文档库 最新最全的文档下载
当前位置:文档库 › 三端稳压器(7812,7085等)并联扩流电路

三端稳压器(7812,7085等)并联扩流电路

三端稳压器(7812,7085等)并联扩流电路
三端稳压器(7812,7085等)并联扩流电路

三端稳压器(7812,7085等)并联扩流电路

三端稳压器(7812,7085等)并联扩流电路

用78xx系列三端稳压器设计一款最大1A输出电流的稳压器很简单,但当输出电流高于1A 时,就会出现许多问题。为提供大输出电流,稳压器通常使用并联的功率晶体管。这些功率晶体管的工作点(operating point )很难设计。因为晶体管的集极和射极需要必不可少的功率电阻来设计直流工作点,而功率晶体管和功率电阻都要消耗很大功率,因此设计中要加散热措施。本设计实例是一个可提供大输出电流的简单稳压器。基本的构想是并联多个三端稳压器。每只78xx系列稳压器能提供1A电流,并且有5 、6 、8 、9 、12 、15 、18和24V多种电压版本。本文以7812为例.

图1显示两只并联的7812 。

图1 :两只7812并联,将输出电流加倍至2A 。

图2 :用20只7812将图1中电路的输出能力提升至20A 。

两只7812独立工作,每只提供最大1A电流。D1和D2完成两只稳压器的隔离。输出电压为稳压器的标称输出电压减去二极管压降:VOUT=VREG –VD 。在COM端接地(0V)情况下,稳压器的输出电压为VOUT 。若要将图1中的输出电压提高到与三端稳压器标称值一致,COM端电位必须比接地高出一个二极管压降。C 、C1和C2为滤波电容。图2显示了一个使用20只7812 ,可提供20A电流的稳压器。所有的二极管均为1N4007 。C=47000 μ F ,所有带编号的电容均为4700 μ F 。7812均固定到一个散热片上,并用一个小风扇降温。采用这种设计概念,可以将电路的输出电流扩充至数百安培。

(1)概述

PC电源从80年代初出现,伴随PC的演变而不断发展,约有20年的历史了,它的基本作用就是从供电电网中获取能量然后转变为适合PC使用的低压直流电能,同时完成必要的安全隔离功能。

PC电源是一种开关电源,采用了PWM方式的开关变换技术,从电网获取的能量要经过整流、滤波、斩波、降压、再整流、滤波等转换过程,并采用负反馈技术使得输出电压保持稳定。相比较线性电源具有体积小、效率高的优点。

在PC电源发展过程中也出现过一些不同的类型和标准,由早期的AT类发展到ATX类,再发展到现在的ATX12V(P4)类,输出电压由最初的4组增加到6组。这些演变是与PC逐渐发展起来的多样化的电源管理功能、多样化的配置以及PC系统电源总线结构密切相关的。

电源是PC的一个关键部件,不仅在性能上要符合相应的标准和规范,而且它的负载能力、可靠性、以及对主板和外设的适应性和兼容性都对整机系统的可靠、稳定运行有很大的影响。接下来我会从电源应符合的标准与规范、电源可靠性、功率与负载分配以及电源与主板和外设的兼容等方面与大家共同作一些探讨。

(2)电源应符合的标准与规范

与PC电源相关的标准和规范有很多,它们从不同的角度对电源提出了不同的要求,是电源是否合格的重要判据,在此对它们分成两类作一简单介绍:

一类标准是强制性标准,是电源必须满足的标准。

电气安全方面:GB 4943-2001《信息技术设备(包括电气事务设备)的安全》(等同IEC 950-1986)。产品不仅要符合该标准的要求,而且还必须能够获得权威机构的认可才能够进行生产和销售,也就是通常所说的安全认证。产品的安全性是每个国家和地区都非常重视的问题,因为它直接关乎到人的生命安全。国内的安全认证叫做长城认证,由中国电工产品认证委员会(CCEE)专门进行电工产品安全认证和相关的合格认证活动。电磁兼容方面:GB 9254-1998《信息技术设备的无线电骚扰限值和测量方法》(等同CISPR 22:1997)。该标准主要对产品产生的传导干扰和辐射干扰提出了限制。其目的就是要求产品在使用时,不能干扰其他设备的正常运行。

谐波电流方面:GB 17625.1-1998《低压电气及电子设备发出的谐波电流限值(设备每相输入电流≤16A)》(等同IEC 61000-3-2:1995)。该标准是针对产品对电网造成的影响而制定的,这种影响称为电力污染,谐波电流的问题也是一个越来越受人们重视的问题,欧洲地区已经从2001年起开始强制实施谐波电流限制的标准,国内从1998年就颁布了相应的标准,但尚未强制实施。对谐波电流进行抑制的技术习惯上也叫功率因数校正技术(PFC)。

所有强制性的标准有合并到一起进行认证的趋势,已经有相关的文件颁布,将会在2003年实施。实施后认证名称称为CCC认证。

另一类标准是非强制性的标准,也可以叫做推荐标准。

电磁兼容方面:GB/T 17618-1998《信息技术设备抗扰度限值和测量方法》(等同CISPR 24:1997)。该标准与GB 9254-2001《信息技术设备的无线电骚扰限值和测量方法》其实是产品电磁兼容性的两个方面,GB9254着眼于产品发出的干扰,而GB 17618则是产品应具备的抗干扰能力,只有同时满足这两方面的要求才算完善的产品,才能保证不同的设备同时使用时不会互相影响。但这两方面有轻重之分,而干扰相比较抗扰会造成更严重的问题,所以GB 9254是强制性标准而GB/T 17618属于推荐标准。

综合性:GB/T 14714-1993《微小型计算机系统设备用开关电源通用技术条件》该标准在国际上并没有相对应的标准,是我国专门针对计算机电源产品编写的一份指导性的标准,它的内容涉及产品的性能、环境、制造、检测、包装、运输等等内容。虽然不属于强制性标准,但它所包含的内容比较全面,有很好的参考价值和指导意义。

Intel:《ATX/ATX12V Power Supply Design Guide》,《SFX/SFX12V Power Supply Design Guide》。最后要介绍的规范,就是Intel的这两个电源设计指南,这两份设计指南虽然不是由国家机构发布的标准,严格意义上也不是规范文件,但它却是目前PC电源领域最重要的产品设计参考,因为Intel在PC领域长期处于绝对的领先地位,成了事实上的行业“领头羊”和兼容标准。这两份设计指南中对PC电源作了非常详尽的描述,从外形结构、接口定义到各个输入输出参数的定义和设定,几乎涵盖PC电源所有特性。目前全球绝大多数的PC电源都在依据该指南进行设计、测试、和评价。

(3)电源的可靠性

电源是在进行能量的处理,其内部器件要承受高电压、大电流、高功率和热量损耗,是整机中容易发生故障的一个部件,因此它的可靠性对整机可靠性有非常重要的意义。据统计显示:引起设备不可靠的原因设计错误约占1/3,元器件质量约占1/3,制造、操作和维护约占1/3。其实后两方面也与设计阶段的考虑不周有关。为了取得高可靠性,必须从设计阶段就开始考虑可靠性的问题。

要获得高的可靠性设计是最重要的,设计中主要从以下几个角度来处理:

优选线路。电路设计中尽量多利用标准化的电路或是经过考验可靠性高的电路,并且应尽量采用成熟的技术。

电路设计遵循简化原则。在保证设计功能和指标的前提下尽可能以最简单的线路和最少量的元器件来实现设计,减少元器件数量的同时也要压缩品种数可规格。从可靠性角度出发不能为了性能的少许改进而增加大量元器件,要有足够的容差设计和最坏情况设计。也就是要考虑元器件参数的公差、漂移以及随环境条件的变化等因素。

正确选用元器件,并针对元器件工作应力合理进行降额设计。正确选用元器件的类型是首要的,这需要设计者对每种器件的类型有足够的认识。选定类型后再进行降额设计,降额是指元器件在低于其额定值的应力条件下工作。按照元器件类型和降额曲线分别进行温度、电压、功率的降额设计。

提高可靠性的方法除了进行良好设计外,还可以通过实验方法进行,其过程是不断恶化产品的环境条件(电压、温度等)直至失效,就可找到最薄弱的环节,然后改进该环节,再继续恶化环境条件,该方法是比较实用的一种方法。

可靠性的衡量是失效率或是平均无故障时间MTBF,两者互为倒数。MTBF可以进行计算或是通过试验来测定和验证,国内多采用试验验证方法,依据GB/T 5080.7-1986采用定时(定数)截尾试验方案,进行是否达到预定MTBF的判断。

三端稳压器(7812,7085等)并联扩流电路

三端稳压器(7812,7085等)并联扩流电路 三端稳压器(7812,7085等)并联扩流电路 用78xx系列三端稳压器设计一款最大1A输出电流的稳压器很简单,但当输出电流高于1A 时,就会出现许多问题。为提供大输出电流,稳压器通常使用并联的功率晶体管。这些功率晶体管的工作点(operating point )很难设计。因为晶体管的集极和射极需要必不可少的功率电阻来设计直流工作点,而功率晶体管和功率电阻都要消耗很大功率,因此设计中要加散热措施。本设计实例是一个可提供大输出电流的简单稳压器。基本的构想是并联多个三端稳压器。每只78xx系列稳压器能提供1A电流,并且有5 、6 、8 、9 、12 、15 、18和24V多种电压版本。本文以7812为例. 图1显示两只并联的7812 。 图1 :两只7812并联,将输出电流加倍至2A 。 图2 :用20只7812将图1中电路的输出能力提升至20A 。 两只7812独立工作,每只提供最大1A电流。D1和D2完成两只稳压器的隔离。输出电压为稳压器的标称输出电压减去二极管压降:VOUT=VREG –VD 。在COM端接地(0V)情况下,稳压器的输出电压为VOUT 。若要将图1中的输出电压提高到与三端稳压器标称值一致,COM端电位必须比接地高出一个二极管压降。C 、C1和C2为滤波电容。图2显示了一个使用20只7812 ,可提供20A电流的稳压器。所有的二极管均为1N4007 。C=47000 μ F ,所有带编号的电容均为4700 μ F 。7812均固定到一个散热片上,并用一个小风扇降温。采用这种设计概念,可以将电路的输出电流扩充至数百安培。 (1)概述 PC电源从80年代初出现,伴随PC的演变而不断发展,约有20年的历史了,它的基本作用就是从供电电网中获取能量然后转变为适合PC使用的低压直流电能,同时完成必要的安全隔离功能。

12V 30A 7812扩流稳压电源

12V 30A 7812扩流稳压电源-大电流电源 这个电路使用变压器,整流二极管必须是非常高的峰值正向电流,典型100A以上。7812芯片将只通过1安培或更少电流,其余通过外接的晶体管流过。由于电路设计处理高达30安培负载能力,那么6个TIP2955并联可以满足这一需求。每个功率晶体管功耗是总负荷的六分之一,但必须充足的散热能力需要。最大负载电流会产生最大的功耗,因此非常大的散热器是必需的。的。 lm317扩流电路图-30V 5A稳压电源电路图-LM317三极管 这是LM317与三极管2SA1186构成的扩流稳压电源,输出电压2-30V连续可调,负载电流可达5A,如果再多并联几只2SA1186,输出电流可达更高,前提是必需有足够大的散热片或风扇。 R21是NTC热敏电阻,阻值18K。 M1 风扇电机 RLY1 12V继电器电流10A 有兴趣的朋友分析一下这个电路图的工作原理

点击图片查看大图纸 μA723集成电路扩流稳压电源-0.7-30V 10A大电流-2A-整流

稳压专用集成电路–μA723 参数 下图是μA723的方块图,整个IC的组成包括: (A)参考电压输出,第六脚输出7.15V。 (B)由运算放大器组成的误差放大器。 (C) Q14,Q15组成的串联达林顿晶体管。 (D)用作限流的Q16晶体管。 (E)输入电压范围: 9.5V ~ 40V。 (F)输出电压范围: 2V ~ 37V。 (G)参考电压输出:7.15V。 (H)最大输出电流:150 mA。 (I)输出电阻:0.1W。 (J)温度系数:0.003%/oC。 (K) %V.R. = 0.03% (50mA)。 图1

三端稳压器工作原理(精华)

LM317工作原理 三端稳压集成电路LM317是三端稳压集成电路,它具有输出电压可变、内藏保护功能、体积小、性价比高、工作稳定可靠等特点。采用的电路模式如图所示,调节可变电阻R2的阻值,便可从LM317的输出端获得可变的输出电压0U 。 从图中的电路中可以看出,LM317的输出电压(也就是稳压电源的输出电压)0U 为两个电压之和。即A 、B 两点之间的电压也就是加在R2上的电压 222R R U I R =?,而2R I 实际上是两路电流之和,一路是经R1流向R2的电流1R I ,其大小为1/1R U R 。因1R U 为恒定电压1.25V ,Rl 是一个固定电阻,所以1R I 是一个恒定的电流。另一路是LM317调整端流出的电流D I ,由于型号不同(例如LM317T 、LM317HVH 、LM317LD 等),生产厂家不同,其D I 的值各不相同。即使同一厂家,同一批次的LM317,其调整端流出的电流D I 也各不相同。尽管这祥.但总的来说D I 的电流但是有一定规律的,即D I 的平均值是50A μ左右,最大值一般不超过100A μ。而且在LM317稳定工作时,D I 的值基本上是一个恒定的值。当由于某种原因引起D I 变化相对较大时,LM317就不能稳定地工作。总而言之,2R I 是1R I 、D I 两路恒定电流之和.2R U 是由两路恒定电流1R I 、D I 流经R2产生的,调节R2的阻值即可调节LM317的输出电压0U (0U 是恒定电压1R U 与2R U 之和)。既然D I 和IR1对调节输出电压0U 都起到了一定的作用,并且1R I 是

由R1提供的, I的大小也没有任何限制.是否可以使R1的阻值趋于无穷大, R 1 使 I的电流值趋向于无穷小?如果可以这样做的话,就可以去掉R1,只用可变R 1 电阻R2就可以调节LM317的输出电压。 LM317作为输出电压可变的集成三端稳压块,是一种使用方便、应用广泛的集成稳压块。稳压电源的输出电压可用下式计算, V=1.25(1+R2/R1)。仅 仅从公式本身看,R1、R2的电阻值可以随意设定。然而作为稳压电源的输出电压计算公式,R1和R2的阻值是不能随意设定的。首先LM317稳压块的输出电压变化范围是 V=1.25——37V(高输出电压的LM317稳压块如LM317HV A、 LM317HVK等,其输出电压变化范围是V o=1.25——45V),所以R2/R1的比值范围只能是0——28.6V。其次是LM317稳压块都有一个最小稳定工作电流,有的资料称为最小输出电流,也有的资料称为最小泄放电流。最小稳定工作电流的值一般为1.5mA。由于LM317稳压块的生产厂家不同、型号不同,其最小稳定工作电流也不相同,但一般不大于5mA。当LM317稳压块的输出电流小于其最小稳定工作电流时,LM317稳压块就不能正常工作。当LM317稳压块的输出电流大于其最小稳定工作电流时,LM317稳压块就可以输出稳定的直流电压。 要解决LM317稳压块最小稳定工作电流的问题,可以通过设定R1和R2阻值的大小,而使LM317稳压块空载时输出的电流大于或等于其最小稳定工作电流,从而保证LM317稳压块在空载时能够稳定地工作。此时,只要保证 V/(R1 +R2)≥1.5mA,就可以保证LM317稳压块在空载时能够稳定地工作。上式中的1.5mA为LM317稳压块的最小稳定工作电流。当然,只要能保证LM317稳 V/(R1+R2)的值也可以设定为大于1.5mA 压块在空载时能够稳定地工作, 的任意值。

LM317可调稳压器介绍及应用(详解)

LM317可调稳压器介绍及应用(详解) LM317 是美国国家半导体公司的三端可调正稳压器集成电路。LM317 的输出电压范围是1.2V至37V,负载电流最大为1.5A。它的使用非常简单,仅需两个外接电阻来设置输出电压。此外它的线性调整率和负载调整率也比标准的固定稳压器好。LM317 内置有过载保护、安全区保护等多种保护电路。通常 LM317 不需要外接电容,除非输入滤波电容到 LM317 输入端的连线超过 6 英寸(约 15 厘米)。使用输出电容能改变瞬态响应。调整端使用滤波电容能得到比标准三端稳压器高的多的纹波抑制比。LM317能够有许多特殊的用法。比如把调整端悬浮到一个较高的电压上,可以用来调节高达数百伏的电压,只要输入输出压差不超过LM317的极限就行。当然还要避免输出端短路。还可以把调整端接到一个可编程电压上,实现可编程的电源输出。 特性简介 可调整输出电压低到1.2V。保证1.5A 输出电流。典型线性调整率0.01%。典型负载调整率0.1%。80dB 纹波抑制比。输出短路保护。过流、过热保护。调整管安全工作区保护。 多数工程师都知道:他们可以使用某种廉价的三端子可调稳压器,比如Fairchild Semiconductor 公司的LM317,把它作为仅提供某个必要电压值(如36V或3V)的可调稳压器。但是,如果不采用其它方法,那么该值无法低于1.25V。这些器件的内部参考电压为1.25V,并且如果不使用电位偏置,那么它们的输出电压也无法低于该值。解决这个问题的一个办法是使用基于两只二极管的参考电压源(参考文献2)。该方法适合于1.2V~15V,或电压更高的稳压器,但它不适合于超低压固定稳压器或可调稳压器。它采用的两只1N4001二极管不提供必要的1.2V电位偏置,并且具有额外的约为2.5 mV/K的温度不稳定性(参考文献3)。因此,输出电压的额外温度漂移约为100 mV;如果把温度调至20℃(典型室内情况),则它大于1.5V输出电压的6%,等于1V输出电压的10%。可用Fairchild Semiconductor 公司的LM185或Analog Devices公司的AD589可调电压参考IC来解决这些问题。但这些器件很贵,而且在本情形中,它们不仅需要额外的调零,还需要匹配。对于LM185和AD589,位于各自参考电压的这些调整分别为1.215V~1.255V和1.2V~1.25V。请注意:LM317的参考电压为1.2V~1.3V。

经典扩流电路分析

此电路是极为常见的一个线性三端稳压器扩流电路,我们在实际使用的时候,遇到一些由于没有考虑周全或者说是低级错误的故障,故而开贴让坛子里面的朋友讨论,让以后用到此电路的朋友不至于重蹈覆辙. 1. 首先说此电源的缺点吧: 1.1 此电源是线性稳压电路,所有有其特有的内部功率损耗大,全部压降均转 换为热量损失了,效率低.所以散热问题要特别注意. 1.2 由于核心的元件7805的工作速度不太高,所以对于输入电压或者负载电 流的急剧变化的响应慢. 1.3 此电路没有加电源保护电路,7805本身有过流和温度保护但是扩流三极管TIP32C.html">TIP32C没有加保护,所以存在一个很大的缺点,如果7805在保护状态以后,电路的输出会是Vin-Vce, 电路输出超过预期值,这点要特别注意. 2. 电源的优点. 2.1 电路简单,稳定.调试方便(几乎不用调试). 2.2 价格便宜,适合于对成本要求苛刻的产品. 2.3 电路中几乎没有产生高频或者低频辐射信号的元件,工作频率低,EMI等方 面易于控制. 3. 说说电路工作原理吧. 3.1 下图重新画出了示意图,并表明了电流等流动方向. Io = Ioxx + Ic. Ioxx = IREG – IQ ( IQ 为7805的静态工作电流,通常为4-8mA) IREG = IR + Ib = IR + Ic/β (β为TIP32C.html">TIP32C的电流放大倍数)

IR = VBE/R1 ( VBE 为TIP32的基极导通电压) 所以 Ioxx = IREG – IQ = IR + Ib – IQ = VBE/R1 + IC/β- IQ 由于IQ很小,可略去,则: Ioxx = VBE/R1 + IC/β 查TIP32C.html">TIP32C手册,VBE = 1.2V, 其β可取10 Ioxx = 1.2/R + Ic/β = 1.2/22 + Ic/10 = 0.0545 + Ic/10 (此处取主贴图中 的22 OHM ) Ic = 10 * (Ioxx – 0.0545 ) 假设Ioxx = 100mA, Ic = 10 * ( 100 - 0.0545 * 1000 ) = 455(mA) 则Io = Ioxx + Ic = 100 + 455 = 555 mA. 再假设Ioxx = 200mA, Ic = 10 * ( 200 – 0.0545 * 1000 ) = 1955mA Io = Ioxx + Ic = 200 + 1955 = 2155mA 由上面的两个举例可见,输出电流大大的提高了. 上面的计算很多跟贴都讲述了,仔细推导一番即可. 3.2 电阻R的大小 R的大小对调整通过7805的电流有很大的关系,取不同的值带入上式即可看出.

三端稳压电路图集分析

三端稳压电路图集(六祖故乡人汇编2013年9月8日) LM317可调稳压电源电路图: LM317是可调稳压电源中觉的一种稳压器件,使用也非常方便。LM317 是美国国家半导体公司的三端可调正稳压器集成电路。很早以前我国和世界各大集成电路生产商就有同类产品可供选用,是使用极为广泛的一类串连集成稳压器。LM317 的输出电压范围是1.25V —37V(本套件设计输出电压范围是 1.25V—12V),负载电流最大为 1.5A。它的使用非常简单,仅需两个外接电阻来设置输出电压。此外它的线性率和负载率也比标准的固定稳压器好。LM317 内置有过载保护、安全区保护等多种保护电路。 为保证稳压器的输出性能,R应小于240欧姆。改变RP阻值稳压电压值。D5,D6用于保护LM317。 输出电压计算公式:Uo=(1+RP/R)*1.25 下面是LM317可调稳压电源电路图的元器件清单: 下面是LM317可调稳压电源电路图:

三端集成稳压可调电源电路设计: 如图所示,此电路的核心器件是W7805。W7805将调整器,取样放大器等环节集于一体,内部包含限流电路、过热保护电路、可以防止过载。具有较高的稳定度和可靠性。W7805属串联型集成稳压器。其输出电压是固定不变的,这种固定电压输出,极大的限制了它的应用范围。如果将W7805的公共端即3脚与地断开,通过一只电位器接到-5V左右的电源上,就可以在改变电位器阻值的同时,使集成稳压器的取样电压及输出电压都随之改变。图中RP1就是为此而设计的。只要负电压的大小取得合适便能使输出电压从0V起连续可调,输出电压的最大值由W7805的输入电压决定,本稳压器0V-12V可调。VD3整流,C2滤波,VD4稳压后提供5V负电压。 元件选择:变压器应选用5V A,输出为双14V;二极管VD1-VD4选用1N4001;VDW 选用稳压值为5-6V的2CW型稳压管;RP1用普通电位器;RP2为微调电阻。IC用7805;其它元件参数图中已注明,无特殊要求。 电路调试:元件焊接无误后可通电调试,首先测b点对地电压,空载时应在18V左右;d点电压大约为-5.5V--6V,如不正常,可重点检查VD3,C2,R1,VDW,RP2等元件,然后再测量输出电压,旋动RP1,万用表指针应能在较大范围变动,说明稳压器工作正常;最后

三端稳压器的扩展使用

三端稳压器的扩展使用 这里总结了一些常用三端集成稳压器的一些使用知识、扩展功能的方法,以使电子爱好者能利用手头现有的各种稳压器来组成所需要的各种电源电路。下面分别介绍几种常用的方法。 扩流电路: 我们知道,78**(79**)系列和LM317/337系列最大输出电流为1.5A,如果所用电子装置需要稳压电源提供更大的电流,就需要采用扩流措施了。下面介绍两种常用的扩流方法。 ?外加功率管扩流。 电路如图1所示(在后面的电路图中,为简单起见,均将电源变压器、整流二极管和输入滤波电容省略不画)。R1是过流保护取样电阻,当输出电流增大超过一定值时,R1上压降增大,使BG1的Ube值减小,促使BG1向截止方向转化。因为集成稳压器本身有过热保护电路,如果我们将BG1和集成稳压器安装在同一个散热器板上,则BG1也同样受到过热保护。图1电路可输出小于7A的电流。 ?多块稳压器并联扩流。 电路如图2所示。这是一种线路简单、无需调整,有较高实用性的电路,其最大输出电流为N*1.5A(N为并联的稳压器的块数)。实际应用中,稳压器最好使用同一厂家、同一型号产品,以保证其参数一致性。另外,最好在输出电流上留有10-20%的余量,以避免个别稳压器失效造成稳压器连锁烧毁。 扩压电路: 这里常用的方法有三种,分别是: ?固定抬高输出电压。 电路如图1所示。如果需要输出电压Uo高于手头现有的稳压块的输出电压时,可使用一只稳压二极管DW将稳压块的公共端电位抬高到稳压管的击穿电压Vz,此时,实际输出电

压Uo等于稳压块原输出电压与Vz之和。将普通二极管正向运用来替代DW,同样可起到抬高输出电压的作用。例如,想为自己的录音机装一个6V、500mA的稳压电源,而手头只有一只7805稳压器,则可按图2电路安装。D1选用2CP(IN4001)类硅二极管,其上压降约为0.8V,这样输出就约为5.8V,足以满足录音机的需要了。若将D1换成发光二极管LED,不但能提高输出电压,而且LED发光还起到电源指示作用。

三端稳压管电路

三端稳压器扩流电路 2007-02-07 18:43 经典的电源电路(7805扩流) 上图为在非常流行的经典电路上做小许改动的电路图.电路目的: 1)+24V 转换为+5V +/-5% 2)可提供+2A以上的电流. 主要元件: TIP32C (ST) L7805CV (ST)

图中的R62,在实际应用中已经更改为22 OHM. 功率元件TIP32C已经加散热片 ---------------------------------- ----------- 此电路是极为常见的一个线性三端稳压器扩流电路,我们在实际使用的时候,遇到一些由于没有考虑周全或者说是低级错误的故障,故而开贴让坛子里面的朋友讨论,让以后用到此电路的朋友不至于重蹈覆辙. 1. 首先说此电源的缺点吧: 1.1 此电源是线性稳压电路,所有有其特有的内部功率损耗大,全部压降均转换为热量损失了,效率低.所以散热问题要特别注意. 1.2 由于核心的元件7805的工作速度不太高,所以对于输入电压或者负载电流的急剧变化的响应慢.

1.3 此电路没有加电源保护电路,7805本身有过流和温度保护但是扩流三极管TIP32C没有加保护,所以存在一个很大的缺点,如果7805在保护状态以后,电路的输出会是Vin-Vce, 电路输出超过预期值,这点要特别注意. 2. 电源的优点. 2.1 电路简单,稳定.调试方便(几乎不用调试). 2.2 价格便宜,适合于对成本要求苛刻的产品. 2.3 电路中几乎没有产生高频或者低频辐射信号的元件,工作频率 低,EMI等方面易于控制. 3. 说说电路工作原理吧. Io = Ioxx + Ic. Ioxx = IREG – IQ ( IQ 为7805的静态工作电流,通常为4-8mA) IREG = IR + Ib = IR + Ic/β (β为TIP32C的电流放大倍数) IR = VBE/R1 ( VBE 为 TIP32的基极导通电压) 所以 Ioxx = IREG – IQ = IR + Ib – IQ = VBE/R1 + IC/β- IQ 由于IQ很小,可略去,则: Ioxx = VBE/R1 + IC/β 查TIP32C手册,VBE = 1.2V, 其β可取10 Ioxx = 1.2/R + Ic/β = 1.2/22 + Ic/10 = 0.0545 + Ic/10 (此处

常用三端稳压器原理及应用资料

三端集成稳压器原理与应用 三端集成稳压器的分类 秦炎 做电子实验或自制各种电子装置都离不开直流稳压电源用分立元件组装的稳压电源调试维修比较麻烦且体积较大随着功率集成技术的提高和电子电路集成化的发展出现了集成稳压器所谓集成稳压器是指将功率调整管取样电阻以及基准稳压误差放大启动和保护电路等全部集成在一个芯片上而形成的一种稳压集成电路 目前常见的三端集成稳压器按性能和用途可分为以下4类 1. 三端固定输出正稳压器所谓三端是指电压输入端电压输出端和公共接地端 输出正是指输出正电压国内外各生产厂家均将此系列稳压器命名为78系列 如7805 7812等其中78后面的数字代表该稳压器输出的正电压数值以伏特为单位 例如7805即表示稳压输出为5V 7812表示稳压输出为12V等有时我们会发现在型号78前面和后面还有一个或几个英文字母如W78 AN78 L78 CV等前面的字母称前辍一般是各生产厂公司的代号后面的字母称为后 辍用以表示输出电压容差和封装外壳的类型等不过各生产厂家对集成稳压器型号后辍所用字母定义不一但这对实际使用没有大的影响 78 系列稳压器按输出电压分共有9种分别为7805 78067808 7809 7810 78127815 78187824按其最大输出电流又可分为78L78M 和78三个分系列其中78L系列最大输出电流为100mA 78M 系 列最大输出电流为500mA 78系列最大输出电流为1.5A 78系列稳压器外形见图1其中78L系列有两种封装形式一种是金属 壳的TO 39封装见图1a一种是塑料TO 92封装见图1 b前者温度特性 比后者好最大功耗为700mW加散热片时最大功耗可达1.4W后者最大功耗为 700mW使用时无需加散热片78L系列中一般以塑封的使用较多78M 系列有两种封装形式一种是T O 202塑封见图1 c一种是TO 220塑封见 图1 d不加散热片时最大功耗为1W加2002004m㎡散热片时最大功耗可 达7.5W 78系列也有两种封装形式一种是金属亮的TO 3封装见图1e 一种是料TO 220封装见图1d不加散热片时前者最大功耗可达2.5W后者可 达2W加装200 2004mm3散热片时最大功耗可达15W塑料封装以其安 装固定容易价廉等优点在无线电爱好者中使用居多 2. 三端固定输出负稳压器即79系列除输出电压为负电压引脚排列不同 外其命名方法外型等均与78系列相同 3 .三端可调输出正稳压器此处的三端是指电压输入端电压输出端和电压调整端 在电压调整端外接电位器后可对输出电压进行调节其主要特点是使用灵活 4..三端可调输出负稳压器其输出为负电压

可调直流稳压电源的设计完整版

可调直流稳压电源的设计 直流稳压电源的设计 设计要求 基本要求:短路保护,电压可调。若用集成电路制作,要求具有扩流电路。 基本指标:输出电压调节范围:0-6V,或0-8V,或0-9V,或0—12V; 最大输出电流:在0.3A-1.5A区间选一个值来设计; 输出电阻Ro:小于1欧姆。 其他:纹波系数越小越好(5%Vo),电网电压允许波动范围 + -10%。 设计步骤 1.电路图设计 (1)确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出直流稳压电源方框图。 (2)系统分析:根据系统功能,选择各模块所用电路形式。 (3)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。 (4)总电路图:连接各模块电路。 2. 设计思想 (1)电网供电电压交流220V(有效值)频率为50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。 (2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。 (3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。 (4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响 。 的稳定直流电压输出,供给负载R L 电路设计

(一)直流稳压电源的基本组成 直流稳压电源是将频率为50Hz 、有效值为220V 的单相交流电压转换为幅值稳定、输出电流为几十安以下的直流电源,其基本组成如图(1)所示: 图(1) 直流稳压电源的方框图 直流稳压电源的输入为220V 的电网电压,一般情况下,所需直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对交流电压进行处理。变压器副边电压有效值决定于后面电路的需要。 变压器副边电压通过整流电路从交流电压转换为直流电压,即正弦波电压转换为单一方向的脉动电压,半波整流电路和全波整流电路的输出波形如图所示。可以看出,他们均含有较大的交流分量,会影响负载电路的正常工作。 为了减小电压的脉动,需通过低通滤波电路滤波,使输出电压平滑。理想情况下,应将交流分量全部滤掉,使滤波电路的输出电压仅为直流电压。然而,由于滤波电路为无源电路,所以接入负载后势必影响其滤波效果。对于稳定性要求不高的电子电路,整流、滤波后的直流电压可以作为供电电源。 交流电压通过整流、滤波后虽然变为交流分量较小的直流电压,但是当电网电压波动或者负载变化时,其平均值也将随之变化。稳压电路的功能是使输出直流电压基本不受电网电压波动和负载电阻变化的影响,从而获得足够高的稳定性。 (二)各电路的选择 1.电源变压器 电源变压器T 的作用是将电网220V 的交流电压变换成整流滤波电路所需要的交流电压U i 。实际上,理想变压器满足I 1/I 2=U 2/U 1=N 2/N 1=1/n ,因此有P 1=P 2=U 1I 1=U 2I 2。变压器副边与原边的功率比为P 2/ P 1=η,式中η是变压器的效率。根据输出电压的范围,可以令变压器副边电压为22V ,即变压系数为0.1。 2.整流电路 T 负 载

三端稳压器的应用归纳

三端稳压器的应用归纳 ★W7800基本应用电路 如上图所示,电路中Ci的作用是消除输入连线较长时其电感效应引起的自激振荡,减小纹波电压。在输出端接电容Co是用于消除电路高频噪声。一般Ci选用0.33μF,Co选用0.1μF。电容的耐压应高于电源的输入电压和输出电压。若Co容量较大,一旦输入端断开,Co将从稳压器输出端向稳压器放电,易使稳压器损坏。因此,可在稳压器的输入端和输出端之间跨接一个二极管,起保护作用。 ★W7800扩大输出电流的稳压电路 若所需输出电流大于稳压器标称值时,可采用外接电路来扩大输出电流,如下图所示。 ★W7800输出电压可调的稳压电路 如下图所示为利用三端稳压器构成的输出电压可调的稳压电路。 改变R2滑动端位置,可调节UO的大小。

电路缺点:三端稳压器作为稳压器件,又为电路提供基准电压。其主要缺点是当公共端电流IW变化时将影响输出电压。因此,实用电路中加电压跟随器将稳压器与取样电阻隔离,如下图所示。 图中电压跟随器的输出电压等于其输入电压,也等于三端稳压器的输出电压,其输出电压的范围为 可以根据输出电压的调节范围及输出电流大小选择三端稳压器及取样电阻。 ★正、负输出稳压电路 W7900系列芯片是一种输出负电压的固定式三端稳压器,输出有-5V、-6V、-9V、-12V、-15V、

-18V和-24V七个电压档次,并且也有1.5A、0.5A和0.1A三个电流档次,如下图所示。 两只二极管起保护作用,正常工作时均处于截止状态。若W7900的输入端未接入输入电压,W7800的输出电压将通过负载电阻接到W7900的输出端,使D2导通,从而将W7900的输出端钳位在0.7V左右,保护其不至于损坏;同理,D1可在W7800的输入端未接入输入电压时保护其不至于损坏。 ★W117基准电压源电路 如上图所示是由W117组成的基准电压源电路,输出端和调整端之间的电压是非常稳定的电压,其值为1.25V。输出电流可达1.5A。 ★典型应用电路 可调式三端稳压器的主要应用是要实现输出电压可调的稳压电路。其典型应用电路如图所示。 输出电压为

三端稳压器78_79系列管脚序号判断技巧

三端稳压管7915 L7915 LM7915 只一管批量价格更加优惠 库存一直在更新产品品牌可能改变有需要指定品牌的朋友请和我们说明下否则品牌随 机发货 -------------------------------------------------------------------------------------------------- 三端稳压管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。稳压管在反向击穿时,在一定的电流范围内(或者说在一定功率损耗范围内),端电压几乎不变,表现出稳压特性,因而广泛应用于稳压电源与限幅电路之中。 三端稳压管的分类 三端稳压管,主要有两种,一种输出电压是固定的,称为固定输出三端稳压管,另一种输出电压是可调的,称为可调输出三端稳压管,其基本原理相同,均采用串联型稳压电路。 三端稳压管的原理 因为固定三端稳压器属于串联型稳压电路,因此它的原理等同于串联型稳压电路。 其中R1、Rp、R2组成的分压器是取样电路,从输出端取出部分电压UB2作为取样电压加至三极管T2的基极。稳压管Dz以其稳定电压Uz作为基准电压,加在T2的发射极上。R3是稳压管的限流电阻。三极管T2组成比较放大电路,它将取样电压UB2与基准电压Uz 加以比较和放大,再去控制三极管T1的基极电位。输入电压Ui加在三极管T1与负载RL 相串联的电路上,因此,改变T1集电极间的电压降UCE1便可调节RL两端的电压Uo。也就是说,稳压电路的输出电压Uo可以通过三极管T1加以调节,所以T1称为调整管。由于调整元件是晶体管管,而且在电路中与负载相串联,故称为晶体管串联型稳压电路。电阻R4和T1的基极偏置电阻,也是T2的集电极负载电阻。 当电网电压降低或负载电阻减小而使输出端电压有所下降时,其取样电压UB2相应减小,T2基极电位下降。但因T2发射极电位既稳压管的稳定Uz保持不变,所以发射极电压UBE2减小,导致T2集电极电流减小而集电极电位Uc2升高。由于放大管T2的集电极与调整管T1的基极接在一起,故T1基极电位升高,导致集电极电流增大而管压降UCE1减小。 因为T1与RL串联,所以,输出电压Uo基本不变。 同理,当电网电压或负载发生变化引起输出电压Uo增大时,通过取样、比较放大、调整等过程,将使调整调整管的管压降UCE1增加,结果抑制了输出端电压的增大,输出电压仍 基本保持不变。 调节电位器Rp,可对输出电压进行微调。调整管T1与负载电阻RL组成的是射极输出 电路,所以具有稳定输出电压的特点。 在串联型稳压电源电路的工作过程中,要求调整管始终处在放大状态。通过调整管的电流等于负载电流,因此必须选用适当的大功率管作调整管,并按规定安装散热装置。为了防止短路或长期过载烧坏调整管,在直流稳压器中一般还设有短路保护和过载保护等电路。 三端稳压管使用注意事项

三端稳压7805和7905稳压原理及典型电路

三端稳压7805和7905稳压原理及典型电路2010-08-21 18:02:36| 分类:家电维修| 标签:稳压电压 tj 电路输出|字号大中小订阅7805外形结构

电子产品中,常见的三端稳压集成电路有正电压输出的78 ××系列和负电压输出的79××系列。顾名思义,三端IC是指这种稳压用的集成电路,只有三条引脚输出,分别是输入端、接地端和输出端。它的样子象是普通的三极管,TO- 220 的标准封装,也有9013样子的TO-92封装。 用78/79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806表示输出电压为正6V,7909表示输出电压为负9V。 因为三端固定集成稳压电路的使用方便,电子制作中经常采用。 注意事项 在实际应用中,应在三端集成稳压电路上安装足够大的散热器(当然小功率的条件下不用)。当稳压管温度过高时,稳压性能将变差,甚至损坏。 当制作中需要一个能输出1.5A以上电流的稳压电源,通常采用几块三端稳压电路并联起来,使其最大输出电流为N个1.5A,但应用时需注意:并联使用的集成稳压电路应采用同一厂家、同一批 号的产品,以保证参数的一致。另外在输出电流上留有一定的余量,以避免个别集成稳压电路失效时导致其他电路的连锁烧毁。 在78 ** 、79 ** 系列三端稳压器中最常应用的是TO-220 和TO-202 两种封装。这两种封装的图形以及引脚序号、引脚功能如附图所示。 从正面看①②③引脚从左向右按顺序标注,接入电路时①脚电压高于②脚,③脚为输出位。如对于78**正压系列,①脚高电位,②脚接地,;对与79**负压系列,①脚接地,②脚接负电压,输出都是③脚。如附图所示。

三端集成稳压器应用电路方案

三端集成稳压器应用电路方案 三端集成稳压器具有体积小、可靠性高、使用灵活方便等特点,广泛应用于各种电子设备中。文章介绍几种三端集成稳压器的的应用电路方案,并给出了实际应用电路的具体参数,电路实用性强,应用实践证明效果良好。 标签:三端集成稳压器;基本应用;扩展应用 随着半导体集成电路技术的迅速发展,采用串联型稳压电路基本原理,集成了过压、过流、过热等保护电路,具有较大功率输出,稳定性能好的三端集成稳压器应运而生。它具有体积小,可靠性高,使用灵活,价格低廉等优点,因此具有广泛的应用。 1 三端集成稳压器基本应用电路方案 所谓三端是指电压输入端、电压输出端和公共接地端。输出有正负两种电压,W78XX系列为三端固定正电压输出的集成稳压器,如W7805、W7812等。W79XX 系列为三端固定负电压输出的集成稳压器,如W7905、W7912等。另外还有三端可调集成稳压器,如LM317等。 W78XX和W79XX系列构成的基本稳压电路,输入端的电容Ci是在输入线较长时用于旁路高频干扰脉冲,减少输入波纹电压,接线不长时可省略。输出端的电容CO用来改善暂态响应,使瞬时增减负载电流时不致引起输出电压有较大的波动,削弱电路的高频噪声。Ci、CO一般在0.1μF~1μF之间。 2 三端集成稳压器扩展应用电路方案 2.1 扩压电路 ①固定抬高输出电压,电路如图1所示。如果需要输出电压UO高于手边现有的三端集成稳压器的输出电压时,可用一只稳压二极管VZ将三端集成稳压器的公共端电位抬高到稳压管的击穿电压UZ,此时,实际输出电压UO等于稳压器原输出电压与UZ之和。将普通二极管正向运用来代替VZ,同样可起到抬高输出电压的作用,若将二极管换成发光二极管LED,不但能提高输出电压,而且LED发光还起到电源指示作用。 ②输出电压可调电路。利用78XX系列固定输出稳压电路,也可以组成电压可调电路,如图2。输出电压UO≈UXX(1+R2/R1),其中UXX为三端集成稳压器标称输出电压。显然,若将R1、R2数值固定,该电路就可以用于固定抬高输出电压。如将R1或R2换成光敏电阻,便可以构成光控输出电压关断电路。图3中用运放作为电压跟随器,克服了三端集成稳压器静态电流IQ的影响,输出电压UO=UXX(1+R2/R1),其中R1为电位器中心抽头与A点之间的电阻值,R2为电位器中心抽头与B点之间的电阻值。电路中运放也可用741运放,输出电

三端集成稳压器W7812 教学设计

任务六三端集成稳压器W7812 教学目标 1.掌握三端固定式集成稳压器W7812的主要性能指标; 2.掌握三端固定式集成稳压器W7812构成的电源电路的组装(设计、布 线、制板、安装、焊接、调试)技能; 3.熟悉模拟电子技术技能训练中常用电子测量仪器的综合使用技能。 工作任务 掌握三端固定式集成稳压器W7812构成的电源电路的装配与调试技能。实训器材 表5-6-2 工具、材料、仪器 工具、仪器材料 双踪示波器一台连接导线若干 指针式万用表或数字式万用表一台焊锡丝若干 电烙铁45W、镊子、尖嘴钳各一把元器件见表5-6-1 工频可调电源一台 实践操作 基础知识 基础知识 (一)工作原理 三端集成稳压器按输出电压类型可分为固定式和可调式。 三端固定式集成稳压器分为正电压输出和负电压输出两类。W7800系列三端固定式集成稳压器是正电压输出,其输出正电压值有5V、6V、9V、12V、 15V、18V、24V七个挡次,输出电流最大可达1.5A(加散热片),同类型78M 系列输出电流为0.5A,78L系列输出电流为0.1A。 可调式三端集成稳压器可通过外接元件对输出电压进行调整,以适应不同的需要。 1.W7800和W7900系列三端式集成稳压器 现以L7805CA和LM7905CT为例介绍其外形和基本接线图,W78系列和W79系列的各型集成稳压器使用均与此类似。 (1)三端固定式集成稳压器L7805CA的外形和基本接线图 如图5-6-1所示为三端固定式集成稳压器L7805CA的实物、外形和接线图。 它有三个引出端: 输入端(电压输入端)、输出端(电压输出端)、公共端。

图5-6-1 三端固定式集成稳压器L7805CA的实物、外形与接线图(2)三端固定式集成稳压器LM7905CT的外形和基本接线图 图5-6-2为三端固定式集成稳压器LM7905CT(输出负电压)实物、外形及接线图 图5-6-2 三端固定式集成稳压器LM7905CT实物、外形与接线图 2.W7800和W7900系列三端固定式集成稳压器的扩展使用 当集成稳压器本身的输出电压或输出电流不能满足要求时,可通过外接电路来进行性能扩展。 图5-6-3为三端固定式集成稳压器正、负双电压输出电路, 图5-6-3 三端集成稳压器正、负双电压输出电路图5-6-4 三端集成稳压器输出电压扩展电路 图5-6-4是一种简单的三端固定式集成稳压器输出电压的扩展电路。 图5-6-5是通过外接晶体三极管VT及电阻R1来进行电流扩展的电路。 β I I U I I U I U R C 01 BE B i BE R BE 1 - = - = = 式中:I C为晶体三极管T的集电极电流,它应等于I C=I0-I01;β为VT 的电流放大系数;对于锗管U BE可按0.3V估算,对于硅管U BE按0.7V估算。

78,79系列三端稳压器器件资料

7805 7905

78XX系列集成稳压器的典型应用电路如下图所示,这是一个输出正5V直流电压的稳压电源电路。IC采用集成稳压器7805,C1、C2分别为输入端和输出端滤波电容,RL为负载电阻。当输出电较大时,7805应配上散热板。 下图为提高输出电压的应用电路。稳压二极管VD1串接在78XX稳压器2脚与地之间,可使输出电压Uo得到一定的提高,输出电压Uo为78XX稳压器输出电压与稳压二极管VC1稳压值之和。VD2是输出保护二极管,一旦输出电压低于VD1稳压值

时,VD2导通,将输出电流旁路,保护7800稳压器输出级不被损坏。 下图为输出电压可在一定范围内调节的应用电路。由于R1、RP电阻网络的作用,使得输出电压被提高,提高的幅度取决于R P与R1的比值。调节电位器RP,即可一定范围内调节输出电压。当RP=0时,输出电压Uo等于78XX稳压器输出电压;当RP逐步增大时,Uo也随之逐步提高。 下图为扩大输出电流的应用电路。VT2为外接扩流率管,VT1为推动管,二者为达林顿连接。R1为偏置电阻。该电路最大输出电流取决于VT2的参数。 下图为提高输入电压的应用电路。78XX稳压器的最大输入电压为35V(7824为40V),当输入电压高于此值时,可采用下图所示的电路。VT、R1和VD组成一个预稳压电路,使得加在7800稳压器输入端的电压恒定在VD的稳压值上(忽略VT的b-e结压降)。Ui端的最大输入电压仅取决于VT的耐压。

集成稳压器还可以用作恒流源。下图为78XX稳压器构成的恒流源电路,其恒定电流Io等于78XX稳压器输出电压与R1的比 值。 79XX系列集成压器是常用的固定负输出电压的三端集成稳压器,除输入电压和输出电压均为负值外,其他参数和特点与78XX 系列集成稳压器相同。79XX系列集成稳压的三个引脚为:1脚为接地端,2脚为输入端,3脚为输出端。 79XX系列集成稳压器的应用电路也很简单。下图所示为输出-5V直流电压的稳压电源电路,IC采用集成稳压器7905,输出电 流较大时应配上散热板。 同时运用78XX和79XX稳压器,可以组成正、负对称输出的稳压电路。下图所示为±5V稳压电源电路,IC1采用固定正输出集 成稳压器7805,IC2采用固定负输出集成稳压器7905,VD1、VD2为保护二极管,用以防止正或负输入电压有一路未接入时 损坏集成稳压器。 基于7805和7905的直流稳压电源 2007年08月06日星期一 02:16 P.M. 先前用的是个开关电源,干扰比较大,系统运行一段时间就死机灰屏,弄了个线性的.既便宜又好用. 主要材料:220V~9V变压器,二极管1N4007,7805,7905,电容25V/470u,散热片(可选) 电路图:

使用7805三端稳压器的扩流电路设计

使用7805三端稳压器的扩流电路设计 一个线性三端稳压器扩流电路, 此电路是极为常见的一个线性三端稳压器扩流电路,我们在实际使用的时候,遇到一些由于没有考虑周全或者说是低级错误的故障,故而开贴让坛子里面的朋友讨论,让以后用到此电路的朋友不至于重蹈覆辙. 1. 首先说此电源的缺点吧: 1.1 此电源是线性稳压电路,所有有其特有的内部功率损耗大,全部压降均转换为热量损失了,效率低. 所以散热问题要特别注意. 1.2 由于核心的元件7805的工作速度不太高,所以对于输入电压或者负载电流的急剧变化的响应慢. 1.3 此电路没有加电源保护电路,7805本身有过流和温度保护但是扩流三极管TIP32C没有加保护,所以存在一个很大的缺点,如果7805在保护状态以后,电路的输出会是Vin-Vce, 电路输出超过预期值,这点要 特别注意. 2. 电源的优点. 2.1 电路简单,稳定.调试方便(几乎不用调试). 2.2 价格便宜,适合于对成本要求苛刻的产品. 2.3 电路中几乎没有产生高频或者低频辐射信号的元件,工作频率低,EMI等方面易于控制. 3. 说说电路工作原理吧. Io = Ioxx + Ic. Ioxx = IREG – IQ ( IQ 为7805的静态工作电流,通常为4-8mA)

IREG = IR + Ib = IR + Ic/β (β为TIP32C的电流放大倍数) IR = VBE/R1 ( VBE 为 TIP32的基极导通电压) 所以 Ioxx = IREG – IQ = IR + Ib – IQ = VBE/R1 + IC/β- IQ 由于IQ很小,可略去,则: Ioxx = VBE/R1 + IC/β 查TIP32C手册,VBE = 1.2V, 其β可取10 Ioxx = 1.2/R + Ic/β = 1.2/22 + Ic/10 = 0.0545 + Ic/10 (此处取主贴图中的22 OHM ) Ic = 10 * (Ioxx – 0.0545 ) 假设Ioxx = 100mA, Ic = 10 * ( 100 - 0.0545 * 1000 ) = 455(mA) 则Io = Ioxx + Ic = 100 + 455 = 555 mA. 再假设Ioxx = 200A, Ic = 10 * ( 200 – 0.0545 * 1000 ) = 1955mA Io = Ioxx + Ic = 200 + 1955 = 2155mA 由上面的两个举例可见,输出电流大大的提高了. 上面的计算很多跟贴都讲述了,仔细推导一番即可. 3.2 电阻R的大小 R的大小对调整通过7805的电流有很大的关系,取不同的值带入上式即可看出. R越大,则输出同样的电流的情况下流过7805的电流要小些,反之亦然. 通常这样的电路中,对于扩流三极管TIP32加散热片,而对于7805则无需要,但是R的值不能过大,其条件是: R < VBE /( IREG – IB). 3.3 电路中7805输入端的电容的取值是一个错误,前面已经有朋友分析过了,主要是会造成浪涌,在上电的瞬间输出远大于5V,对后续电路造成损坏. 实际使用的时候,为了抑制7805的自激振荡,此电容通常取 0.33uF(多数常见的spec.均推荐此参数)

相关文档
相关文档 最新文档