文档库 最新最全的文档下载
当前位置:文档库 › 数学建模 红绿灯问题

数学建模 红绿灯问题

数学建模  红绿灯问题
数学建模  红绿灯问题

十字路口红绿灯的合理设置

陈金康

检索词:红绿灯设置、红绿灯周期

一、问题的提出

作为城市交通的指挥棒,红绿灯对交通的影响起着决定性作用。如果红绿灯的设置不合理,不仅会影响到交通秩序;还有可能会影响到行人和自行车的安全。 目前杭城还有很多路口的红绿灯设置存在一些不合理的因素,我们以古墩路一个路口(界于天目山路和文苑路之间)的红绿灯设置为例,该路口是刚开通的,交管部门对路况和车流量的研究还不是很成熟,因此红绿灯的设置存在一些问题。该路口的车流量相对比较小,有几个方向的车流量特别小,但绿灯时间设置太长,经常出现路口空荡荡但是车辆必须长时间等待的情况;同时在这样的路口,右转红灯显得有些多余。另外,该路口不同时段的红绿灯设置没有什么区别,显然这是非常不合理的。

下面我们就针对该路口来研究一下红绿灯设置的合理方案。我们主要研究两个方面:红绿灯周期的设置以及一个周期内各个方面开绿灯的时间。

二、模型的建立 1、红绿灯周期

从《道路交通自动控制》中,我们可以找到有关红绿信号灯的最佳周期公式:

s

q L C ∑

-+=

15

其中 :

C 为周期时间。

相位:同时启动和终止的若干股车流叫做一个相位。

L 为一个周期内的总损失时间。每一相位的损失时间I=启动延迟时间-结束滞后时间;而整个周期的总损失时间为各个相位总损失时间的和加上各个绿灯间隔时间R 。(通俗地讲,启动延迟时间即司机看到绿灯到车子启动的反应时间,结束滞后时间即绿灯关闭到最后一辆车通过的时间。)

即R I L +∑= q 为相应相位的车流量

s 为相应相位的饱和车流量。(当车辆以大致稳定的流率通过路口时,该流率即该相位的饱和车流量。)

2、南北方向和东西方向开绿灯时间的分配

不妨忽略黄灯,将交通信号灯转换的一个周期取作单位时间,又设两个方向的车流量是稳定和均匀的,不考虑转弯的情形。

设E 是单位时间从东西方向到达路口的车辆数;S 是单位时间从南北方向到达路口的车辆数。假设在一个周期内,东西方向开红灯、南北方向开绿灯的时间为R ,那么在该周期内,东西方向开绿灯、南北方向开红灯的时间为1-R 。

我们要确定交通灯的控制方案,即确定R 。度量一个十字路口的串行效率的主要依据是单位时间内所有车辆在路口滞留的时间总和。因此要确定R ,只需保证在一个周期内,所有车辆在路口滞留的时间总和最短即可。一辆车在路口的滞留时间通常包括两部分,一部分是每辆车遇红灯后的停车等待时间,另一部分是停车后司机见到绿灯重新发动到开动的时间

0t ,它是可以测定的。

首先,对任意给定的R (0

2

22ER R R E =??

同理可得,南北向行驶的所有车辆在一个周期中等待时间的总和为

2

)1(2R S - 凡遇红灯的车辆均需花费t 单位时间启动,这部分时间也必须计入总滞留时间。一个周期中,各方向遇红灯停车的车辆总和为)1(R S R E -?+?,对应的这一部分滞留时间为

)]1([0R S R E t -?+??

从而总滞留时间为

2)1(2)]1([)(220R S ER R S R E t R T T -++-+??==

2

])1[(20002S

S t R E t S t R S E ++-+-+=

])1([1

000Et t S S E R R -++==∴当

时,车辆总滞留时间最短。

令B=V+H ,表示一个周期中经过十字路口的车辆总数,上述表达式简化得最佳的0R 为

B

t E S S R 0

0)(?-+=

容易看到,最佳控制方案B

t E S S R 0

)(?-+=

3、两个方向直行和左转开绿灯时间的分配

进一步考虑车辆转弯的情况(假设右转弯不设红灯)。设南北方向直行和左转开绿灯时间总和(即上面的R )为一个单位时间,其中直行开绿灯时间为r

,则左转开绿灯时间为r -1;设单位时间内直行车辆数为H ,左转车辆数为L 。

则由上面的分析可知:L

H t L H H r +?-+=0

)(。

三、调查结果与数据处理 1、调查数据

2、数据处理

根据上述数据和前面建立的模型,我们可以计算出最佳周期和每个方向开绿灯的时间。(见表中最后两列)

上面的表格已经给出了不同时段,该路口的红绿灯周期和各个方向的绿灯时间。不过,事实上,红绿灯的设置是非常复杂的,它牵涉到各种因素,不可能用一个固定的模型解决一切问题,它必须根据实际情况不断调整。我们上面给出的方案只是一种理想化的、近似的方案,不过相信它对交警部门会有一定的参考价值和实际意义。

参考文献:

1、谭永基,俞文 ,数学建模,复旦大学出版社。

2、吴孟达,成礼智等,数学建模的理论与实践,国防科技大学出版社。

3、段里仁,道路交通自动控制,中国人民公安大学出版社。

第1节 数学建模与数学探究

第1节数学建模与数学探究 【内容要求】 数学建模活动是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题.数学建模活动是基于数学思维运用模型解决实际问题的一类综合实践活动,是高中阶段数学课程的重要内容. 【基本过程】 数学建模活动的基本过程如下: 数学探究活动是围绕某个具体的数学问题,开展自主探究、合作研究并最终解决问题的过程.具体表现为:发现和提出有意义的数学问题,猜测合理的数学结论,提出解决问题的思路和方案,通过自主探索、合作研究论证数学结论.数学探究活动是运用数学知识解决数学问题的一类综合实践活动,也是高中阶段数学课程的重要内容. 【过程解读】 掌握建模基本过程,会对实际问题进行问题分析,善于合理假设. ·问题分析也常称为模型准备或问题重述.由于数学模型是建立数学与实际现象之

间的桥梁,因此,首要的工作是要设法用数学的语言表述实际现象.所谓问题重述是指把实际现象尽量地使用贴近数学的语言进行重新描述.为此,要充分了解问题的实际背景,明确建模的目的,尽可能弄清对象的特征,并为此搜集必需的各种信息或数据.要善于捕捉对象特征中隐含的数学因素,并将其一一列出.至此,我们便有了一个很好的开端,而有了这个良好的开端,不仅可以决定建模方向,初步确定用哪一类模型,而且对下面的各个步骤都将产生影响. ·模型假设(即合理假设)是与问题分析紧密衔接的又一个重要步骤.根据对象的特征和建模目的,在问题分析基础上对问题进行必要的、合理的取舍简化,并使用精确的语言作出假设,这是建模至关重要的一步.这是因为,一个实际问题往往是复杂多变的,如不经过合理的简化假设,将很难于转化成数学模型,即便转化成功,也可能是一个复杂的难于求解的模型从而使建模归于失败.当然,假设作得不合理或过分简单也同样会因为与实际相去甚远而使建模归于失败.一般地,作出假设时要充分利用与问题相关的有关学科知识,充分发挥想象力和观察判断力,分清问题的主次,抓住主要因素,舍弃次要因素. 【实际意义】 数学建模的实际意义 1.在一般工程技术领域,数学建模仍然大有用武之地. 在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段. 2.在高新技术领域,数学建模几乎是必不可少的工具. 无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段.数学建模、数值计算和计算机图形等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一.

数学建模论文十字路口绿灯

江西师范高等专科学校 论文题目:十字路口绿灯亮30秒,最多可以通过多少辆汽车? 组长:肖根金学号:9015300135 班级:15数教1班 组员:叶强学号:9015300143 班级:15数教1班 组员:谭伟学号:9015300132 班级:15数教1班 2017年4月15日

目录 一、问题重述 (3) 1.1问题背景 (3) 1.2问题简述 (4) 二、模型假设 (4) 3.1 停车位模型 (5) 3.2 启动时间模型 (5) 3.3 行驶模型 (5) 三、模型建立 (5) 四、模型求解 (5) 五、模型的检验与应用 (6) 5.1调查一个路口有关红绿灯的数据验证模型是否正确 5.2分析绿灯亮后,汽车开始以最高限速穿过路口的时间 5.3给出穿过路口汽车的数量n随时间t变化的数学模型 六、模型的评价 (6) 6.1 模型的优点 (6) 6.2 模型的缺点 (7) 参考文献

一、问题重述 1.1问题背景 随着经济和社会快速发展,我国城市道路建设增多,出行车辆增加,城市交通进入了快速发展阶段,城市交通的几个问题,即交通阻塞、交通事故、公共交通问题城市,道路交通问题日益突出.,为城市交通建设和路网规划提供方案和依据,达到优化城市道路交通状况的目的.因此我们针对于交通问题事故,将“十字路口绿灯亮30秒问题”单独列出以建模的形式来进行合理的规划,让十字路口的交通,更安全。在每年的节假时间里,有很多的人喜欢去旅游,交通的拥挤阻塞已经是很大问题,好多事故的发生。这是我们不愿意见到的事实。“十字路口绿灯亮30时间”对于现在的这个新时代的我们来说,城市的汽车车水马龙,它的合理设计是十分重要的。在交通管理中,绿灯的作用是为了维持交通秩序。在十字路口行驶的车辆中,主要因素是机动车辆,驶近交叉路口的驾驶员,在看到绿色信号后要通过路口。利用数学模型解决绿灯在十字路口亮30秒的问题,可以减少交通事故的发生,也相对合理的运用社会科学知识解决实际问题。某一天一个式子路口的绿灯灯亮30秒,那么能通过几辆汽车呢? 1.2问题简述 因为十字路口的交通现象较复杂,通过路口的车辆的多少依赖于路面上汽车的型号,数量和它们的行驶速度和方向以及同时穿过路口的非机动车辆的行人的状态等因素有关,因此,我们在求解“十字路

数学建模,红绿灯闪烁模型

建模实习作业题 之红绿灯闪烁模型班级:计算1502

交通管理中非数字灯闪烁时间模型 摘要 本文在了解过车辆通过红绿灯所遇见的情况,以及对车型的分析下,重点通过常微分方程建立起时间,刹车距离,以及刹车制动因素相关的数学模型。 在问题中对红绿灯灯应闪烁时间做出等价转换,闪烁的意图是让车辆在黄灯前停在停止线前,对于影响车辆刹车距离的因素主要由车辆制动力控制,闪烁时间应为驾驶员观察到信号变换反应的时间与驾驶员制动使车辆停在停车线所需时间之和。在法定通过红绿灯的速度下对大型车辆进行讨论,因为小型车辆制动距离明显小于大型载货汽车。 对于模型的评价,本文采用与实际生活中数据以及对车辆理论数据进行对比,以此检验模型建立的合理性及正确性。 最后,本文分析了现有模型的缺陷,并提出进一步改进方法,使之与贴合生活方面进一步。 【关键词】微分方程;刹车制动力;制动因素

目录 一、问题重 述………………………………………………………………………………… …4 二、基本假 设………………………………………………………………………………… …4 三、符号说 明………………………………………………………………………………… …4 四、模型建立、分析与求 解 (5) 五、模型评价与改 进 (6) 六、参考文 献 (7)

一、问题重述 从2013年元月一日,国家开始实行新的交通法规。在十字路口的交通管理中,最大而且最有争议的改变是闯黄灯。在以前的交规中,亮红灯之前要亮一段时间黄灯,这是为了让那些行驶在十字路口或距十字路口太近以致无法停下来的车辆通过路口.现在规定闯黄灯也是违规行为,为了不违反交通法规,对有时间数字的交通灯,司机根据时间数字可以提前对自己的行动作出决策,但还有很多交通灯是非数字的,这就不可避免的对司机的判断造成障碍,为此,非数字的交通灯在变灯前加入了闪烁,以提醒司机。为了让司机在十字路口有足够的时间决定过不过马路,请你考察实际生活中的道路,给出最佳的闪烁时间。 二、基本假设 1.假设刹车途中,刹车制动力恒定 2.行驶过程中没有意外事故

数学建模中常见的十大模型讲课稿

数学建模中常见的十 大模型

精品文档 数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的 收集于网络,如有侵权请联系管理员删除

关于数学建模教学活动的研究

关于数学建模教学活动的研究 【摘要】基于数学建模教学活动的实践,本文分析 了目前学校数学建模活动现状以及建模课程设计存在的问题。以数学建模小组活动形式,对数学基础课程的知识体系进行调整,研究数学建模活动与高校数学基础课程内容设计之间的关系。教学内容和授课方式的改进,将对提高数学基础课程的教学质量和建模参赛学生的成绩起关键性的作用。 【关键词】数学建模;基础课程 一、现状及存在的问题 最近一些年来,数学建模活动日益受到国家和教育部的重视。教育部连续多年委托全国大学生数学建模竞赛组委会组织全国性的数学建模竞赛活动。可以说,参与数学建模的积极性和所取得的成绩,越来越成为评价一所高校数学教学和科研水平的重要指标;数学建模活动本身也已经成为高校展现自我风采,树立学校形象的重要舞台。除了社会层面的积极影响外,数学建模活动对于推动高校内部的教学改革也起到了至关重要的作用。数学建模将抽象理论与社会实践相结合,不仅提高了学生学习数学的积极性、主动性,而且调动了教师不断提高自身业务水平,积极参与教学改革的动力。 目前数学建模活动在各高校有着广泛而良好的师生基

础。学校老师参与的积极性也很高。每年都有参赛队伍获得国家和地区的数学建模竞赛大奖,为学校赢得了荣誉。然而,在取得巨大成绩的同时,我们也应该看到,数学建模活动还存在一定的改进和提升空间。这主要体现在以下三个方面。 第一,目前数学建模相关课程设置存在一定的局限,主要表现在课程数量较少,并且大部分是以大班选修课的形式授课,因此难以挖掘优秀的数学建模人才,难以做到有针对性的教育和对优秀学生的重点培养。第二,既有的建模课程一般采用单独讲授建模相关知识的方式,而与现有的数学基础课程如高等数学、线性代数、概率论等内容分离。第三,关于数学建模的课外活动匮乏,致使参加全国数学建模大赛的参赛队伍都是赛前集中培训,缺乏系统连贯的日常积累。 基于数学建模活动的实际情况,通过组建数学建模课外活动小组的方式,达到以下目的:第一,将数学学习从课堂延伸到课外,帮助同学将课堂所学的抽象数学知识,在课下得以应用。从社会实际问题出发,让学生亲自参与到问题解决的过程中。第二,在活动中,教师研究课外活动组织形式的有效性,增强学生间、师生间的有效互动,进而提高学生自主创新能力。第三,研究数学建模活动对基础课程体系改革的辅助作用,使之成为数理知识体系改革的有利工具。 二、数学建模活动与数学基础教学内容关系的研究 数学基础课程和数学建模活动之间存在着密不可分的

数学建模 红绿灯问题

十字路口红绿灯的合理设置 陈金康 检索词:红绿灯设置、红绿灯周期 一、问题的提出 作为城市交通的指挥棒,红绿灯对交通的影响起着决定性作用。如果红绿灯的设置不合理,不仅会影响到交通秩序;还有可能会影响到行人和自行车的安全。 目前杭城还有很多路口的红绿灯设置存在一些不合理的因素,我们以古墩路一个路口(界于天目山路和文苑路之间)的红绿灯设置为例,该路口是刚开通的,交管部门对路况和车流量的研究还不是很成熟,因此红绿灯的设置存在一些问题。该路口的车流量相对比较小,有几个方向的车流量特别小,但绿灯时间设置太长,经常出现路口空荡荡但是车辆必须长时间等待的情况;同时在这样的路口,右转红灯显得有些多余。另外,该路口不同时段的红绿灯设置没有什么区别,显然这是非常不合理的。 下面我们就针对该路口来研究一下红绿灯设置的合理方案。我们主要研究两个方面:红绿灯周期的设置以及一个周期内各个方面开绿灯的时间。 二、模型的建立 1、红绿灯周期 从《道路交通自动控制》中,我们可以找到有关红绿信号灯的最佳周期公式: s q L C ∑ -+= 15 其中 : C 为周期时间。 相位:同时启动和终止的若干股车流叫做一个相位。 L 为一个周期内的总损失时间。每一相位的损失时间I=启动延迟时间-结束滞后时间;而整个周期的总损失时间为各个相位总损失时间的和加上各个绿灯间隔时间R 。(通俗地讲,启动延迟时间即司机看到绿灯到车子启动的反应时间,结束滞后时间即绿灯关闭到最后一辆车通过的时间。) 即R I L +∑= q 为相应相位的车流量 s 为相应相位的饱和车流量。(当车辆以大致稳定的流率通过路口时,该流率即该相位的饱和车流量。) 2、南北方向和东西方向开绿灯时间的分配 不妨忽略黄灯,将交通信号灯转换的一个周期取作单位时间,又设两个方向的车流量是稳定和均匀的,不考虑转弯的情形。

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

交通路口红绿灯__数学建模

交通路口红绿灯 十字路口绿灯亮30秒,最多可以通过多少辆汽车?一问题重述 因为十字路口的交通现象较复杂,通过路口的车辆的多少依赖于路面上汽车的型号,数量和它们的行驶速度和方向以及同时穿过路口的非机动车辆的行人的状态等因素有关,因此,我们在求解“十字路口绿灯亮30秒,最多可以通过多少辆汽车”时应综合考虑各方面因素二模型假设 (1)十字路的车辆穿行秩序良好不会发生阻塞; (2)所有车辆都是直行穿过路口,不拐弯行驶,并且仅考虑马路一侧的车辆。 (3)所有车辆长度相同,并且都是从静止状态开始匀加速启动; (4)红灯下等侍的每辆相邻车之间的距离相等; (5)前一辆车启动后同后一辆车启动的延迟时间相等。 另外在红灯下等侍的车队足够长,以至排在队尾的司机看见绿灯又转为红灯时仍不能通过路口。 参数,变量:车长L,车距D,加速度a,启动延迟T,在时刻 t 第n 辆车的位置 S n(t) 用数轴表示车辆行驶道路,数轴的正向为汽车行驶方向, 数轴原点为红绿灯的位置。于是, 当S n(30)>0时, 表明在第30秒第n辆车已通过红绿灯,否则,结论相反。

三模型建立 1.停车位模型: S n(0)=–(n-1)(L+D) 2. 启动时间模型: t n =(n-1)T 3. 行驶模型: S n(t)=S n(0)+1/2 a (t-t n) 2, t>t n 参数估计 L=5m,D=2m,T=1s,a=2m/s 四模型求解 解: S n(30)=-7(n-1)+(30-(n-1))2>0 得 n≤19 且 t19=18<30=t 成立。 答案: 最多19辆车通过路口. 改进:考虑到城市车辆的限速,在匀加速运动启动后,达到最高限速后,停止加速, 按最高限速运动穿过路口。 最高限速:校园内v*=15公里/小时=4米/秒,长安街上v*=40公里/小时=11米/秒,环城路上 v*=60公里/小时=17米/秒 取最高限速 v*=11m/s,达到最高限速时间t n*=v* /a+t n =5.5+n-1 限速行驶模型: S n(t)=S n(0)+1/2 a(t n *–t n )2+v*(t-t n*), t>t n* =S n(0)+1/2 a (t-t n) 2, t n*>t>t n = S n(0) t n>t 解:S n(30)=-7(n-1)+(5.5)2+11(30-5.5-(n-1))>0 得 n≤17 且 t17 * =5.5+16=21.5<30=t 成立。 结论: 该路口最多通过17辆汽车.

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

(精心整理)全国名校小学数学结题报告小学数学建模教学的实践与研究

《小学数学建模教学的实践与研究》结题报告 一、研究的背景及意义 (一)从数学自身发展看数学建模的重要性 “数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。”现实世界是数学的丰富源泉,也是数学应用的归宿。任何数学概念都可以在现实中找到它的原型,同样要解决实际问题就必需建立数学模型,从此意义上讲,数学建模和数学一样,有着古老的历史。例如,欧几里德几何就是一个古老的数学模型。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化、数量化,需建立大量的数学模型。正如新课标中描述的“数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值”。可以说数学即模型,有数学应用的地方就有数学建模。 (二)从数学课程改革发展看数学建模教学 数学教育改革是当今世界关注的热门话题。目前国际数学界普遍赞同,通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。大学生的数学建模科技活动在全世界造成了巨大的影响,对数学教育起了很好的推动作用。随着我国基础教育课程改革的深入,数学建模活动已扩展到义务教育阶段,数学建模已成为小学数学学习的目标。《数学课程标准》(2011年版)在课程设计思路中提出:“在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。”国内外的专家、学者也都认为应该让中、小学生对数学和数学的作用作全面了解,让更多的学生了解和运用数学的思想和方法解决实际问题,“还数学的本来面貌”,使“数学能力成为人们取胜的法宝”(姜伯驹)。 (三)从学生学习和发展角度看数学建模活动 学生不仅要学习数学知识,更要学习数学思想和方法。而数学建模是一种基本的数学思想,是解决数学问题的有效形式。学生亲自经历模型建立的“再创造”过程,有利于学生的多种感官参与,获得丰富的感性认识,形成清晰表象,符合小学生的直观思维特征;能够引发学生对数学学习的兴趣,克服对数学的畏惧心理,提高数学学习的效率,并有助于培养学生初步学会运用数学的思维方式去观察和分析现实社会,解答日常生活中的问题,进而形成勇于探索、勇于创新的科学精神。正如刘应明院士所说的“如果学生能够自己动手用数学知识去解决几个问题,哪怕是很简单的问题,那么,数学在他们心目中的价值以及他们对数学的兴趣就会显著上升。而且这样做对于培养他们的创新意识等等,也都是十分有益的”。 基于上述认识,我确立“小学数学建模教学的实践与研究”这一课题,试图在小学数学教学中加强数学建模思想方法的实践和应用,培养小学生的建模意识和能力,提高学生的数学素养。 二、研究分析 (一)概念界定 1.数学模型(Mathematic Model):为了一定的目的对现实原型作抽象、简化后,采用形式化的数学符号和语言所表述出来的数学结构。它是数学符号、数学式子以及数量关系对现实原型简化的本质的描述。 2.数学建模(Mathematical Modelling):把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。数学知识的这一运用过程也就是数学建模。 3.小学数学建模:主要是指小学数学学习中,用“模型思想”来指导着数学教学,不断让学生经历从具体事例或现实原型出发逐步抽象、概括建立起某种模型并进行解释和运用,从而加深对数学的理解和感受,提升数学学习能力。

数学建模--交通问题

摘要 近年来随着机动车辆的迅猛增长,城市道路的交通压力日渐增大,各大城市对旧城改造及城市道路建设的投入也不断扩大,交通拥挤问题却仍旧日益严重。因此,科学全面地分析和评价城市的绩效,进而找到适合我国的城市交通规划模式,已成为我国城市交通迫切需要解决的课题。 本文通过大量查阅城市交通绩效评价指标,结合目前我国交通发展现状,以兰州为例,首先建立了绩效评价指标的层次结构模型,确定了目标层,准则层(一级指标),子准则层(二级指标)。 其次,建立评价集V=(优,良,中,差)。对于目标层下每个一级评价指标下相对于第m 个评价等级的隶属程度由专家的百分数u 评判给出,即U =[0,100]应用模糊统计建立它们的隶属函数A(u), B(u), C(u) ,D(u),最后得出目标层的评价矩阵Ri ,(i=1,2,3,4,5)。利用A,B 两城相互比较法,根据实际数据建立二级指标对于相应一级指标的模糊判断矩阵P i (i=1,2,3,4,5) 然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利用公式 1 ,ij ij n kj k u u u ==∑ 1 ,n i ij j w u ==∑ 1 ,i i n j j w w w ==∑ []R W R W R W R W R W W R W O 5544332211,,,,==计算出权重值,经过一致性检验公式RI CI CR = 检验后,均有0.1CR <,由此得出各层次的权向量()12,,T n W W W W =K 。然后后, 给出建立绩效评价模型(其中O 是评价结果向量),应用模糊数学中最大隶属度原则,对被评价城市交通的绩效进行分级评价。 接着,为了优化兰州安宁区道路交通,我们建立了评价城市交通的指标体系,继而构造模糊判断矩阵P ,计算出相应的权重值。我们挑选了道路因素进行优化,以主干道利用率约束、红绿灯效率约束、公交站点数目约束、非负约束为约束条件建立了安宁区道路交通优化方案的权系数模型,最后利用实际测算数据给出最终优化模型,提出合理化的优化建议,希望能为更好的建设兰州交通体系作出贡献。 关键词:城市交通 层次分析 模糊综合评判 绩效评价 隶属度

课题研究数学建模

课题研究之 数 学 建 模

目录 摘要……………………………………………………………………………Abstract……………………………………………………………………… 1.数学建模的定义…………………………………………………………… 2.数学建模的建立…………………………………………………………… 3. 数学建模的分类…………………………………………………………… 4. 数学建模的原则…………………………………………………………… 4.1可分析与推推导原则……………………………………………………… 4.2简化原则…………………………………………………………………… 4.3反映性原则………………………………………………………………… 5.应用模式的框架……………………………………………………………… 6.数学建模对大学生素质与能力的培养……………………………………… 6.1 问题的提出……………………………………………………………… 6.2 问题的讨论……………………………………………………………… 6.3 建模的准备……………………………………………………………… 6.4 建模……………………………………………………………………… 6.5 问题的补充………………………………………………………………… 7.设计总结……………………………………………………………………… 8.参考文献………………………………………………………………………

[摘要]数学建模与大学生能力的培养密切相关。本文依据现有文稿系统地分析了数学建模的各个方面,数学建模的定义、分类、建立、原则、框架等。同时,通过污染问题的引入和讨论,详细地阐述了建模的思维过程;并从该过程中映射出数学建模对四种重要思维能力的培养和提高,即综合应用分析能力,“双向”翻译能力、联想能力、洞察能力。从而,使数学建模对大学生能力的培养,不言而喻。 [关健词] 数学建模;思维过程;思维能力;环境污染。

数学建模模最短路

基于最短路问题的研究及应用令狐采学 姓名:Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题Dijkstra算法水渠修建。

目录 第一章.研究背景1 第二章.理论基础2 2.1 定义2 2.2 单源最短路问题Dijkstra求解:2 2.2.1 局限性2 2.2.2 Dijkstra算法求解步骤2 2.2.3 时间复杂度2 2.3 简单样例3 第三章.应用实例4 3.1 题目描述4 3.2 问题分析4 3.3符号说明4 3.4 模型假设5 3.5模型建立与求解5 3.5.1模型选用5 3.5.2模型应用及求解5 3.6模型评价5 第四章. 参考文献5 第五章.附录6

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

第二章.理论基础 2.1 定义 最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。 2.2 单源最短路问题Dijkstra 求解: 2.2.1局限性 Dijkstra 算法不能够处理带有负边的图,即图中任意两点之间的权值必须非负。 2.2.2Dijkstra 算法求解步骤 (1).先给图中的点进行编号,确定起点的编号。 (2).得到图的构成,写出写出图的矩阵 0000(,)(,) (,) (,) n n n n u u u u G u u u u = (3).根据要求求出发点S 到终点E 的最短距离,那么需要从当前没被访问过的结点集合 unvist={u | u {1,2,3...}}n ∈中找到一个距离已经标记的点的集合中vist={u | u {1,2,3...}}n ∈的最短距离,得到这个顶点; (4).利用这个顶点来松弛其它和它相连的顶点距离S 的值 (5).重复步骤(2)和(3),直到再也没有点可以用来松弛其它点,这样我们就得到了由起点S 到其它任意点的最短距离。 2.2.3时间复杂度 时间复杂度达到 2 ()O N

大学生数学建模竞赛研究论文

大学生数学建模竞赛研究论文 一、数学建模竞赛对提升学生实践创新能力的意义 1.数学建模竞赛有利于学生创新思维的培养。数学建模是对现实问题进行合理假设,适当简化,借助数学知识对实际问题进行科学化处理的过程。数学建模竞赛的选题都是源于真实的,受社会关注的热点问题[2]。例如:小区开放对道路通行的影响(2016年赛题),2010上海世博会影响力的定量评估(2010年赛题),题目有着明确的背景和要求,鼓励参赛者选择不同的角度和指标来说明问题,整个数学建模的过程力求合理,鼓励创新,没有标准答案,没有固定方法,没有指定参考书,甚至没有现成数学工具,这就要求学生在具备一定基本知识的基础上,独立的思考,相互讨论,反复推敲,最后形成一个好的解决方案,参赛作品好坏的评判标准是模型的思路和方法的合理性、创新性,模型结论的科学性。同一个实际问题从不同的侧面、角度去思考或用不同的数学知识去解决就会得到不尽相同的数学模型。数学建模竞赛不仅是培养和提高学生创新能力和综合素质的新途径,也是将数学理论知识广泛应用于各科学领域和经济领域的有效切入点和生长点。 2.数学建模竞赛有利于促进学生知识结构的完善。高校的理工科专业都开设很多基础数学课,例如:高等数学、线性代数、概率统计、运筹学、微分方程等,目前这些课程基本上还是理论教学,主要以考试、考研为主要目标。由于缺少实际问题的应用,知识点相对分散,很多学生不知道学了有什么用,怎么用。那么如何将所学的基础知识高效的立体组装起来,并有针对性拓展和延伸,是一个重要的研究课题[3]。实践表明:数学建模竞赛对于促进大学生知识结构完善是一个极好的载体。例如在解决2009年赛题———眼科病床的合理安排的问题时,学生不仅要借助数理统计方法,找到医院安排不同疾病手术时间的不合理性,还要结合运筹学给出新的病床安排方案,并结合实际情况评估新方案合理性;2014年赛题嫦娥三号软着陆轨道设计与控制策略,参赛学生首先根据受力分析和数据,判断出可能的变轨位置,再结合微分方程和控制论构建模型,并借助计算机软件求解,找到较好的轨道设计方案。整个数学建模过程中,参赛学生将所学分散的数学知识点拼装集成化,在知识体系上,数学建模实现了知识性、实践性、创造性、综合性、应用性为一体的过程;在知识结构上,数学建模实现了学生知识结构从单一型、集中型向复合型的转变。 3.数学建模竞赛有利于培养学生的团队协作精神,提高沟通能力。现代社会竞争日趋激烈,具备良好的团队协作和沟通能力的优秀人才越来越受到社会的青睐。数学建模竞赛也需要三个队员组成一个团队,因为要在规定的时间内完成确定选题,分析问题、建立模型、求解模型,结果分析,单靠一个人是很难完成的,这就必须要由团队成员之间相互尊重、相互信任、互补互助,并且发挥团队协作精神,才能让团队的工作效率发挥到最大。同时,数学建模作为一种创造性脑力活动,不仅要求团队成员之间学会倾听别人意见,还要善于提出自己的想法和见解,并清晰、准确地表达出来。团队成员间良好的沟通能力,不仅可激发团队成员的竞赛热情和动力,还可以形成更加默契、紧密的关系,从而使竞赛团队效益达到最大化。 二、依托数学建模竞赛,提升大学生创新实践能力的对策 1.以数学建模竞赛为抓手,构建分层的数学建模教学体系,拓宽学生受益面。不同专业和年级学生的学习基础、学习能力和培养的侧重点都存在较大差异,构建数学建模层次化教

课题研究数学建模

百度文库- 让每个人平等地提升自我 课题研究之 数 学 建 模

目录 摘要……………………………………………………………………………Abstract……………………………………………………………………… 1.数学建模的定义…………………………………………………………… 2.数学建模的建立…………………………………………………………… 3. 数学建模的分类…………………………………………………………… 4. 数学建模的原则……………………………………………………………可分析与推推导原则……………………………………………………… 简化原则…………………………………………………………………… 反映性原则………………………………………………………………… 5.应用模式的框架……………………………………………………………… 6.数学建模对大学生素质与能力的培养………………………………………问题的提出……………………………………………………………… 问题的讨论……………………………………………………………… 建模的准备……………………………………………………………… 建模……………………………………………………………………… 问题的补充………………………………………………………………… 7.设计总结……………………………………………………………………… 8.参考文献………………………………………………………………………

[摘要]数学建模与大学生能力的培养密切相关。本文依据现有文稿系统地分析了数学建模的各个方面,数学建模的定义、分类、建立、原则、框架等。同时,通过污染问题的引入和讨论,详细地阐述了建模的思维过程;并从该过程中映射出数学建模对四种重要思维能力的培养和提高,即综合应用分析能力,“双向”翻译能力、联想能力、洞察能力。从而,使数学建模对大学生能力的培养,不言而喻。 [关健词] 数学建模;思维过程;思维能力;环境污染。

数学建模——交通管理问题

190 实验十 交通管理问题 【实验目的】 1.了解微分方程的一些基本概念。 2.初步掌握微分方程模型建立、求解的基本方法和步骤。 3.学习掌握用MA TLAB 软件中相关命令求解常微分方程的解析解。 【实验内容】 在城市道路的十字路口,都会设置红绿交通灯。为了让那些正行驶在交叉路口或离交叉路口太近而又无法停下的车辆通过路口,红绿灯转换中间还要亮起一段时间的黄灯。对于一名驶近交叉路口的驾驶员来说,万万不可处于这样进退两难的境地:要安全停车但又离路口太近;要想在红灯亮之前通过路口又觉得距离太远。那么,黄灯应亮多长时间才最为合理呢? 已知城市道路法定速度为0v ,交叉路口的宽度为I ,典型的车身长度统一定为L ,一般情况下驾驶员的反应时间为T ,地面的磨擦系数为μ。(假设I =9m ,L =4.5m ,μ=0.2,T =1s ) 【实验准备】 微分方程是研究函数变化过程中规律的有力工具,在科技、工程、经济管理、人口、交通、生态、环境等各个领域有着广泛的应用。如在研究牛顿力学、热量在介质中的传播、抛体运动、化学中液体浓度变化、人口增长预测、种群变化、交通流量控制等等过程中,作为研究对象的函数,常常要和函数自身的导数一起,用一个符合其内在规律的方程,即微分方程来加以描述。 1.微分方程的基本概念 未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。如果未知函数是一元函数,称为常微分方程。如果未知函数是多个变量的函数,称为偏微分方程。联系一些未知函数的多个微分方程称为微分方程组。微分方程中出现的未知函数的导数的最高阶数称为微分方程的阶。若方程中未知函数及其各阶导数都是一次的,称为线性常微分方程,一般表示为 )(n y +)1(1)(-n y t a +…+'1)(y t a n -+y t a n )(=)(t b (1) 若(1)式中系数)(t a i (i =1,2,…,n )均与t 无关,称之为常系数(或定常、自治、时不变)的。 建立微分方程模型要根据研究的问题作具体的分析。一般有以下三种方法: 根据规律建模:在数学、力学、物理、化学等学科中已有许多经过实践检验的规律和定律,如牛顿运动定律、基尔霍夫电流及电压定律、物质的放射性规律、曲线的切线的性质等,这些都涉及某些函数的变化率。我们可以根据相应的规律,列出常微分方程。 微元法建模:利用微积分的分析法建立常微分方程模型,实际上是寻求一些微元之间的关系式,在建立这些关系式时也要用到已知的规律或定理。与第一种方法不同之处在于这里不是直接对未知函数及其导数应用规律和定理来求关系式,而是对某些微元来应用规律。 模拟近似法建模:在社会科学、生物学、医学、经济学等学科的实践中,常常要用模拟近似法来建立微分方程模型。这是因为,上述学科中的一些现象的规律性我们还不是很清楚,

最优化问题的数学模型及其分类

最优化问题的数学模型及其分类 例1.1.1 产品组合问题 某公司现有三条生产线用来生产两种新产品,其主要数据如表1-1所示。请问如何生产可以让公司每周利润最大? 表1-1 设每周生产的产品一和产品二 的产量分别为1x 和2x ,则每周的生产利润为:2153x x z +=。由于每周的产品生产受到三条生产线的可用时间的限制,因此1x ,2x 应满足以下条件: ?????? ?≥≤+≤≤0, 18231224212121 x x x x x x 故上述问题的数学模型为

2153max x x z += . .t s ?????? ?≥≤+≤≤0, 18231224212121 x x x x x x 其中max 是最大化(maximize )的英文简称,??t s 是受约束于(subject to )的简写。 例1.1.2 把一个半径为1的实心金属球熔化后,铸成一个 实心圆柱体,问圆柱体取什么尺寸才能使它的表面积最小? 设圆柱体的底面半径为r ,高为h ,则该问题的数学模型为: ??? ??=? ?+=ππππ3 422min 22 h r t s r rh S 其中min 是最小化(minimize )的简写。 通过以上二例,可以看出最优化问题的数学模型具有如下结构: (1) 决策变量(decision variable ):即所考虑问题 可归结为优选若干个被称为参数或变量的量 n x x x ,,,21 ,它们都取实数值,它们的一组值构 成了一个方案。 (2) 约束条件(constraint condition ):即对决策

变量n x x x ,,,21 所加的限制条件,通常用不等式或等式表示为: ()(),,,2,1, 0,,,,,2,1, 0,,,2121l j x x x h m i x x x g n j n i ===≥ (3) 目标函数(objective function )和目标:如使 利润达到最大或使面积达到最小,通常刻划为极大化(maximize )或极小化(minimize )一个实值函数()n x x x f ,,21 因此,最优化问题可理解为确定一组决策变量在满足约束条件下,寻求目标函数的最优。 注意到极大化目标函数()n x x x f ,,21相当于极小化 ()n x x x f ,,21-,因此,约束最优化问题的数学模型一般可 表示为: () ()()()?? ? ??===≥??l j x x x h m i x x x g t s x x x f n j n i n ,,2,1,0,,,1.1.1,,2,1,0,,,,,min 212121 若记()T n x x x x ,,21=,则(1.1.1)又可写成:

相关文档