文档库 最新最全的文档下载
当前位置:文档库 › 抛物线长度计算公式

抛物线长度计算公式

抛物线长度计算公式
抛物线长度计算公式

抛物线长度计算公式

L=l+(8*h^2)/(3*l^2))*l

其中:L――为抛物线长度

l――为抛物线的水平投影长度

h――为抛物线的矢高

注:另外可参考下面的公式来检验:

L=((y2-y1)^2+l^2)^0.5

其中:L――为抛物线长度

l――为抛物线的水平投影长度

(y2-y1)――为竖直方向上的高差

O(0,0),M(x,y)是抛物线y^2=2px上两点,抛物线的弧OM的弧长L=(p/2)*{√[(2x/p)*(1+2x/p)]+ln[√(2x/p)+√(1+2x/p)]}

参考资料:数学手册高教出版社1979.北京

钢结构设计计算公式及计算用表

钢结构设计计算公式及计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表1采用。钢铸件的强度设计值应按表2采用。连接的强度设计值应按表3~5采用。

弯管一般知识及计算下料方法

第一章煨管设备及弯管计算弯管按其制作方法不同,可分为煨制弯管、冲压弯管和焊接弯管。煨制弯管又分为冷煨和热煨两种。本章着重介绍常用煨管设备的结构特点、性能及操作等方面的知识,以及煨制弯管的下料计算。 第一节弯管的一般知识 弯管是改变管道方向的管件。在管子交叉、转弯、绕梁等处,都可以看到弯管。 煨制弯管具有较好的伸缩性、耐压高、阻力小等优点。因此,在施工中常被采用。 弯管的主要形式有:各种角度的弯头、U形管、来回弯(或称乙字弯)和弧形弯管等,如图1—1所示。 弯头是带有一个任意弯曲角的管件,它被用在管子的转弯处。弯头的弯曲半径用R表示。R较大时,管子的弯曲部分就较大,弯管就比较平滑;R较小时,管子的弯曲部分就较小,弯得就较急。 来回弯是带有两个弯曲角(一般为135°)的管件。来回弯管子弯曲端中心线间的距离叫做来回弯的高度,用字母h表示。室内采暖立支管与干管及散热器连接,管道与不在同一平面上的接点连接时,一般需采用来回弯。 U形管是成正半圆形的管件。管子的两端中心线问的距离d等于两倍弯曲半径R。U形管可代替两个90°弯头,经常用来连接上下配置的两个圆翼形散热器。 图1-1弯管的主要形式 弧形弯管是带有三个弯曲角的管件。中间角一般成90°,侧角成135°。弧形弯管用于绕过其它管子,在有冷热水供应的卫生设备配管时,经常采用弧形弯管。 弯管尺寸由管径、弯曲角度和弯曲半径三者确定。弯曲角度根据图纸和施工现场实际情况确定,然后制出样板,照样板煨制并按样板检查煨制管件弯曲角度是否符合要求。样板可用圆钢煨制,圆钢的直径根据所煨管径的大小选用,10-14mm即可。弯管的弯曲半径应按管径大小、设计要求及有关规定而定。既不能过大,也末虚选得太小。因为弯曲半径过大,不但用材料多,而且管子弯曲部分所占的地方也大,这样会给管道装配带来困难;弯曲半径选

钢结构计算公式.docx

螺栓或铆钉的最大、最小允许距离表2-90 注:1. d0为螺栓或铆钉的孔径,t为外层较薄板件的厚度。 2 ?钢板边缘与刚性构件(如角钢、槽钢等)相连的螺栓或铆钉的最大间距,可按中间排的数值采用。 常见型钢及其组合截面的回转半径的近似值见表2-91。 常见型钢及其组合截面的回转半径的近似值表表2-91

-I JK=O32 Λiy =0.28? w =0.18 I I=O.18 ?+? ∕χ=10.21A ?=≈0.2l??=0.185Λ "0-2 M ι20.21b iχ=0,45Λ?=0.24? J y S y IH).25tf ?=0,3S? Iy =0.44? ?=0.41Λ ?-0.12fr ∕χ=0.28λ ?=024? Jχ=0.42? ? =0.226?≡0.44Λ?~0.32A Pl ?-0J0Λ —r ? =^0.306 L.-√ h-0.l95Λ ∣χ=0.32A Jy -0.20ΔJX=O29Λ ? =O 456 ■J h =O .20片~j?=0 21h ?=0.29Λ ?→29? r*=0 29h ? =0.5Ofc -0.54? h =OJOh h =0.2150 ?=O.38Λ ? -0.60? -B?-___J□ φ=7?R.30λ ?-0.!7fe ?=0,40A ?≡021fe A =0.43 A i j=0 24b ?≡0.4θ? iχ =0?2ι4ft?p ?=0.4l ?flp ________ ?=0.44? ι=0.35? ■?≡045A ? =0- 235? ?=0 43h A=O 43? h=O39A ?≡O20? f—∣<=0.38Λ 王于」42防 h=0.32? ?=0 58? <χ=O.32 ? 6 =0.40? {≡- P ? ∕χ=0.365λ ?=0.275? s td E h=035A ?*0.56? IX =039Λ iy≈0 29b -C 戸 y Γ -U "1 J 厂 -I=Y _ ■ ■ ■ y π L ≡ ^?≡=0.39Λ 「?=0一 530 强度和稳定性计算表表2-93 ^=O 50? b≡Q39f>

常见的钢结构计算公式

2-5 钢结构计算 2-5-1 钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具

有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2)表2-77

(整理)90度弯头放样方法详解附计算公式.

90度弯头放样方法详解(附计算公式) 90度弯头放样的具体方法是什么?90度弯头是弯头中十分常见的一种,因此在制图过程中90度弯头放样的方法也是很多人需要学习的重要知识。下面,世界工厂泵阀网为大家详细介绍90度弯头放样的计算方法。 弯度90度,直径300MM,是这样下料:划一根直线长为∏(d-t)(d---圆管外径,t---板厚)。 把该线段16等分,从0.1.2.3......16。两节等径直角弯头放样计算计算式:Yn=r cosα当0°≤αn≤90°时 Yn=1/2(d-2t)cosα 当90°<αn≤180°时 Yn=1/2dcosα 式中Yn---展开图圆周长度等分点至曲线坐标值; r---辅助圆半径; d---圆管外径; t---板厚; αn---辅助圆周等分角度;直径为300mm的管, n可选 16α1=360°/16=22.5°α2=45°α3=67.5°α4=90°α5=112.5°α6=135°.α7=157.5°α8=180° 计算式:Y0=1/2(d-2t)cos0°=0.5(d-2t) Y1=1/2(d-2t)cos22.5°=0.4619(d-2t) Y2=1/2(d-2t)cos45°=0.3536(d-2t)

Y3=1/2(d-2t)cos67.5°=0.1913(d-2t) Y4=1/2(d-2t)cos90°=0 Y5=1/2 dcos112.5°=-0.1913d Y6=1/2 dcos135°=-0.3536d Y7=1/2 dcos157.5°=-0.4619d Y8=1/2 dcos180°=-0.5d 因为Y0为正值,在XX轴0处是向上0.5(d-2t),Y1-Y3都是向上,Y4是0正好在X轴,而Y5-Y8为负值,因此向下作线段。 然而把这九个点连接起来,出现二个曲线,这是一半,另一半与其相同。这样做出的样板是90度弯头的一半。

公路竖曲线计算

竖曲线及平纵线形组合设计 (纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。) 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 =2 ωR 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短

弯头理论重量表

弯头外弧长度算法应该是: 一、(口径/2)+R*1.57这是90°弯头长度。21°就用 二、(口径/2)+R*1.57/90*21就可以得到长度。 重量:(外径-壁厚)*壁厚*0.0387*R(曲率半径)/1000是90°弯头重量/90*21就是21°弯头理论重量。 一、弯头重量计算公式 圆环体积=2X3.14X3.14(r^2)R,r--圆环圆半径,R--圆环回转半径中空管圆环体=2X3.14X3.14((r^2)-(r’^2))R,r’--圆环内圆半径,90,60,45度的弯头(肘管)体积分别是对应中空管圆环体积的1/4、1/6、1/8。 二、钢的密度工程上计算重量时按7.85公斤/立方分米,密度*体积=重量(质量)。 1、180°弯头按表2倍计算,45°按1/2计算; 2、R1.0DN 弯头重量按表2/3计算; 3、表中未列出壁厚的重量,可取与之相近的两个重量计算平均值;

4、90°弯头计算公式;0.0387*S(D-S)R/1000 式中S=壁厚mm D=外径mm R=弯曲半径mm 三、以下是焊接弯头的计算公式 外径-壁厚X 壁厚X0.0387X 弯曲半径÷1000, =90°弯头的理论重量举例:426*10 90°R=1. 5D 弯头是我们管道行bai业经常用到的管件,在施工、报价du都zhi 会用到弯头重量、面积的计dao算。对于刚入门的朋友有好多数据及相关尺寸不太明白,本着深入浅出的原则,用十几年的弯头制作经验,总结一下任意弯头计算公式以及相关尺寸的解释,希望对广大爱好管道行业的朋友是一个促进,把自己的管件水平提高起来。 一、弯头理论重量的计算 1.圆形弯头:(外径-壁厚)*壁厚*系数*1.57*公称通径*倍数 系数:碳钢:0.02466 不锈钢:0.02491 合金:0.02483 解释:90度弯头(外径-壁厚)*壁厚*系数(碳钢按0.02466)*1.57* *公称通径*倍数/1000=90度弯头理论重量(公斤)

竖曲线计算方法

竖曲线计算书 一、 变坡点桩号为220k28+,变坡点标高为m 135.873,两相邻路段的纵坡为 %303.0%0.39921-=+=i i 和,m R 15000=凸。 1. 计算竖曲线的基本要素 竖曲线长度 )(105.3)00303.000399.0(15000m R L =+?==ω 切线长度 )(7.522 3.1052m L T === 外距 )(09.015000 27 .52*7..5222m R T E =?== 2. 求竖曲线的起点和终点桩号 (1) 竖曲线起点桩号:3.167287.522202822028+=-+=-+K K T K 竖曲线起点高程:135.873-52.7 ?0.00399=135.663 (2) 竖曲线终点桩号:7.272287.522202822028+=++=++K K T K 竖曲线终点高程:135.873-52.7?0.00303=135.713 3. 求各桩号标高和竖曲线高程

二、 变坡点桩号为23029+K ,变坡点标高为m 809.132,两相邻路段的纵坡为 %401.0%303.021+=-=i i 和,m R 9000=凹。 1. 计算竖曲线的基本要素 竖曲线长度 )(36.63)]00303.0(00401.0[9000m R L =--?==ω 切线长度 )(68.312 36.632m L T === 外距 )(06.09000 268 .31*68.3122m R T E =?== 2. 求竖曲线的起点和终点桩号 (1) 竖曲线起点桩号:32.1982968.312302923029+=-+=-+K K T K 竖曲线起点高程:132.809+31.68?0.00303=132.905 (2) 竖曲线终点桩号:68.2612968.312302923029+=++=++K K T K 竖曲线终点高程:132.809+31.68?0.00401=132.936 3. 求各桩号标高和竖曲线高程

常见的钢结构计算公式

2-5 钢结构计算 2-5-1钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T700和《低合金高强度结构钢》GB/T1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2) 表2-77

竖曲线自动计算表格

竖曲线自动计算表格 篇一:Excel竖曲线计算 利用Excel表格进行全线线路竖曲线的统一计算 高速公路纵断面线型比较复杂,竖曲线数量比较多。由于相当多的竖曲线分段造成了设计高程计算的相对困难,为了方便直接根据里程桩号计算设计高程,遂编制此计算程序。程序原理: 1、根据设计图建立竖曲线参数库; 2、根据输入里程智能判断该里程位于何段竖曲线上; 3、根据得到的竖曲线分段标志调取该分段的曲线参数到计算表格中; 4、把各曲线参数带入公式进行竖曲线高程的计算; 5、对程序进<0 = J=0; M-P=0 = J=1 B: K<=D =B=-M ; KD = B=P 程序特色: 1、可以无限添加竖曲线,竖曲线数据库不限制竖曲线条数; 2、直接输入里程就可以计算设计高程,不需考虑该里程所处的竖曲线分段;

3、对计算公式进行保护,表格中不显示公式,不会导致公式被错误修改或恶意编辑。 程序的具体编制步骤: 1、新建Excel工作薄,对第一第二工作表重新命名为“参数库”和“计算程序”,根据设计图建立本标段线路竖曲线的参数库,需要以下条目: (1)、竖曲线编号; (2)、竖曲线的前后坡度(I1、I2)不需要把坡度转换为小数; (3)、竖曲线半径、切线长(不需要考虑是凸型或凹型);(4)、竖曲线交点里程、交点高程; (5)、竖曲线起点里程、终点里程(终点里程不是必要参数,只作为复核检测用);如图1所示: 图1 2、进行计算准备: (1)、根据输入里程判断该里程所处的曲线编号: 需要使用lookup函数,函数公式为“LOOKUP(A2,参数库!H3:H25,参数库!A3:A25)”。如图2所示: 里程为K15+631的桩号位于第11个编号的竖曲线处,可以参照图1 进行对照 (2)、在工作表“程序计算”中对应“参数库”相应的格式建立表格

抽芯铆钉知识大全

抽芯铆钉知识大全 目录 1规格2性能等级标准等3分类4开口型扁圆头抽…5大帽沿不锈钢抽… 规格 通常规格有2.4 3.2 4 4.8 5 6.4 五个系列. 钉芯长度为11个系列6-8--8.5--9.5--11--12--12.5--13--14.5--15.5--16--18--21 国内单数的多国外一般是双数 市场长度为22---25----30----40 不锈钢材料 3.2直径的目前技术可以做到16mm长(前几天在外看到有厂家已经在做 3.2*20mm的了,国外有做到28mm 长不过没见过.) 4 直径的可以做到25mm长 4.8 直径的可以做到40mm长不过通常不怎么用,30mm的用的也是比较少的. 6.4直径的和4.8的差不多可以做到40mm长 封闭型扁圆头抽芯铆钉(GB12615)市场长度的可以增加 5.5 6 长度. 拉丝铆钉目前一般为 4.8*10/14 6.4*14/16/19 拉丝铆钉海马乐克钉为 6.4*14/17/19/21 海马乐克钉 单/双鼓/多鼓尺寸和一般铆钉差不多 性能等级标准等 性能等级分为06 08 10 11 12 15 20 21 22 23 30 40 41 50 51 共15个等级. 开口型抽芯铆钉按头部形状分沉头和平圆头两种。其中,性能等级为10级和11级的开口型抽芯铆钉应用较为广泛。2006年国家标准委修订发布了GB/T 12617.1-2006《开口型沉头抽芯铆钉10、11级》和GB/T 12618.1-2006《开口型平圆头抽芯铆钉10、11级》两项关于10、11级开口型抽芯铆钉的国家标准。该两项新标准,分别采用ISO15978:2002和ISO15977:2002国际标准,于2006年7月5日发布,于2006年12月1日正式实施。 实施后分别代替GB/T 12617-1990《开口型沉头抽芯铆钉》和GB/T 12618-1990《开口型扁圆头抽芯铆钉》两项旧标准。 一、标准版本的变化 原GB/T 12617和GB/T 12618两项关于开口型抽芯铆钉的产品标准首次发布于1990年,本次为第一次修订。 修订后的新标准将按铆钉的机械性能等级分几个部分发布。众所周知,铆钉的性能等级共设06、08、10、11、12、15、20、21、22、23、30、40、41、50和51等15个级别。到目前为止,GB/T 12617标准已发布五个部分,GB/T 12618标准已发布了六个部分,涵盖了10、11、12、20、21、22、30、40、41、51等10个性能等级。GB/T 12617和GB/T 12618标准的发布情况 本次修订,标准结构也发生了变化。1990年版标准分为范围、引用标准、尺寸、技术条件、标记共五章。其中,“技术条件”一章全部引用了原GB/T12619-1990《抽芯铆钉技术条件》标准。由于GB/T12619标准已被修订为GB/T3098.19-2004《紧固件机械性能抽芯铆钉》,因此,2006年版新标准将开口型抽芯铆钉产品标准的结构统一调整为范围、规范性引用文件、尺寸、材料组合与表面处理、机械性能、工作质量、验收检查、标志与包装、标记共八章。具体给出了各性能等级的开口型抽芯铆钉的规格尺寸、材料、机械性能等,便于标准的贯彻实施。 二、GB/T 12617.1标准的变化 GB/T 12617.1-2006《开口型沉头抽芯铆钉10、11级》分为范围、规范性引用文件、尺寸、材料组合与表面处理、机械性能、工作质量以及验收检查、标志与包装、标记共八章和一个附录(资料性附录),规定了钉体直径为2.4mm~5mm、钉体材料为铝合金(AlA)、钉芯材料为钢(St)、性能等级为10级和11级的开口型沉头抽芯铆钉的机械特性和应用数据。与旧版本GB/T 12617-1990《开口型沉头抽芯铆钉》相比,主要有以下变化:

标准弯头尺寸表汇总

国标弯头外弧长度及中心距尺寸 标准长半径弯头尺寸数据对照表: 公称通径弯头外径尺寸中心距A系列B系列公称通径DN A系列B系列mm 外弧长度内弧长度外弧长度内弧长度NPS 15 21.3 18 38 76 42 73 45 1/2 20 26.9 25 38 81 38 76 40 3/4 25 33.7 32 38 86 33 84 34 1 32 42.4 38 48 108 42 105 45 1.1/4 40 48.3 45 57 127 51 124 54 1.1/2 50 60.3 57 76 166 72 164 74 2 65 76.1(73) 76 95 208 89 208 89 2.1/2 80 88.9 89 114 248 109 248 109 3 90 101.6 - 133 288 129 - - 3.1/2 100 114.3 108 152 328 149 323 153 4 125 139.7 133 190 408 188 402 193 5 150 168.3 159 229 491 227 484 234 6 200 219.1 219 305 650 306 650 306 8 250 273.0 273 381 812 383 812 383 10 300 323.9 325 457 972 462 972 462 12 350 355.6 377 533 1115 652 1132 540 14 400 406.4 426 610 1276 638 1292 623 16 450 457.2 478 686 1435 718 1452 701 18 500 508.0 529 762 1595 797 1611 781 20 550 559 - 838 1754 876 - - 22

弯头外弧长度

弯头外弧长度ASME16.28、ASME16.9 外径inch 公称通径DN 中心至端面 大面长 中心至中心背部至端面 大面长45o 大面长 90o180o 中心高H 中心高F 全高 中心高F 全高 P K 长半径长半径大面长短半径长半径短半径长半径大面长短半径 21.3 1/2" 15 16 42 38 48.65 76.3805 76 48 150.72 26.7 3/4" 20 16 46 38 51.35 80.6195 76 51 160.14 33.4 1" 25 16 51 38 54.7 85.879 25 16.7 65.469 76 51 56 175.84 41 128.74 42.2 11/4" 32 20 65 48 69.1 108.487 32 21.1 83.367 95 64 70 219.8 52 163.28 48.3 11/2" 40 24 76 57 81.15 127.4055 38 24.15 97.5755 114 76 83 260.62 62 194.68 60.3 2" 50 32 98 76 106.15 166.6555 51 30.15 127.4055 152 102 106 332.84 81 254.34 73 21/2" 65 40 120 95 131.5 206.455 64 36.5 157.785 191 127 132 414.48 100 314 88.9 3" 80 47 144 114 158.45 248.7665 76 44.45 189.1065 229 152 159 499.26 121 379.94 101.6 31/2" 90 55 166 133 183.8 288.566 89 50.8 219.486 267 178 184 577.76 140 439.6 114.3 4" 100 63 189 152 209.15 328.3655 102 57.15 249.8655 305 203 210 659.4 159 499.26

弯头展开面积计算之欧阳歌谷创作

S=πD×1.5DK×2π/B×N (14) 式中D 直径; K系数,取1.05 N弯头个数; B值取定为:90°弯头.B=4;45°弯头B=8 欧阳歌谷(2021.02.01) 一个90度的管道弯头,管道直径1.25米,内弧到圆心的半径5.2米,求表面积计算公式?如果内弧到圆心的半径为3.4米时,管道直径还是1.25米,求如何计算表面积? 最简单的算法就是计算出弯头的中心线长度,按照直管段计算直管段的表面积就是了。例如:90度弯头直径1.25m,内弧圆心半径5.2m.计算弯头中心线长度为: {[5.2+(1.25÷2)]×2π}÷4 计算弯 头表面积就是:中心线长度×1.25π(圆柱体底面周长乘以高)其他规格的数字更换下就行了 二,弯头重量计算公式 圆环体积=2*3.14*3.14(r2)R r圆环圆半径 R圆环回转半径 中空管圆环体积=2*3.14*3.14((r2)(r’2))R r’圆环内圆半径 90,60,45度的弯头(肘管)体积分别是对应中空管圆环体积的1/4、1/6、1/8。 钢的密度工程上计算重量时按7.85公斤/立方分米,密度*体积=重量(质量)。 1、180°弯头按表2倍计算,45°按1/2计算; 2、R1.0DN弯头重量按表2/3计算; 3、表中未列出壁厚的重量,可取与之相近的两个重量计算平均值; 4、90°弯头计算公式; 0.0387×S(DS)R/1000 式中 S=壁厚mm D= 外径mm R=弯曲半径mm 二,以下是焊接弯头的计算公式

1.外径壁厚*壁厚*0.0387*弯曲半径÷1000, =90°弯头的理论重量举例:426*10 90°R=1.5D的 (42610)×10×1.387×R600÷1000=96.59kg 180°弯头按表2倍计算,45°按1/2计算; 2..(外径壁厚)*壁厚* 0.02466 * R倍数 * 1.57 * 公称通径= 90°弯头的理论重量 举例:426*10 90°R=1.5D的 (42610)×10×0.02466×1.5D×1.57×400=96.6kg 180°弯头按表2倍计算,45°按1/2计算。 三通计算公式:0.02466X(S+1.5)(DS1.5)(3CD/2)/1000(式中S=壁厚mm D=外径mm C=三通主管长度(参外径A/B 电力标准和化工标准壁厚不允许有负偏差。 一级变径按等径的0.94计算,二级变径按0.91计算,三级变径按0.89计算

竖曲线计算范例

第8讲 课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然

各种钢结构重量计算公式

各种钢结构重量计算公式 材料重量计算 圆钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 六方体体积的计算 公式①s20.866×H/m/k 即对边×对边×0.866×高或厚度 各种钢管(材)重量换算公式 钢管的重量=0.25×π×(外径平方-内径平方)×L×钢铁比重其中:π = 3.14 L=钢管长度钢铁比重取7.8 所以,钢管的重量=0.25×3.14×(外径平方-内径平方)×L×7.8 * 如果尺寸单位取米(M),则计算的重量结果为公斤(Kg) 钢的密度为:7.85g/cm3 (注意:单位换算) 钢材理论重量计算 钢材理论重量计算的计量单位为公斤(kg )。其基本公式为: W(重量,kg )=F(断面积mm2)×L(长度,m)×ρ(密度,g/cm3)×1/1000 各种钢材理论重量计算公式如下: 名称(单位) 计算公式 符号意义 计算举例 圆钢盘条(kg/m) W= 0.006165 ×d×d d = 直径mm 直径100 mm 的圆钢,求每m 重量。每m 重量= 0.006165 ×1002=61.65kg 螺纹钢(kg/m) W= 0.00617 ×d×d d= 断面直径mm

公路竖曲线计算

公路竖曲线计算

————————————————————————————————作者:————————————————————————————————日期:

课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R —为竖曲线的半径,m 。

抽芯铆钉解析

抽芯铆钉(blind rivets) ---------铆体(rivet body) 钉芯(rivet stem or rivet mandrel GB/T 12617 开口型沉头抽芯铆钉 [编辑本段] 抽芯铆钉检测项目 检查抽芯铆钉成品时需检查:铆体直径、铆体杆长、铆体帽厚以及帽直径、钉芯总长、钉芯外露尺寸、钉帽尺寸,还有装配后的外径都可以考虑。在实际检验中,可针对产品的薄弱环节进行测量,比如:抗拉力、抗剪力,以及钉芯防脱力。 关键要注意铆钉的,拉铆足不足,有没有铆接到位;或者是因为钉芯帽子太大,以至铆体管口拉不下去;还有跳头,即钉芯拉断力太低或是断裂尺寸太细等。?????? [编辑本段] 抽芯铆钉规格 通常规格有2.4 3.2 4 4.8 5 6.4 五个系列. 钉芯长度为11个系列 6-8--8.5--9.5--11--12--12.5--13--14.5--15.5--16--18--21 国内单数的多国外一般是双数 市场长度为 22---25----30----40 不锈钢材料 3.2直径的目前技术可以做到 16mm长(前几天在外看到有厂家已经在做 3.2*20mm的了,国外有做到28mm 长不过没见过.) 4 直径的可以做到 25mm长 4.8 直径的可以做到 40mm长不过通常不怎么用,30mm的用的也是比较少的. 6.4直径的和4.8的差不多可以做到40mm长 封闭型扁圆头抽芯铆钉(GB12615)市场长度的可以增加 5.5 6 长度. 拉丝铆钉目前一般为 4.8*10/14 6.4*14/16/19 拉丝铆钉海马乐克钉为 6.4*14/17/19/21 海马乐克钉 单/双鼓/多鼓尺寸和一般铆钉差不 [编辑本段] 抽芯铆钉的性能等级标准等 性能等级分为 06 08 10 11 12 15 20 21 22 23 30 40 41 50 51 共15个等级. 开口型抽芯铆钉按头部形状分沉头和平圆头两种。其中,性能等级为10级和11级的开口型抽芯铆钉应用较为广泛。2006年国家标准委修订发布了GB/T 12617.1-2006《开口型沉头抽芯铆钉 10、11级》和GB/T 12618.1-2006《开口型平圆头抽芯铆钉 10、11级》两项关于10、11级开口型抽芯铆钉的国家标准。该两项新标准,分别采用ISO15978:2002和ISO15977:2002国际标准,于2006年7月5日发布,于2006年12月1日正式实施。 实施后分别代替GB/T 12617-1990《开口型沉头抽芯铆钉》和GB/T 12618-1990《开口型扁圆头抽芯铆钉》两项旧标准。 一、标准版本的变化 原GB/T 12617和GB/T 12618两项关于开口型抽芯铆钉的产品标准首次发布于1990年,本次为第一次修订。 修订后的新标准将按铆钉的机械性能等级分几个部分发布。众所周知,铆钉的性能等级共设06、08、10、11、12、15、20、21、22、23、30、40、41、50和51等15个级别。到目前为止,GB/T 12617标准已发布五个部分,GB/T 12618标准已发布了六个部分,涵盖了10、11、12、20、21、22、30、40、41、51等10个性能等级。GB/T 12617和GB/T 12618标准的发布情况 本次修订,标准结构也发生了变化。1990年版标准分为范围、引用标准、尺寸、技术条

弯头三通有效计算

(外径-壁厚)*壁厚*0.02466(此为材料密度)=每米材料的重量。结果再*三通的下料长度就是三通的重量,弯头也是一样的算法。 0.02466*(S+1.5)(D-S-1.5)(3C-D/2)/1000 C为主管长度D为外径S为壁厚 或者90°弯头计算公式;0.0387*S(D-S)R/1000 式中S=壁厚mm D=外径mm R=弯曲半径mm 弯头现在国际通用的标准是美国的国家标准ANSIB16.9和16.28。该标准的外径尺寸范围是1/2”~ 80”,一般24”以内的都是用无缝钢管为原材料,26”到80”的都是用钢板冲压以后再焊接。壁厚最大可达60mm,最小到1.24mm。钢种用的最多的是碳素钢(20#)、合金钢和不锈钢,共24个钢种。锅炉上用的CrM°钢像15Cr,用量比较大。三通,外径范围在2.5”-60”,从26”-60”为焊接三通。壁厚28-60mm。大小头规格范围,常规上先说大头规格,再说小头规格,大头最小0.75”,小头最小0.5”,大头最大60”,小头最大48”,20-60”为焊接的,壁厚2.8-4.5mm。 弯头的分类方法,按它的曲率半径来分,可分为长半径弯头和短半径弯头。长半径弯头指它的曲率半径等于1.5倍的管子外径,即R=1.5D。短半径弯头指它的曲率半径等于管子外径,即R=D。式中的D为弯头直径,R为曲率半径。若按压力等级来分,大约有十七种,和美国的管子标准是相同的,有:Sch5s、Sch10s、Sch10、Sch20、Sch30、Sch40s、STD、Sch40、Sch60、Sch80s、XS;Sch80、Sch100、Sch120、Sch140、Sch160、XXS,其中最常用的是STD和XS两种。按弯头的角度分,有45°弯头,有90°弯头和180°弯头。这样一来弯头的种类是很多的,定货时定单常采取如下表示方法:如"LR STD90°8",表示长半径,压力等级为STD,90°的8"弯头;又如,"SR XS45°4"表示短半径,压力等级为XS,45°的4"弯头。以上为弯头的大概分类情况。 三通,一般有两种。三个口直径相等的为等直径三通,两端直径相同,但汇流端直径与其它两个直径不同称为异径三通。表示方法如下:对于等径三通,比如"T3"三通则表示外径是3英寸的等径三通。对于异径三通,比如"T4×4×3.5"表示同径为四英寸异径为3.5英寸的异径三通。压力等级和弯头的压力等级都是一样的,其规格范围也是一样的。 大小头,也是这个分法。大小头的表示方法是大头直径乘以小头直径,例如8"×6"表示大头直径是8英寸,小头直径是6英寸的大小头。 二,弯头重量计算公式 圆环体积=2*3.14*3.14(r2)R r--圆环圆半径 R--圆环回转半径 中空管圆环体积=2*3.14*3.14((r2)-(r’2))R r’--圆环内圆半径 90,60,45度的弯头(肘管)体积分别是对应中空管圆环体积的1/4、1/6、1/8。 钢的密度工程上计算重量时按7.85公斤/立方分米,密度*体积=重量(质量)。

竖曲线计算实例

第二节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω

3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求 对地形起伏较大地区的路段,在夜间行车时,若半径过小,前灯照射距离过短,影响行车安 全和速度;在高速公路及城市道路上有许多跨线桥、门式交通标志及广告宣传牌等,如果它们正好处在凹形竖曲线上方,也会影响驾驶员的视线。 (3)跨线桥下视距要求 为保证汽车穿过跨线桥时有足够的视距,汽车行驶在凹形竖曲线上时,应对竖曲线最小半径加以限制。

相关文档