所测结果偏小而影响对强夯加固效果的评估。对碎石土和砂土地基,其间隔时间可取() A.1-2周 B.1.5-2周 C.2-3周 D.2.5-3周 4.对加固后的振冲碎石桩复合地基效果检验的测试可在打完桩()天后进行。 A.10 B.15

C.20 D.30 5.干密度的定义是()。 A.干土重/土总体积 B.干土重/土颗粒体积 C.干土重/土中空隙的体积 D.干土重/原土体总重 6.根据《公路工程施工监理招标投标管理办法》,招标文件中招标人要求投标人提交投标担保的,投标人应当按照要求的金额和形式提交。投标保证金金额一般不得超过()人民币。 A.2万元 B.3万元 C.5万元 D.10万元 7.灌注混凝土拌合物应有良好的和易性,应保持足够的流动性,其坍落度应为()mm。 A.150~180 B.160~200 C.180~220 D.180~200 8.根据《道路交通标志和标线》的规定,交通标志在进行外观鉴定过程中,当标志板在粘贴底膜时,横向不宜有拼接,竖向拼接,上膜应压接下膜,压接宽度不应小于()mm。 A.5

B.10 C.15 D.20 9.监理工程师在实施进度控制过程中,下列工作中不正确的做法是()。 A.检查和记录工程实际进度情况并与进度计划对比; B.绘制有关工程的形象进度图表,建立进度台帐; C.通过下达监理指令、召开工地例会、各种层次的专题协调会议,督促施工单位按期完成进度计划; D.发现实际进度滞后于计划进度时,指挥施工单位采取调整措施。 10.当土的自由膨胀率δef值大于()时,大多数情况下可鉴别为膨胀土。因此,我国《膨胀土地区建筑技术规范》规定,除采用上述特征对膨胀土进行判别以外,认为膨胀土的δef >()。但值得注意的是,有许多膨胀土的δef值常小于()。 A.40% B.30% C.45% D.35% 11.深大基坑土方开挖施工开挖形式的确定,应以利于基坑安全稳定为原则,兼顾其他因素,基坑开挖过程中应注意减少()对基坑支护结构的不利影响 A.支撑变换 B.挖撑銜接 C.工序銜接 D.时空效应 12.高桥墩施工滑模宜灌筑注低流动度或半干硬性混凝土,灌筑注时应分层、分段对称地进

雷达原理实验报告(哈工程)

实验报告 实验课程名称:雷达原理姓名:班级:电子信息工程4班学号: 注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和 2、平均成绩取各项实验平均成绩 3、折合成绩按照教学大纲要求的百分比进行折合 2017年5 月

雷达信号波形分析实验报告 2017年4月5日班级电子信息工程4班姓名评分 一、实验目的要求 1. 了解雷达常用信号的形式。 2. 学会用仿真软件分析信号的特性。 3.了解雷达常用信号的频谱特点和模糊函数。 二、实验原理 为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 其中S:目标距离;T:电磁波从雷达到目标的往返传播时间;C:光速。 三、实验参数设置 载频范围:0.5MHz 脉冲重复周期:250us 脉冲宽度:10us 幅度:1V 线性调频信号 载频范围:90MHz 脉冲重复周期:250us 脉冲宽度:10us 信号带宽:14 MHz 幅度:1V 四、实验仿真波形

0.5 1 1.5 2 x 10 -3 时间/s 幅度/v 脉冲 1.03561.03571.03581.0359 x 10 -3时间/s 幅度/v 连续波 0.5 1 1.5 2 x 10 -3 时间/s 幅度/v 脉冲调制 -4-2 024 x 10 7 01 24 频率/MHz 幅度/d B 脉冲频谱图 -4 -2 024 x 10 7 05 104 频率/MHz 幅度/d B 连续波频谱图 -4 -2 024 x 10 7 01 24 频率/MHz 幅度/d B 脉冲调制频谱图 0.5 1 1.5 2 x 10 -3 -101时间/s 幅度/v 脉冲 8.262 8.26258.263x 10 -4 -1 01时间/s 幅度/v 连续波 0.5 1 1.5 2 x 10 -3 -101时间/s 幅度/v 脉冲调制 -4-2 024x 10 7 02 44 频率/MHz 幅度/d B 脉冲频谱图 -4 -2 024x 10 7 05 104 频率/MHz 幅度/d B 连续波频谱图 -4 -2 024x 10 7 01 24 频率/MHz 幅度/d B 脉冲调制频谱图 02004006008001000 0500100015002000

微波遥感实验报告

实验一:SAR图像下载与认识 一:实验目的 1掌握SAR图像的下载方法; 2了解不同地物在图像上的特性; 二、实验要求 1掌握雷达图像的成像原理与地物特性 2数据说明 3本实验采用Sentinel-1卫星拍摄于2014年12月5日的天山山脉的遥感影像三、实验步骤 打开地理空间数据云网站; 图1 找到Sentinel-1卫星下载有效数据; 图2

在ERDAS中打开影像; 图3 分析地物在影像上的特性; 1雷达图像的成像机理 雷达图像的获取系统不同于光学影像获取系统,它是采用有源主动式工作方法,其本质是一个距离测量系统雷达图像.上的信息是地物目标对雷达波束的反应,而且主要是目标后向散射形成的图像信息,以及朝向雷达天线那部分被散射的电磁波所形成的图像信息由于地物目标所处的位置地物结构表面形态和介电性能等不同,对雷达波束的反应是不一样的同时不同雷达波段极化方式入射角也会使地物产生不同的反应,使其图像具有近距离压缩透视收缩叠掩阴影和地面起伏引起的影像移位等现象,因此,在图像.上形成不同的色调纹理和图案,与中心投影的光学影像有很大的差别。 2雷达图像的信息特点 地物目标对雷达波束的反应是散射(或反射)穿透和吸收r种情况并存,波长不同,对地物的穿透性是不一样的;地物目标的类型本身的结构表面的粗糙度和介电性能不同,则会对电磁波的穿透反射(或散射)和吸收带来不同程度的效应同时,入射雷达波束和地物的相对方向也有关系,在一定方向的条件下,地物目标可以产生强回波,在另一方向,回波则可能很弱或无回波例如平行于飞行方向的铁丝网(电力线),会产生强回波,垂直于飞行方向回波则很弱或消失因此,在雷达图像解译时,尽可能采用多侧视方向的图像 3目视解译 就本实验的雷达图像而言,主要有以下几种地物; 雷达波束的穿透性对冰雪覆盖区地物的判读有着独特的优势例如雪上被覆盖区域,在光学影像上很难辨清究竟是雪,还是湖泊,在雷达图像上则表现极为清晰对于雪山区域冰斗湖碛尾湖的判断,应采用多侧视方向,避免将阴影误判为湖泊。

七台河龙湖矿YCS2000 矿用瞬变电磁仪实验报告

YCS2000A矿用瞬变电磁仪 勘探报告 2014年11月4日

龙煤集团七台河子公司龙湖煤矿瞬变电磁勘探报告 编制:张军 参加人员:高原荆怀亮燕锴 资料处理:燕锴 施工单位:中煤科工集团西安研究院有限公司

目录 第一章概述 (2) 1.1 仪器简介 (2) 1.2 产品使用环境条件 (3) 1.3使用方式 (3) 第二章矿井瞬变电磁原理 (4) 2.1矿井瞬变电磁法勘探简介 (4) 2.2 矿井瞬变电磁法地球物理特征 (7) 2.3勘探方法 (8) 2.4施工探测装置 (9) 2.5仪器工作原理 (9) 第三章仪器操作 (11) 3.1 准备工作 (11) 3.2 面板及连接 (11) 3.3操作过程 (11) 第四章工作量、技术措施及质量评述 (13) 4.1 工作量 (13) 4.2 技术措施 (13) 4.3 质量评述 (13) 第五章矿井瞬变电磁法勘探资料处理与解释 (14) 5.1资料处理 (14) 5.2资料解释 (16) 第六章结论及建议 (19)

第一章概述 《煤矿防治水规定》第一章第三条规定:防治水工作应坚持“预测预报、有疑必探、先探后掘、先治后采”的原则,采取“防、堵、疏、排、截”的综合治理措施。 中“先探后掘”中的探即在巷道掘进过程中在迎头利用直接或间接的方法向前一定范围内进行探测(超前探测),查明前方及其采动影响范围内是否存在赋含水地质构造、导含水通道或采空积水区,为煤矿的防治水工作提供详细的地质资料。目前用于超前探测的直接方法为钻探方法,钻探结果比较直观,但施工周期较长,对巷道的正常掘进生产影响较大。用于探测的间接方法即采用地球物理勘探的方法进行探测,主要方法有:矿井直流电法(三点三极超前探测方法)、矿井瞬变电磁法、瑞雷波法和矿井地质雷达探测法。其中瑞雷波法主要解决地质构造界面的问题,对构造的赋水性或采空积水区的解释精度较低;矿井地质雷达现在主要处于研究试用阶段,主要是由于其探测深度相对较小。现在常用于超前探测的物探方法为:矿井直流电法(三点三极超前探测方法)和矿井瞬变电磁法。 1.1 仪器简介 瞬变电磁法是重要的地球物理探测手段之一,常用来查明含水地质体,如岩溶洞穴导水通道、煤矿采空区、不规则水体等,具有自动消除主要噪声且地形影响较小、可实现同点组合观测、对异常响应强且曲线形态简单,分辨能力强等优点。 YCS2000A矿用瞬变电磁仪(以下简称瞬变仪)是为煤矿井下含

雷达原理实验报告1,2

实验一、二雷达的总体认识及基本操作I、II 一、实验目的 1.了解Bridge Master E X-Band雷达的基本组成 2.学习正确操作Bridge Master E X-Band雷达,熟悉各基本功能的 操作 二、实验设备: Bridge Master E X-Band雷达两台 S-Band收发机一台,天线一副 三、实验步骤及要领 1.开机 检查天线附近是否有人作业火其他障碍物,将亮度(BRILLIANCE)、雨雪干扰抑制(A/CRAIN)海浪干扰抑制(A/CSEA)、增益(GAIN)等控钮反时针旋到底,功能开关(FUNCTION)置“STANDBY”。开机,接通电源,将电源开关置“POWER ON”,然后雷达开始自检,倒时计数。时间到后自动显示出“RADAR STANDBY”,此时表明雷达已准备好发射(未发射前天线是不转的)。 2.调节屏幕及数据亮度 顺时针旋转显示器前端的键盘(KEY BOARD)上的亮度控钮(BRILLIANCE)使回波明亮清晰,通常应使控钮居中。 3.量程选择 在KEY BOARD上,使用操纵杆(JOYSTICK)移动光标到

“TRANSMIT”上,单击左键,选择发射及脉冲宽度选择。使光标移动到显示屏的左上方的“RANGE”,通过单击“+”和“-”来改变量程,量程的选择与发射脉冲的宽度的关系见附录图 4.调谐调节 调谐控钮是用来调节接收机的本振频率。在进行调谐前,应首先将海浪抑制控钮(A/CSEA)反时针旋到底,并使雷达工作于最大量程,然后转动调谐控钮使调谐指示亮带达到最长。 5.增益调整 增益(GAN)控钮是用来调节接收机的放大量,此控钮应调节到显示屏幕上的背景噪声似见非见的位置。为了设置合适的增益,首先应选择最远的两个量程之一,因为远量程时背景噪声更为明显,然后俺顺时针方向慢慢旋转增益控钮,使背景噪声达到刚见未见的状态。若增益设置太低,目标回波可能被淹没在背景噪声中。 6.显示模式选择 使用光标在显示屏幕右上方菜单改变显示模式。 7.调出固定、活动距标圈 使用VRM面板可以改变活动距标圈,改变距标圈的时候注意观察显示屏上的相关读数的改变。 8.调电子方位线 使用EBL面板,转动测方位旋钮可以改变电子方位线的方位,注意观察显示屏的相关读数的变化。

相关文档