文档库 最新最全的文档下载
当前位置:文档库 › 1 空调系统的组成与方式

1 空调系统的组成与方式

1 空调系统的组成与方式
1 空调系统的组成与方式

1 空调系统的组成与方式

1.1 中央空调系统的组成

1.2中央空调系统的分类与比较

1.2.1中央空调系统的分类

1.2.2典型空调系统的比较

1.2.3空调系统选择的原则

1.3 全空气空调系统(AAA)

1.3.1 全空气空调过程

1.3.2 回风方式的选定

1.3.3 风量平衡

1.3.4 系统的划分

1.3.5 分区处理

1.3.6 双风道系统

1.4 变风量空调系统(VAV)

1.4.1 采用变风量的原因

1.4.2 定风量与变风量的区别

1.4.3 变风量末端装置的形式

1.5风机盘管+新风空调系统

1.5.1 风机盘管的构造、类型和基本参数

1.5.2 系统的新风供给方式

1.5.3 系统中的新风终状态的处理方式

1.5.4 风机盘管的水系统与调节

1.6商用、户式中央空调、变流量系统

1.6.1 商用中央空调

1.6.2 户用中央空调

1.6.3 变流量系统(VRV)

1.1 中央空调系统的组成

中央空调系统主要由制冷制热设备或装置(压缩机、压缩冷凝机组、冷水机组、空调箱、锅炉、喷水室等)、管路(制冷剂管路、冷媒管路、载冷剂管路等)、室内末端设备(室内风管水管、散流器、风机盘管、空调室内机等)、室外设备(室外风管、冷却塔、风冷式冷凝器等)、水泵、控制装置及附属设备等组成。

中央空调系统的组成参见图1-1和图1-2,多房间的单风道全空气空调系统参见图1-3。

图1-1 中央空调系统组成示意图1 图1-2 中央空调系统组成示意图2 (多房间的单风道全空气空调系统动画演示)

中央空调系统的组成及举例参见表1-1。

图1-4所示是组合式空调机组夏季运行工况示意图,图1-5是卧式风机盘管构造图。

(组合式空调机组动画演示)

(卧式风机盘管构造图)

图1-3和图1-4分别是卧式风机盘管实物图和吸顶式风机盘管实物图。

图1-3 卧式风机盘管实物图1-4 吸顶式风机盘管实物

中央空调冷冻水、冷却水、热水系统举例参见图1-5

图1-5中央空调冷冻水、冷却水、热水系统举例1.2中央空调系统的分类与比较

1.2.1中央空调系统的分类

中央空调系统主要按如下方式分类,参见图1-6:

(1)按空气处理设备的集中程度分

(2)按承担负荷的介质来分

(3)按空调系统的用途分

(4)按对建筑物内空气来源分

图1-6 中央空调系统常见分类方式

其他的分类方法有:

按风量是否固定分:定风量系统、变风量系统

按风管内空气流速分:低速系统(<8m/s)、高速系统( >20~30m/s )

按用途分:工艺性空调、舒适性空调

按系统精度分:一般性空调、恒温恒湿空调

按运行时间分:全年性空调、季节性空调

按使用场所分:大型工民建筑用空调、商用空调、户式空调

1.2.2典型空调系统的比较

把集中式(以定风量全空气系统为例)、半集中式(以风机盘管+新风系统为例)、分散式(以单元式空调机为例)空调系统进行比较。

1.2.2.1集中式空调系统

集中式空调系统将空气处理过程组合在一个或几个空气调节机组(或称空调箱)内进行,然后通过空气输送管道和空气的分配器送至各个房间。这种空调系统又称中央空调系统。

集中空调系统根据处理空气的来源情况,又分直流式、封闭式和回风式,一般空调系统均为回风式空调系统。回风式空调系统又按送风前在空气处理过程中回风参与的混合次数不同,分为一次回风式和二次回风式。让回风与新风先混合,然后加以处理,达到送风状态,这种只混合一次的集中式系统,称为一次回风式系统。让新风与部分回风混合并经处理后,再次与部分回风混合而达到要求的送风状态,称为二次回风式系统。中央空调系统为了节能,一般采用回风式,除非空调房间内存在有害物质;设计规范建议仅作为夏季降温用的空调系统,宜采用一次回风。

(一次回风露点送风单风道空调系统动画演示)

(二次回风系统的处理流程动画演示)

集中式空调按送风管的套数不同,可分为单风管式和双风管式。单风管式只能从空调机房送出一种状态经处理的空气;双风管式,用一条风管送冷风,另一条风管送热风,冷风和热风在各房间的送风口前的混合箱内按不同比例混合,达到各自要求的送风状态,再进入房间。同时,根据主送风管内的空气流速,又有低速空调系统(一般主管风速在15m/s以下)和高速空调系统(主风管流速大于15m/s)之分。高速风管内空气流速高,风管尺寸小,但风管阻力损失大,噪声高。

(多房间的单风道全空气空调系统动画演示)

(双风道定风量集中空调系统动画演示)

集中式系统按送风量是否变化,又可分为定风量系统和变风量系统。定风量系统的送风量是固定不变的,并且按最不利的情况来确定房间的送风量。变风量系统设有可根据室内负荷变化,自动调节送风量的送风装置,当室内负荷减少时,它可保持送水参数不变(不需再热),而是自动减少风量来保持室内温度的稳定,这样,由于处理的风量减少,可降低风机功率电耗及制冷机的冷量。因此,与定风量系统比较,变风量系统的初投资高一点,但它节能、运行费用低,综合经济性好。空调装置的容量越大,采用变风量系统的经济性越好。

(定风量再热式单风道空调系统动画演示)

(变风量单风道空调系统动画演示)

通常面积较大的单个空调房间(例如影剧院、体育馆、会堂、大型的展览厅、餐厅、舞厅、商场、会议室、阅览室等),或者室内空气设计状态相同、热湿比和使用时间也大致相同、且不要求单独调节的多个房间才采用集中式空调系统。“设计规范”要求集中式空调系统一般宜采用单风管式低风速空调系统。

1.2.2.2 半集中式空调系统

半集中式系统式建立在集中式空调系统基础上,先把空气集中在一空调器内进行集中处理,再送入各房间分配器,然后按各房间的具体要求,对空气进行二次处理(加热或冷却),从而使空调效果更为理想。

(半集中式双水管诱导器系统动画演示)

风机盘管加独立新风系统是典型的半集中式系统。这种系统的风机盘管分散设置在各个空调房间内;新风机可集中设置,也可分区设置,但都是通过新风送风管,向各个房间输送经新风机组作了预处理的新风。因此,独立新风系统有兼有集中式系统的特点。

通常空调房间个数较多又需要独立控制的建筑如宾馆、酒店的客房、办公楼等可采用半集中式空调系统。

此外,对已集中设置冷、热源的建筑物中的大面积空调房间,通常多设置冷量和风量都较大的单独的空调柜来进行空气处理。空调柜设置在专用的空调机房内或设于吊顶上,通过送风管向空调房间送风,这种系统相对于集中设置的冷、热源来说是半集中式系统;相对于空调房间来说又可看作是集中式系统。

1.2.2.3分散式空调系统

分散式空调系统又称局部式空调系统。这种系统没有集中的空调机房,空气处理设备全分散在被调房间内。空调房间使用空调机组者属于此类。空调机组把空气处理设备、风机以及冷热源都集中在一个箱体内,形成了一个非常紧凑的空调装置,只要接上电源就能对房间进行空气调节。因此,这种系统不需要空调机房,一般也没有输送空气的风道。

(空调机流程动画演示)

(分体式空调器原理动画演示)

(热泵式窗式空调系统原理动画演示)

(a)风冷式(分体式)热泵空调机组示意图

(b)空调机组示意图

图1-7 分散式空调示意图

分散式空调系统安装方便,使用便利,灵活性好,但维护不太方便,经济性一般不高。通常空调房间较小,又相对独立的建筑如办公楼、商店等建筑都可采用分散式空调系统。

经过对旅馆进行集中空调和局部空调的能耗和造价的比较,证明从30间客房起,集中供冷的耗电明显降低,大约节电30%左右,从造价上看,20~30间客房的窗式空调略低于集中空调,40间客房时二者相当,从50间客房起中央空调比局部空调减少,约少12%~30%。

综合耗电、造价两因素,GB50189~93规定客房超过40间应采用冷水机组集中供冷的中央空调系统。

1.2.3空调系统选择的原则

(1)选择空调系统时,应根据建筑物的用途、规模、使用特点、室外气象条件、负荷变化情况和参数要求等因素,通过技术经济比较确定。这样就可在满足使用要求的前提下,尽量做到投资省、系统运行经济和能耗小。

(2)对集中式空调系统,一般宜采用单风管式的空调系统,当房间负荷变化较大,采用变风量系统能满足要求时,不宜采用定风量再热式系统。普通舒适性空调对空调精度无严格的要求,较多采用无再热的定风量集中式系统。仅作为夏季降温用的系统,不应采用二次回风系统。

(3)空调面积较小的建筑,或建筑物中仅个别房间有空调要求,宜采用分散式空调系统。空气调节房间较多,且各房间空调要求不一的建筑物,条件许可时,宜采用四管制或双风道变风量空调系统。面积很大的空调房间,或室内空气设计状态相同、热湿比和使用时间也大致相同,且不要求单独调节的多个空调房间,通常多采用单风管、低速、一次回风、无再热的定风量集中式空调系统。

空调系统的常见选择原则见表1-2

表1-2 空调系统的常见选择原则表

1.3 全空气空调系统(AAA )

全空气空调系统,英文为all -air conditioning system ,是全空气、单风道、低风速中央空调系统的简称。

1.3.1 全空气空调过程

图1-13到图1-19分别列举了几种全空气处理过程的焓湿图或示意图。

图1-8 一次回风无再热的空气处理过程

(一次回风定风量露点送风单风道空调系统动画演示)

图1-9 一次回风有再热的空气处理过程(一次回风定风量再热式单风道空调系统动画演示)

图1-10 一次回风无再热空气处理状态点举例

图1-11 一次回风有再热空气处理状态点举例(二次回风系统的处理流程动画演示)

1.3.2 回风方式的选定

表1-3提供了回风方式的选择依据。

1.3.3 风量平衡

1.3.3.1房间通风量与换气次数

应按冬、夏季的设计计算条件分别确定,多以解决夏季问题为基础。应区别采暖、通风、空气调节几种不同环境控制方法。

(1)夏季送风状态和送风量

对于空调建筑,夏季通风换气着重在于消除室内余热、余湿,进而保证人体的舒适健康。

全热平衡:R s c s s h M Q h M =+

s R c

s h h Q M -=

显热平衡:R p s s c s p s t c M Q t c M =+, )

(,s R p s

c s t t c Q M -=

湿平衡:10001000

R

s w s s d M M d M =

+, s R W s d d M M -=1000 p

c 通常按干空气的定压比热容近似取为1.01kJ/kg.k ,故

)

(,s R p s c s t t c Q M -=

近似,同其它应略有差异。

图1-12所示为夏季室内空气状态变化过程。

图1-12 夏季室内空气状态变化过程

由于入室空气同时吸收室内余热量和余湿量后,其状态即由O 变成R ,那么

这一状态变化过程的方向和特征即由热湿比1000

?--=s

R s R d d h

h ε来决定。这意味着,通过室内状态R 的热湿比线上并位于R 点下方的所有各点均可能成为待定的送风状态O 。 很明显,送风状态O 对R 点距离的远近决定了送风焓差的大小,从而影响到送风量的大小。距离越近,送风量越大,处理与输送空气所需设备容量则大,相应的初投资和运行费用也更节省些。送风量减小,将影响室内空气分布的均匀性和稳定性,并可能形成下降冷气流,影响到人体热舒适。

暖通空调规范规定了夏季送风温差的建议值,以便合理地确定送风状态和送风量。换气次数也作为衡量或制约送风量大小地指标。换气次数n=L/V (次/h )。

温差有类似作用。送风状态点应在热湿比线上。

送风量G=Q/△I=W/△d=QX/C P ,C P 与温度有关,故为近似。 对于通风建筑,若夏季通风旨在排除室内余热余湿,可采用类似空调送风量计算的公式来确定房间的通风量,但需注意:其进风温湿度应由室外通风计算参数来决定;其排风状态也与室内设计状态不同。若通风旨在排除某种污染物,可按下式计算房间的全面通风量:

j

yp s c c M

M -=

ρ

M ——散入房间的某种污染物量 yp

c ——排风中该种污染物的允许浓度 j

c ——送风中含有该污染物的浓度

当房间同时存在余热余湿和其他空气污染物时,全面通风量按其中最大通风量计算。当散入室内的污染物量无法计算时,可按经验或换气次数来估定。(建筑环境学)

(2)冬季送风状态和送风量

图1-13为冬季送风状态变化过程

图1-13 冬季送风状态变化过程

在夏季基础上考虑。在冬季,通过围护结构的温差传热通常内向外传递,故室内余热量往往比夏季要少得多,甚至可能为负值;室内余湿量则一般相同。这

样,冬季的夏季)(冬季)(εε<',或0<'(冬季)ε,送风温度和焓值均可能高于R ,且送热风时送风温差可更大,相应的送风量也就完全可能比夏季小。

冬季送风量的确定原则如下:

①冬夏季相同(设计、运行便利)

②冬季送风量减少(节能,满足n min 的要求,且送风温度尽量控制在45℃以下)

1.3.3.2新风量的确定

新风量为夏冬设计工况下应向室内提供的室外新鲜空气量,与室内空气品质和空调系统能耗有关。

新风量的确定一般遵循下列三个原则:

(1)满足卫生要求

新风量应能稀释室内二氧化碳,使室内二氧化碳浓度不超过1000ppm(1L/m3),由此确定常态每人新风量为30m3/h,实际应根据设计规范确定。

工业建筑空调应保证每人新风量为30m3/h以上;民用建筑空调最小新风量见表1-4。

(2)补充局部排风量

当空调房间内有排风柜等局部排风装置时,新风量应不小于局部排风量,以保证室内正压,防止室外空气进入房间。

(3)保持房间正压

为防止室外未经处理的空气进入房间干扰室内空调参数,必须保证室内正压(室内空气压力大于室外空气压力),用新风量补充室内正压下由房间门窗等向外渗风量。普通空调系统可取5~10Pa。

室内外压差作用下每米门窗缝隙的渗透的空气量可以查《供热空调设计手册》获取。

系统新风量也可按总风量10%来计算。

最终确定原则:

最小新风量由上可确定三个值:Gf1=局部排风量Gp+正压渗透风量Gs

Gf2=n×满足卫生要求风量ga

Gf3=系统总风量×10%

新风量Gw=max( Gf1 ,Gf2, Gf3 )

1.3.3.3 风量平衡

风量平衡应尽量遵循以下原则:

(1)春秋季节应尽可能提高新风比,节约能耗。

(2)全年新风量固定时:

①室内要求正压——靠门窗缝隙排风。

②室内不要求正压——有局部排风。

(3)全年新风量变化时:

①室内要求正压——靠门窗缝隙排风。

②室内不要求正压——室内无缝隙排风。

(4)一些工业空调全年采用固定的新风比(如洁净空调),一些民用建筑可采用全年新风量可变的系统。

(5)当风量特别大的时候,因风管截面积较大,为减少与建筑配合的矛盾,可根据实际情况分成多个系统,减小风管占据建筑空间。

(通风房间的风量平衡动画演示8677)

1.3.4 系统的划分

同一建筑物内平面和竖向房间的负荷差别大,各房间用途、使用时间和空调设备承压能力等均不相同,为使空调系统既能保持室内要求参数,又能经济管理,就需要将系统分区。系统分区主要考虑室内设计参数、负荷特性、建筑高度、房间使用功能和使用时间等因素。一般的方法是:

(1) 将室内温湿度基数、洁净度和噪声等要求相同或相近的房间划为一个系统。

(2) 根据空调控制精度,将室内温、湿度允许波动范围相同或相近划分为一个系统。

(3) 对大型办公楼来说,周边区(由玻璃窗到进深5米左右)受到室外气温和太阳辐射的影响,冬夏季空调负荷变化大,内部区由于远离外围护机构,室内负荷主要是人体、照明、设备等的发热,空调负荷变化较小,可能全年为冷负荷。因此,可将平面分为周边区和内部区。

(4) 在高层建筑中,根据设备、管道、配件等承压能力,沿建筑物高度方向上划分,可分为低区、中区和高区。

(5) 按建筑物各房间的用途、功能、性质和使用时间分区,例如,办公楼建筑可按办公室、会议室、食堂等设置不同的空调系统。旅馆建筑客房室全天使用的,而其他餐厅、会议室、舞厅等非全天使用,应划为不同的空调系统。医院应把洁净室要求相同的房间划为一个区,按门诊、手术室、病房、办公室分别设置空调系统。

除了双风道、变风量和水源热泵系统外,一般应注意避免把负荷特性(指热湿负荷大小及变化情况等)不同的空调房间划分为同一系统,否则会导致能耗的增加和系统调节的困难,甚至不能满足要求

同时对负荷特征一致的空调房间,规模过大时,宜划分为若干个系统,分区设置空调系统,这样会减少设备选择、管道布置、系统安装及调节控制等方面的困难。

1.3.5 分区处理

分区处理通常采用三种方式:

(1)采用末端加热器满足各分区的需要,见图1-14;

(2)采用新风处理箱和分区空气处理箱满足分区需要,见图1-15;

(3)采用分区空气处理箱满足分区需要,见图1-16。

图1-14 采用末端加热器满足各分区的需要

图1-15 采用新风处理箱和分区空气处理箱满足分区需要

图1-16 采用分区空气处理箱满足分区需要

系统划分时尽量把室内参数、热湿比等相近的房间组合在一个系统;但为了减少投资和运行费用,空调要求或条件不同的房间也有必须组合成一个系统的情况,这时可以在集中系统上加辅助措施,也可以集中处理新风或相对集中处理新风以满足实际要求。

1.3.6 双风道系统

双风道空调系统也是全空气空调系统,设有两条送风管道(送热风、送冷风)和一条回风管道。

1.3.6.1 构成

分别设有冷、热风道(管路风速常为15~25m/s),每房间设有混合箱将冷、热风混合,混合比例由室温传感器控制,混合比例不会受其他房间调节冷热风比时管路内系统压力变化的影响。一次回风方式,回风管道集中布置,为稳定室内压力采用双风机。参见图1-17

图1-17 双风道空调系统示意图

(双风道定风量集中空调系统动画演示)

(双风量定风量混合箱工作原理动画演示)

1.3.6.2 种类

双风道系统主要有冷热风分别处理和露点再热两种方式。

(双风道定风量冷热风分别处理空调系统动画演示)

(定风量再热式双风道空调系统动画演示)

1.3.6.3 特点与应用

双风道系统具有全空气空调方式的一般优点,还具有自身优点:

(1)房间的个别控制性能好;

(2)同一时间内可供冷、供热;

(3)因直接用冷、热空气混合,室温调节反应迅速;

(4)冬季和过渡季节的冷源和夏季的热源可利用室外新风。

缺点:

(1)冷热风混合调温有能量损失,全年送风动力较高(高速风管),运转费用高;

(2)双风管材料、安装人工费用高;

(3)双风管布置难度大;

(4)不能精确控制室内湿度。

应用:

在使用要求较高的高级办公楼、建筑造型及功能复杂、冷热负荷分布规律性差的建筑。但因能耗较大现在使用减少。

设计双风管空调系统时,可采用下列数据:

冷风温度全年为12~15℃,夏季热风温度比室温高3℃,冬季热风温度为35~45℃,过渡季热风温度为25~35℃。

冷风量按总风量的100%计算,热风量按总风量的50%~70%考虑。常用高速风管以减小风管断面尺寸,混合箱后采用低速风管。

1.4 变风量空调系统(VAV)

1.4.1 采用变风量的原因

定风量系统其送风量是根据空调房间最大冷负荷确定的,但实际上房间的冷负荷是变化的,当负荷减小时,就要减小送风温差和送风湿度差来达到平衡。如此不仅增加加热量消耗,还浪费了冷量。最好采用变风量。即送风温差不变,通过空调末端装置来改变送风量。

(变风量单风道空调系统)

1.4.2 定风量与变风量的区别

定风量与变风量的区别详见表1-5。

表1-5 定风量与变风量的区别表

定风量系统的送风量是固定不变的,并且按最不利的情况来确定房间的送风量。变风量系统设有可根据室内负荷变化,自动调节送风量的送风装置,当室内负荷减少时,它可保持送水参数不变,自动减少风量来保持室内温度的稳定。由于处理的风量减少,可降低风机功率电耗及制冷机的冷量。

与定风量系统比较,变风量系统的初投资高一点,但它节能、运行费用低,综合经济性好。空调装置的容量越大,采用变风量系统的经济性越好。

1.4.3 变风量末端装置的形式

变风量末端装置可分为节流型、旁通型和诱导型三种。

其中节流型变风量风口应用最广泛,其结构种类很多,普通节流型VAV末端装置和带风速传感器的电子式VAV末端装置是典型代表。

(节流型变风量系统动画演示)

(节流型变风量风口动画演示)

(用开关风门控制风量的空调动画演示)

图1-18 电子式VAV末端装置

VAV装置关小后管内静压变高,此时可利用静压控制器调低风机的转速减小风量。

(VAV系统的风量控制原理动画演示)

1.5风机盘管+新风空调系统

风机盘管机组常和经过独立处理的新风系统相结合,这样的中央空调系统称为风机盘管+新风系统。

风机盘管加新风空调系统是空气——水空调系统中的一种主要形式,也是目前我国民用建筑中采用最为普遍的一种空调形式。它以投资少、使用灵活等有点广泛应用于各类建筑中。

1.5.1 风机盘管的构造、类型和基本参数

1.5.1.1 风机盘管的构造

风机盘管机组由盘管(表冷器,一般为2~3排)和风机(前向多叶风机和贯流风机)组成,风量在250~2500m3/h。

风机盘管的构造图见图1-19到图1-20。

图1-19 立式风机盘管结构图

图1-20 卧式风机盘管结构图

图1-21 卧式风机盘管实物图

空调原理及系统组成

空调原理及系统组成传热方式与热学定律 对流、传导、辐射 对流:通过流体流动把热量带走。 传导:相互接触的物体之间或物体内部温差传。 辐射:物体通过发出红外线方式把热量散发出去。 热力学第一定律: 能量是可以转换的,可以传递的,能量的总量保持不。物质吸收了热量膨胀,对外界作功把一部份能量传给了外界,热能转化为机械能。 热力学第二定律: 指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。 5?天前上传 下载附件 (25.41 KB) 如:压缩机---做功,将热量从低温热源传送到高温热源,使得低温热源始终保持较低温度,类似于水泵做功实现水从低处往高处流的原理。 一般空调构成及循环

5?天前上传 下载附件 (26.51 KB) 压缩机:“心脏”,压缩和输送制冷剂蒸汽; 膨胀阀:节流降压,并调节进入蒸发器的制冷剂流量; 蒸发器:吸收热量(输出冷量)从而制冷; 冷凝器:输出热量。 5?天前上传 下载附件 (44.75 KB) 空调四大件 蒸发器工作的过程 室内的温度较高,空气流过蒸发器时冷媒蒸发带走空气中的热量,空气温度降低成为冷空气。 空气被冷却时,空气中会有凝水,通过排水器排走。 为了防止冷凝水流到机房内,需要挡板和排水管将其排到室外。 5?天前上传 下载附件 (25.14 KB) 空调的第二个部件冷凝器(这里所指是空冷式),也就是我们通常说的室外

机室外机的工作原理是冷媒向空气放热,由气态转化为液态,向空气排热。所以冷凝器的散热条件对空调制冷有较大影响,有一定的环境及距离要求,后文将会详细讲解。 5?天前上传 下载附件 (29.81 KB) 空调的第三个部件压缩机,压缩机起到的作用如下: 来自蒸发器的低温低压的冷媒气体被压缩机压缩成高温高压的气体进入冷凝器。 冷媒向空气放热,由气态转化为液态,这一过程,实际需要做功,做功这一过程由压缩机来完成。 这一过程中压缩机压缩和输送制冷剂蒸汽(工作过程),通过做功后冷凝器再将热量带到室外。 5?天前上传 下载附件 (38.94 KB) 空调的第四个部件膨胀阀 膨胀阀---对制冷剂节流降压,并调节进入蒸发器的制冷剂流量,高温高压的液体变为低温低压液体膨胀阀通过感应器感应蒸发器出口温度,如果出口过热度偏高,表示蒸发器热负荷偏大,则膨胀阀阀门调节开启变大,制冷剂流量按比例增加。反之,蒸发器出口温度偏低,膨胀阀会逆向关小减少制冷剂流向蒸发器的流量,从而实现减小制冷量。通过膨胀阀的控制,实现空调制冷的动态平衡。 5?天前上传

空气调节系统组成

空气调节系统组成 一个典型的空调系统应由空调冷源和热源; 空气处理设备;空调风系统;空调水系统; 空调的自动控制和调节装置这五大部分组成。 (1)空调冷热源和热源冷源是为空气处理设备提供冷量以冷却送风空气。常用的空调冷源是各类冷水机组,它们提供低温水(例如7℃)给空气冷却设备,以冷却空气。也有用制冷系统的蒸发器来直接冷却空气的。热源是用来提供加热空气所需的热量。常用的空调热源有热泵型冷热水机组、各类锅炉、电加热器等。 (2)空气处理设备其作用是将送风空气处理到规定的送风状态。空气处理设备(也称空调机组)可以是集中于一处,为整幢建筑物服务(小型建筑物多采用)。也可以分散设置在建筑物各层面。常用的空气处理设备有空气过滤器、空气冷却器(也称表冷器)、空气加热器、空气加湿器和喷水室等。 (3)空调风系统它包括送风系统和排风系统。送风系统的作用是将处理过的空气送到空调区,其基本组成部分是风机、风管系统和室内送风口装置。风机是使空气在管内流动的动力设备。排风系统的作用是将空气从室内排出,并将排风输送到规定地点。可将排风排放至室外,也可将部分排风送至空气处理设备与新风混合后作为送风。重复使用的这一部分排风称为回风。排风系统的基本组成是室内排风口装置、风管系统和风机。在小型空调系统中,有时送排风系统合用一个风机,排风靠室内正压,回风靠风机负压。 (4)空调水系统其作用是将冷媒水(简称冷水或冷冻水)或热媒水(简称热水)从冷源或热源输送至空气处理设备(也称空调机组)。空调水系统的基本组成是水泵和水管系统。空调水系统分为冷(热)水系统、冷却水系统和冷凝水系统三大类。 (5)空调的自动控制和调节装置由于各种因素,空调系统的冷热负荷是多变的,这就要求空调系统的工作状况也要有变化。所以,空调系统应装备必要的控制和调节装置,借助它们可以(人工或自动)调节送风参数、送排风量、供水量和供水参数等,以维持所要求的室内空气状态 海南气候特点

空调制冷系统组成部件及结构图

制冷循环系统的组成部件 制冷循环系统中各部件在车上的安装位置如图所示,下面对各主要组成部件分别予以介绍。 制冷循环系统各部件的安装位置 压缩机 压缩机的作用是将从蒸发器出来的低温、低压的气态制冷剂通过压缩转变为高温、高压的气态制冷剂,并将其送入冷凝器。目前在汽车空调系统中所采用的压缩机有多种类型,比较常见的有斜盘式压缩机、叶片式压缩机、涡旋式压缩机、曲轴连杆式压缩机等。此外,压缩机还可分为定排量和变排量的两种型式,变排量压缩机可根据空调系统的制冷负荷自动改变排量,使空调系统运行更加经济。 叶片式压缩机 (1)结构叶片式压缩机的结构见图,在叶轮上安装有若干叶片,与机体形成几个密封的空间,在机体上安装有吸气孔、排气孔和排气阀,在叶轮旋转时,密封的空间的体积会发生变化,从而完成进气、压缩和排气的过程。

叶片式压缩机的结构 (2)工作过程叶片式压缩机的工作过程见图6-34。 图6-34 叶片式压缩机的工作过程 旋转斜盘式压缩机 (1)结构旋转斜盘式压缩机的结构见图,这种压缩机通常在机体圆周方向上布置有6个或者10个气缸,每个气缸中安装一个双向活塞形成6缸机或10缸机,每个气缸两头都有进气阀和排气阀。活塞由斜盘驱动在气缸中往复运动,活塞的一侧压缩时,另一侧则为进气。

旋转斜盘式压缩机的结构 2)工作过程旋转斜盘式压缩机的工作过程见图,压缩机轴旋转时,轴上的斜盘同时驱动所有的活塞运动,部分活塞向左运动,部分活塞向右运动。图中的活塞在向左运动中,活塞左侧的空间缩小,制冷剂被压缩,压力升高,打开排气阀,向外排出,与此同时,活塞右侧空间增大,压力减小,进气阀开启,制冷剂进入气缸。由于进、排气阀均为单向阀结构,所以保证制冷剂不会倒流.

大型中央空调工作原理及系统结构图

本资料由常州好彩中央空调大卖场友情提供 大型中央空调工作原理及系统结构图 来源:中国节能产业网时间:2009-8-20 10:13:54 中央空调系统主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和冷却塔组成。各部分的作用及工作原理如下: 制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻泵将冷冻水送到各风机风口的冷却盘管中,由风机吹送达到降温的目的。经蒸发后的制冷剂在冷凝器中释放出热量成气态,冷却泵将冷却水送到冷却塔上由水塔风机对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。 中央空调系统部分组成: 冷冻水循环系统 该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加

速室内热交换。 冷却水循环部分 该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。 主机 主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下: 首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使其达到较低温度。最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复

空调系统的主要设备组成基础知识

空调系统的主要设备组成基础知识 2008-3-26 从本质上讲,均由空气处理设备,空气输送设备,空气分布装置三大部分组成。此外还有制冷系统,供热系统及自动调节系统。 1、空气热湿处理设备空气热湿处理设备主要是对空气进行加热、 加湿、冷却、除湿等处理。 (1)喷水室。在民用建筑中不再采用,但在以调节湿度为主要目的的纺织厂和卷烟厂空调中仍大量使用。 (2)表面式换热器。冷却器、加热器、蒸汽盘管统称为表面式 换热器。 l)盘管表面式换热器有光管式和肋管式两种。根据加工方法不同,肋片管又可分成绕片管、串片管和轧片管。 为了便于使用和维修,冷、热煤管路上应设阀门、压力表和温度计。在蒸汽加热器的蒸汽管路上还要设蒸汽调节阀门和疏水器。为了保证表面式换热器正常工作,在水系统的最高点应设排空气装置,而在最低点应设泄水阀门和排污阀门。 2)电加热器。它有结构紧凑、加热均匀、热量稳定、控制方便的优点。但是电加热器利用的是高品位的热能,它只宜在一部分空调

机组和小型空调系统中使用。在恒温精度要求较高的大型空调系统中,也常用电加热器控制局部加热或作末级加热使用。 常用的电加热器有裸线式和管式两种。 为了确保安全,设计安装电加热系统特别是采用裸线式电加热器 时,必须满足下列要求: ①电加热器宜设在风管中,尽量不要放在空调器内。 ②电加热器应与送风机联锁。 ③安装电加热器的金属风管应有良好的接地。 ④电加热器前后各0.8m范围内的风管,其保温材料均应采用 绝缘的不燃材料。 ⑤安装电加热器的风管与前后风管连接法兰中间须加耐热不燃 材料的衬垫。 ⑥暗装在吊顶内风管上的电加热器,在相对于电加热器位置处的 吊顶上应开设检修孔。 ⑦在电加热器后的风管中应安装超温保护装置。 (3)常用空气湿处理设备。 空气的加湿方法一般有喷水加湿、喷蒸汽加湿、电加湿、超声波加湿、远红外线加湿等。利用外热源使水变成蒸汽和空气的混合过程

空调器结构和工作原理

空调器结构和工作原理

空调器结构和工作原理 空调器的结构,一般由以下四部分组成。 制冷系统:是空调器制冷降温部分,由制冷压缩机、冷凝器、毛细管、蒸发器、电磁换向阀、过滤器和制冷剂等组成一个密封的制冷循环。 风路系统:是空调器内促使房间空气加快热交换部分,由离心风机、轴流风机等设备组成。 电气系统:是空调器内促使压缩机、风机安全运行和温度控制部分,由电动机、温控器、继电器、电容器和加热器等组成。 箱体与面板:是空调器的框架、各组成部件的支承座和气流的导向部分,由箱体、面板和百叶栅等组成。 制冷系统的主要组成和工作原理 制冷系统是一个完整的密封循环系统,组成这个系统的主要部件包括压缩机、冷凝器、节流装置(膨胀阀或毛细管)和蒸发器,各个部件之间用管道连接起来,形成一个封闭的循循环系统,在系统中加入一定量的氟利昂制冷剂来实现这冷降温。 空调器制冷降温,是把一个完整的制冷系统装在空调器中,再配上风机和一些控制器来实现的。制冷

的基本原理按照制冷循环系统的组成部件及其作用,分别由四个过程来实现。 压缩过程:从压缩机开始,制冷剂气体在低温低压状态下进入压缩机,在压缩机中被压缩,提高气体的压力和温度后,排入冷凝器中。 冷凝过程:从压缩机中排出来的高温高压气体,进入冷凝器中,将热量传递给外界空气或冷却水后,凝结成液体制冷剂,流向节流装置。 节流过程:又称膨胀过程,冷凝器中流出来的制冷剂液体在高压下流向节流装置,进行节流减压。蒸发过程:从节流装置流出来的低压制冷剂液体流向蒸发器中,吸收外界(空气或水)的热量而蒸发成为气体,从而使外界(空气或水)的温度降低,蒸发后的低温低压气体又被压缩机吸回,进行再压缩、冷凝、节流、蒸发,依次不断地循环和制冷。单冷型空调器结构简单,主要由压缩机、冷凝器、干燥过滤器、毛细管以及蒸发器等组成。单冷型空调器环境温度适用范围为18℃~43℃。 冷热两用型空调器又可以分为电热型、热泵型和热泵辅助电热型三种。 (1)电热型空调器 电热型空调器在室内蒸发器与离心风扇之间安装

空调原理及系统组成

空调原理及系统组成 传热方式与热学定律 对流、传导、辐射 对流:通过流体流动把热量带走。 传导:相互接触的物体之间或物体内部温差传。 辐射:物体通过发出红外线方式把热量散发出去。 热力学第一定律: 能量是可以转换的,可以传递的,能量的总量保持不。物质吸收了热量膨胀,对外界作功把一部份能量传给了外界,热能转化为机械能。 热力学第二定律: 指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。 5 天前上传 下载附件(25.41 KB) 如:压缩机---做功,将热量从低温热源传送到高温热源,使得低温热源始终保持较低温度,类似于水泵做功实现水从低处往高处流的原理。 一般空调构成及循环

5 天前上传 下载附件(26.51 KB) 压缩机:“心脏”,压缩和输送制冷剂蒸汽; 膨胀阀:节流降压,并调节进入蒸发器的制冷剂流量;蒸发器:吸收热量(输出冷量)从而制冷; 冷凝器:输出热量。

5 天前上传 下载附件(44.75 KB) 空调四大件 蒸发器工作的过程 室内的温度较高,空气流过蒸发器时冷媒蒸发带走空气中的热量,空气温度降低成为冷空气。空气被冷却时,空气中会有凝水,通过排水器排走。 为了防止冷凝水流到机房内,需要挡板和排水管将其排到室外。

5 天前上传 下载附件(25.14 KB) 空调的第二个部件冷凝器(这里所指是空冷式),也就是我们通常说的室外机室外机的工作原理是冷媒向空气放热,由气态转化为液态,向空气排热。所以冷凝器的散热条件对空调制冷有较大影响,有一定的环境及距离要求,后文将会详细讲解。 5 天前上传

中央空调系统组成各部分介绍

中央空调系统组成各部分介绍 中央空调分为冷媒系统、水系统和风系统,其中风系统中央空调使用很少,冷媒系统和水系统较多,下面将重点介绍冷媒系统和水系统中央空调系统的组成,并对中央空调系统组成的各部分进行简单的说明。 冷媒系统中央空调系统的组成:主机+冷媒管道+分歧管+冷凝排水管道+内机;水系统中央空调系统的组成:主机+膨胀水箱(闭式膨胀罐)+循环水泵+冷冻水管(阀门)+水过滤器+内机+冷凝水排水管道。这两种中央空调系统组成部分设备一样。 中央空调系统的组成:主机 主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,主机也是中央空调系统组成最重要的部分,主机集成了中央空调的核心技术。 中央空调系统的组成:冷媒管道 冷媒管道主要是指内机和外机的连接管、用来走冷媒的、所以叫冷媒管也叫连接管,冷媒管道是中央空调系统组成的流体,如:水\氟利昂\氨\等。 中央空调系统的组成:分歧管 分歧管是小型中央空调组机与组机、组机与室内各风口单元的连接部分,把整个空调系统连接成树型结构。 中央空调系统的组成:内机 内机也是中央空调系统组成重要部分,属于中央空调系统的尾部设备,一般一套中央空调系统由多台内机组成,内机分为风管机、天井机、壁挂机、落地机。 中央空调系统的组成:膨胀水箱 膨胀水箱是中央空调水路系统中的重要部件,它的作用是收容和补偿系统中水的胀缩量。,一般都将膨胀水箱设在系统的最高点,通常都接在循环水泵(中央空调冷冻水循环水泵)吸水口附近的回水干管上。 中央空调系统的组成:循环水泵 循环水主要是向汽轮机凝汽器供给冷却水,用以冷却凝气轮机排汽,循环水泵还要向冷油器,冷风器,锅炉冲灰水等提供水源。每台泵对应有两台旋转滤网和一个外围水闸对泵吸入口处的水源进行垃圾清理。 中央空调系统的组成:水过滤器 水过滤器由简体、不锈钢滤网、排污部分、传动装置及电气控制部分组成。过滤机工

空调系统的组成与方式

1 空调系统的组成与方式 1.1 中央空调系统的组成 1.2中央空调系统的分类与比较 1.2.1中央空调系统的分类 1.2.2典型空调系统的比较 1.2.3空调系统选择的原则 1.3 全空气空调系统(AAA) 1.3.1 全空气空调过程 1.3.2 回风方式的选定 1.3.3 风量平衡 1.3.4 系统的划分 1.3.5 分区处理 1.3.6 双风道系统 1.4 变风量空调系统(VAV) 1.4.1 采用变风量的原因 1.4.2 定风量与变风量的区别 1.4.3 变风量末端装置的形式 1.5风机盘管+新风空调系统 1.5.1 风机盘管的构造、类型和基本参数 1.5.2 系统的新风供给方式 1.5.3 系统中的新风终状态的处理方式 1.5.4 风机盘管的水系统与调节 1.6商用、户式中央空调、变流量系统 1.6.1 商用中央空调 1.6.2 户用中央空调 1.6.3 变流量系统(VRV) 1.1 中央空调系统的组成 中央空调系统主要由制冷制热设备或装置(压缩机、压缩冷凝机组、冷水机组、空调箱、锅炉、喷水室等)、管路(制冷剂管路、冷媒管路、载冷剂管路等)、室内末端设备(室内风管水管、散流器、风机盘管、空调室内机等)、室外设备(室外风管、冷却塔、风冷式冷凝器等)、水泵、控制装置及附属设备等组成。 中央空调系统的组成参见图1-1和图1-2,多房间的单风道全空气空调系统参见图1-3。

图1-1 中央空调系统组成示意图1 图1-2 中央空调系统组成示意图2 (多房间的单风道全空气空调系统动画演示) 中央空调系统的组成及举例参见表1-1。 组成举例 空气分布、输送系统送、回风管道、散流器等空气处理设备空调箱、风机盘管 冷媒输送系统冷冻水泵、冷冻水管路及附件 冷热源冷水机组、锅炉等 热媒输送系统热水泵、热水管路及附件 散热系统冷却风系统或冷却水系统

中央空调系统的构成及工作原理

中央空调系统的构成及工作原理 中央空调系统的组成如图1所示。 它主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和冷却塔组成。 各部分的作用及工作原理如下: 制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻泵将冷冻水送到各风机风口的冷却盘管中,由风机吹送达到降温的目的。经蒸发后的制冷剂在冷凝器中释放出热量成气态,冷却泵将冷却水送到冷却塔上由水塔风机对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。 图1 中央空调系统的组成 注:T为环境温度,即室外温度,四季不同,夏天可达35℃。 中央空调工作原理 户式中央空调--工作原理一户式中央空调的分类 ☆风管机 一台定频室外机,一台定频室内机,通过风管把冷热风送至每个房间,可方便将室外新风引入;对空气进行加湿等集中处理也较容易,是廉价的机器,设计合理每个房间的噪声仅增加1~3分贝,卧室不必吊顶,每个房间在可高于主温控器设定的温度以上,对温度进行控制;可以有一定比例的能量转移,达到节能及加快空调冷热速度的效果。 室内机局部噪声较大,根据现场不同的安装条件,实测在42~52分贝之间,对设计及安装

要求很专业。 ☆一拖多机组 (1)定频多联机 把分体空调集中到一个室外机中,最多一拖三里面有三台压缩机,冷媒系统各自独立;把明装壁挂室内机改变成暗藏式;引进新风困难,是分体空调的一种变形,卧室内风机噪音由低到高要增加7~14分贝,最高达50分贝。每个卧室需增加长1.2m以上,宽0.6m,高0.3 m的吊顶,另需设检修孔;每个内机都需有冷凝水排放的管路。 冷媒系统独立,但电路部分的有共用点;如发生外风机,外机温度探头、压力保护或电器局部短路等故障时,整套机器将无法运行。 (2)定、变频一拖多 其中有1~2台变频压缩机或另加1台定频压缩机,电路上有射频干扰,对电脑有影响。检修孔新风引入吊顶与冷凝水与多联机相同;对氟管的分支器要求设计合理;对上,下层共用1台机器,管路要求更高;较易在全开启时出现末端内机效果太差的情况。 ☆冷热水机 定频冷热水机或变频冷热水机 大型中央空调的缩小,冷凝器由水冷变成风冷;用水泵将冷热水送至风机盘管。引入新风、检修孔、吊顶冷凝水排放、噪声指标与多联机相同。但又增加了冷热水管;由于温度差很大,密封问题突出,出现漏水对装潢的破坏较大。另外大型中央空调蒸发器都定时清理和酸洗;家用冷热水机对此还无良策,长期使用冷热交换器的效率将大打折扣。如能与中央水处理系统相结合,可克服上述难点。 单独房间使用空调,其它房间风机盘管有冷热水管流过,也会产生能耗;现较流行采用电磁水阀来关闭水路;除去造价上的因素外;还会使局部水流速过高,产生噪声的问题。 二. 户式中央空调的工作原理 1.冷(热)水机组的基本工作过程是:室外的制冷机组对冷(热)媒水进行制冷降温(或加热升温),然后由水泵将降温后的冷媒(热)水输送到安装在室内的风机盘管机组中,由风机盘管机组采取就地回风的方式与室内空气进行热交换实现对室内空气处理的目的。

中央空调系统的组成

中央空调系统的组成 中央空调系统通常由以下5个部分组成: 1.空气处理设备 空气处理设备的作用是将空气处理到一定的状态,有集中处理空气的空调机组、集中处理新风的新风机组和设在空调机房内处理空气的末端设备——风机盘管机组等。 2.冷源和热源 冷源和热源是实现空气处理过程所必需的。冷源是为了空气处理设备集中提供一定温度的冷媒水。工程中常见的空调用冷水机组。 热源是为了空气处理设备集中提供一定温度的热媒水,工程中常见的空调热源有:锅炉房、城市热网和热交换站、燃油或燃气的中央热水机组及直燃式溴化锂吸收式冷热水机组。 3.空调风系统 空调风系统的作用是将来自空气处理设备的空气通过送风风管系统送入空调房间内,同时从房间内抽回一定量的空气(即回风)。经过回风风管系统送至空气处理设备前,其中少量的空气被排至室外,而大部分被重复利用。 空调送风系统包括通风机、送回风风管、风量调节阀、防火阀、消声器、风机减震器和空调房间内的送风散流器、回风口等。4.空调水系统 空调水系统包括冷媒水系统和冷却水系统两部分组成,另外

还有热媒水系统。 冷媒水系统是将冷水机组制出的冷冻水通过水泵输送到空气处理设备,将冷量经过热交换后返回到冷水机组进行第二次循环。该系统通常采用闭式循环系统。主要设备有:冷冻水水泵、膨胀水箱、分水器、集水器、自动排气阀、水过滤器、水量调节阀和排污阀和控制仪表等。对于冷媒水要求高的冷水机组还要相应的设置软化水设备、补水水箱和补水水泵等。 冷却水系统是将冷水机组冷凝器的出水送到冷却塔,在冷却塔内散热后经水过滤器过滤杂质后进入冷却水泵,送入冷凝器对冷凝器进行降温散热。形成冷却回路。 在冬季运行时,冷源机组和热源要经过切换。 5.控制、检测和保护系统 为了保证空调系统制冷系统和空气调节系统正常运行,在室外环境温度发生变化时,自动或人工调节运行参数,确保空调房间的热湿负荷。当系统内发生故障时系统的保护系统动作,停机保护,确保安全。 普通集中式空调系统 普通集中式空调是全空气、低速、定风量、单风管的系统,也是工程中最常见的。例如一些公共建筑物,如剧院、礼堂、宾馆、商场、办公楼等场所,为了保证人们有一个舒适的环境,要求室内维持一定的温度和相对湿度(人体感觉舒适的温度大约为18――28℃,相对湿度为40~65%)。

空调系统中的四大件组成及原理分析

空调系统中的四大件组成及原理 空调系统中的四大件组成及原理 2009年08月17日星期一23:39 空调系统有四大件:压缩机、冷凝器、蒸发器和节流部件。 1.压缩机 压缩机是整个空调系统的核心,也是系统动力的源泉。整个空调的动力,全部由压缩机来提供,压缩机就相当于把一个实物由低势位搬到高势位地方去,在空调中它的目的就是把低温的气体通过压缩机压缩成高温的气体,最后气体在换热器中和其他的介质进行换热。所以说压缩机的好坏会直接影响到整个空调的效果。根据蒸气的原理,压缩机可分为容积型和速度型两种基本类型。容积型压缩机通过对运动机构作功,以减少压缩室容积,提高蒸气压力来完成压缩功能。速度型压缩机则由旋转部件连续将角动量转换给蒸气,再将该动量转为压力。根据压缩方式,容积型压缩机可分为活塞式和回转式两大类。回转式又可分为滚动活塞式、滑片式、单螺杆式、双螺杆式、涡旋式。速度型压缩机有离心式。 从压缩机结构上来看,又可将压缩机分为开启式、半封闭式和全封闭式。开启式压缩机的主轴伸出机体外,通过传动装置(传动带或联轴节)与原动机相连接。在伸出部分必须有轴封装置,使主轴和机体间密封来防止制冷剂泄露。封闭式压缩机的结构是将电动机和压缩机连成整体,装在同一机体内,因而可以取消轴封装置,避免了泄漏制冷剂的可能。这样,电动机便处于四周是制冷剂的环境中,称为内装式电动机。封闭式压缩机又可分为半封闭和全封闭两种型式。半封闭式的机体用螺栓连接,因此和开启式一样可以拆开维修。全封闭式的机体则装在一个焊接起来的外壳中,无法拆开维修。 2.换热器 根据在空调上的作用不同,可分为冷凝器和蒸发器。现在就冷凝器和蒸发器的分类和区别述说一下。 (1)、冷凝器: 冷凝器的作用是将压缩机排出的高温高压的制冷剂过热蒸汽冷却成液体或气液混合物。制冷剂在冷凝器种放出的热量由冷却介质(水或空气)带走。冷凝器按

空调水系统常用组成部件介绍

水系统常用组成部件介绍 ●空调水系统常用管材和管径 ●管道连接件 ●管道保温 ●压力表 ●温度计 ●水流开关(流量控制器) ●除污器和水过滤器 ●膨胀水箱 ●排气阀 ●集气罐 ●水泵 ●冷却塔 ●阀门 ●玻璃液位计 1,空调水系统常用管材和管径: 空调水系统常用的管材是水、煤气输送钢管和无缝钢管。 1)、水、煤气输送钢管一般采用碳素软钢制成,俗称熟铁管,它可以分成镀锌管(白铁管)和不镀锌管(黑铁管),按压力分可以分为普通管(公称压力为1Mpa)和加厚管.一般采用公称直径(如DN50)进行表示。 2)、无缝钢管:生产检验标准为《无缝钢管》(YB231-70)。材质一般为普通碳素钢、优质碳素钢。习惯用英文字母D后续外径乘以壁厚表示(如D108x4),常用规格请参见表1。

3)管道内过高的流速会带来很大的压力损失,为此需要控制管内水流速,在一 2,管道连接件 管道连接方法有螺纹接,法兰接和焊接三种,应按所选管材和最大工作压力选定。当选择与设备(或阀件)相连接的法兰时,应按设备和阀件的公称压力(注:对于空调工程范畴的水管,最大工作压力可以当作公称压力考虑来选择,否则会造成所选择的法兰与设备(或阀件)上的法兰尺寸不相符合的情况。当采用凹凸式或榫槽式法兰连接时,在一般情况下,设备和阀件上的法兰制成凹面或槽面,而配制得法兰制成凸面或榫面。在选用法兰时应优先选用标准法兰,非标准法兰是要自行设计的。我国现行法兰技术标准的公称压力(Pg)系列为0.1,0.25,0.6,1.0,1.6,2.5,4.0,6.4[Mpa]时,一般应按1.6[Mpa]等级选用。 3,管道保温 为了减少管道的能量损失,防止冷水管道表面结露以及保证进入空调设备和末端空调机组的供水温度,管道及其附件均应采用保温措施,保温层的经济厚度的确定与很多因素有关,如材料的若物理特性,材料和保温结构的投资及其偿还年限、能价(还应包括上涨率因素)、系统的运行小时数等,需要详细计算时可以查阅有关技术资料。一般情况下可以参考表2选用。 度一般取25[mm]。 目前,空调工程中常用的保温材料及其主要技术特性列于表3。 保温结构的设计和施工质量直接影响到保温效果、投资费用和使用寿命,应与重视。 管道和设备的保温结构一般由保温层和保护层组成。对于敷设在地沟内的管道和和输送低温水的管道还需加防潮层。 管道保温结构的施工应在管道系统试压和涂漆合格后进行。在施工前应先清除管子表面的脏物和铁锈,涂上防锈漆两道,要保护管道外表面的清洁并使其干燥。在冬、雨季进行室外管道施工时应有防冻和防雨的措施。

中央空调系统图

中央空调系统 图1所示为一典型中央空调机组系统图,主要由冷冻水循环系统、冷却水循环系统及主机三部分组成: 图1 中央空调系统原理图 ● 冷冻水循环系统 该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。 ● 冷却水循环部分 该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。 ● 主机 主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下: 首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使其达到较低温度。最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复。 # 膨胀水箱是热水采暖系统和中央空调水路系统中的重要部件,它的作用是收容和补偿系统中水的胀缩量。 一般都将膨胀水箱设在系统的最高点,通常都接在循环水泵(中央空调冷冻水循环水泵)吸

水口附近的回水干管上。 膨胀水箱是一个钢板焊制的容器,有各种大小不同的规格。膨胀水箱上通常接有以下管道: (1)膨胀管它将系统中水因加热膨胀所增加的体积转入膨胀水箱(和回水干道相连接)。(2)溢流管用于排出水箱内超过规定水位的多余的水。 (3)信号管用于监督水箱内的水位。 (4)循环管在水箱和膨胀管可能发生冻结时,用来使水循环(在水箱的底部中央位置,和回水干道相连接)。 (5)排污管用于排污。 (6)补水阀与箱体内的浮球相连,水位低于设定值则通阀门补充水。 为安全起见,膨胀管和溢流管上不允许装任何阀门。

中央空调系统制冷原理介绍

制冷原理图 中央空调制冷原理图

空调系统通过三个循环把室内的热量传到室外:冷冻水循环,制冷剂循环,冷却水循环。 制冷主机: 制冷主机通过压缩机让制冷剂迅速冷冻循环水,冷冻循环水的温度快速降低(一般经过制冷主机制冷后的水温在7℃左右),这是中央空调冷源提供的地方,通过制冷主机冷冻的冷冻水由冷冻水泵送入空调房间。 冷冻水泵: 冷冻水带走制冷剂的冷量后,再到空调系统末端(如风机盘管,空调机组)与空气换热,温度升高后再回到冷水机组内带走制冷剂冷量,这样构成冷冻水循环系统,在这个系统上的泵称为冷冻水泵。 冷却水泵: 制冷剂在冷水机组里循环,经过压缩机使温度升高,这时用水将温度降下来,这部分水称为冷却水,冷却水通过冷冷却水泵把制冷主机所产生的热量带走,再经过冷却塔把热量释放到空气中,然后回到冷水机组,这样构成一个冷却水循环系统,在这个系统上的泵是冷却水泵。 冷却塔: 通过冷却水泵将温度较高的水送上冷却塔,通过冷却塔喷头,让水自上而下流动,一方面,通过自然空气带走水中热量;另一方面,通过冷却风机带动空气加速运动,通过空气带走热量的同时加快蒸发,让水温降低。温度降低后的冷却水再次循环进入制冷主机,带走制冷主机产生的废热,如此循环。 风机盘管: 风机盘管空调系统是将由风机和盘管组成的机组直接放在房间内,工作时盘管内根据需要流动热水或冷水,风机把室内空气吸进机组,经过过滤后再经盘管冷却或加热后送回室内,如此循环以达到调节室内温度和湿度的目的。 中央空调水系统的工作原理 与一般空调一样,有四大部件,压缩机,冷凝器,节流装置,蒸发器,制冷剂依次在上述四大部件循环,压缩机出来的冷媒(制冷剂)高温高压的气体,流经冷凝器,降温降压,冷凝器通过冷却水系统将热量带到冷却塔排出,冷媒继续流动经过节流装

空调的工作原理

空调的工作原理 空调主要由两大部分组成:室外机和室内机。室外机负责制冷或制热,室内机负责将冷气或热气输送到室内,并通过管道将 大多数空调使用的制冷剂是氟利昂。氟利昂的特性是:由气态变为液态时,释放大量的热量。而由液态转变为气态时,会吸收大量的热量。压缩机将气态的制冷剂压缩为高温高压的气态制冷剂,然后送到冷凝器(室外机)散热后成为常温高压的液态制冷剂,所以室外机吹出来的是热风。 然后到毛细管,进入蒸发器(室内机),由于制冷剂从毛细管到达蒸发器后空间突然增大,压力减小,液态的制冷剂就会汽化,变成气态低温的制冷剂,从而吸收大量的热量,蒸发器就会变冷,室内机的风扇将室内的空气从蒸发器中吹过,所以室内机吹出来的就是冷风;空气中的水蒸汽遇到冷的蒸发器后就会凝结成水滴,顺着水管流出去,这就是空调会出水的原因。 制热的时候有一个叫四通阀的部件,使制冷剂在冷凝器与蒸发器的流动方向与制冷时相反,所以制热的时候室外吹的是冷风,室内机吹的是热风。 从压缩机出来的高温高压制冷蒸汽通过高压软管进入冷凝器;由于车外温度低于进入冷凝器的制冷剂温度,借助于冷凝风扇的作用,在冷凝器中流动的制冷剂的大部分热量被车外空气带

走,从而高温高压气体被冷凝成高温高压的液体。这种高温高压液体流过节流膨胀阀时,由于节流作用,体积突然变大而降压,变成低压低温的雾状液体进入蒸发器,并在定压下汽化,由于制冷剂在管内汽化时的温度低于蒸发器管外的车内循环风,故它能吸收管外空气中的热量,从而使流经蒸发器的空气温度降低,从而产生制冷降温效果,汽化了的制冷蒸汽被压缩机抽吸压缩,变成高温高压气体,完成一个制冷系统的循环。户式中央空调 --工作原理 一 户式中央空调的分类 ☆ 风管机 一台定频室外机,一台定频室内机,通过风管把冷热风送至每个房间,可方便将室外新风引入;对空气进行加湿等集中处理也较容易,是廉价的机器,设计合理每个房间的噪声仅增加1~3分贝,卧室不必吊顶,每个房间在可高于主温控器设定的温度以上,对温度进行控制;可以有一定比例的能量转移,达到节能及加快空调冷热速度的效果。 室内机局部噪声较大,根据现场不同的安装条件,实测在42~52分贝之间,对设计及安装要求很专业。 ☆ 一拖多机组 (1)定频多联机 把分体空调集中到一个室外机中,最多一拖三里面有三台压缩机,冷媒系统各自独立;把明装壁挂室内机改变成暗藏式;引进新风困难,是分体空调的一种变形,卧室内风机噪音由低到高要增加7~14分贝,最高达50分贝。每个卧室需增加长1.2m 以上,宽0.6m,高0.3m的吊顶,另需设检修孔;每个内机都需有冷凝水排放的管路。 冷媒系统独立,但电路部分的有共用点;如发生外风机,外机

酒店中央空调水系统构成及原理

酒店中央空调水系统构成及原理 中央空调循环水系统构成如图1所示: 空调水系统主要是由制冷机组、冷冻水泵、冷却水泵、冷却塔等组成的一个系统。 该系统的工作原理是制冷剂在制冷机组的蒸发器中汽化吸收冷冻水的热量,从而使载冷剂一冷冻水的温度降低,然后,在蒸发器内被汽化的制冷剂经制冷机组的压缩机时被压缩成高压高温的气体,当高温高压的制冷剂流经冷凝器时被来自冷却塔的冷却水冷却变成低温高压的气体,低温高压的制冷剂通过膨胀阀后重新变成了低温低压的液体,而后再在蒸发器内气化,完成一次循环。 通过不断的循环,载冷剂不断地输送冷量到空气处理单元,同时,制冷机组产生的热量不断的被冷却水所带走,在流经冷却塔时散发到空气中,冷却塔上装有风机,对流经冷却塔的水进行降温。中央空调制热时,冷却水系统停止运行,空调机组直接对冷冻水进行加热,目前主要有电加热和燃气燃烧加热。经过加热后的水通过管道流至各个房间,风机把进风口吸进的凉空气通过热管加热在通过出风口排出,此时一吹出的便是热风,达到了制热的目的。同时变冷的水流进机组,再一次被加热,然后采暖泵迫使热水再一次流入房间管道,如此形成循环。 实际中央空调应用中,由于其冷冻水和热水用一套水循环管道,所以在设计水泵时,有些设计只有两种水循环系统,即冷却水循环和冷冻水循环,此时水泵也就只有冷冻水泵和冷却水泵,夏季两种水泵均工作,而到了冬季,关闭冷却水泵,只有冷冻水泵工作。但是由于夏季的制冷量很大,所以冷冻水的流量同时也很大,因此冷冻水泵的功率设计比较大,是按最大制冷量加余量而设计。冬季时,制热量相

对较小,不需要很大的制热量,自然需要的热水循环量也就较小,如果还用冷冻水泵就会造成很大的浪费。因此有些中央空调设计时,会单独设计一个热水循环系统,它通过节流阀连接到冷冻水管道上,夏季时,关闭节流阀,使冷冻水使用循环管道,冬季时,关闭冷冻水的节流阀,打开热水节流阀,使热水使用循环管道。这样的话,热水的水泵功率就可以根据制热量加余量来设计,不会造成很大的浪费。考虑到第二种现象在目前的中央空调应用中比较常见,因此本水系统控制系统针对第二种情况设计。对于冷冻/热水系统,其出水温度取决于蒸发器的设定值,回水温度取决于大厦的热负荷。现采用蒸发器的出水管和回水管路上装有检测其温度的变送器,通过冷冻水的温差控制,即可使冷冻水泵的转速相应于热负载的变化而变化。参考目前中央空调机组设计和运行的实际情况,冷冻温差为5一7℃时最为合理。冬季的时候,由于进水温度低,出水温度高,所以温差为负值。对于冷却水系统,由于低温冷却水(冷凝器进水)温度取决于环境温度与冷却塔的工况,只需控制高温冷却水(冷凝器出水)的温度,即可控制温差。 采用在冷却水出水管安装温度变送器,通过控制冷凝器出水温度,便可使冷却水泵的转速相应于热负载的变化而变化,参考目前中央空调机组设计和运行的实际情况,冷却水出水温度为37℃左右时最为合理。中央空调机组在设计时,对于冷冻和冷却水的流量有一个最小值,即机组在运行时,流量不能小于这个值,这是因为如果流量过小,可能会发生机组冻管,损坏中央空调机组。因此,我们在根据温度和温差对水泵转速进行调节时,必须要保证空调机组正常运行所需要的最小流量。如果我们要检测冷冻水和冷却水的流量,应该安装流量传感器,但是流量传感器一般采用法兰安装,串接在水管上,安装复杂并且价格昂贵。考虑到水的流量和其压力有一定的线性关系,在实际检测流量中,一般安装压力传感器,通过测量压力值来计算出流量值。压力传感器安装方便,一般为螺纹安装,并且价格适中。控制策略如图2所示:

空调系统是由四个主要部件组成

空调系统是由四个主要 部件组成 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

空调系统是由四个主要部件组成:压缩机,冷凝器,节流器和蒸发器,这四大部件是构成空调系统最关键,最基本的部件。 1、压缩机 压缩机是空调的主机。压缩机是把来自蒸发器的低温低压制冷剂气体,压缩成为高压高温气体,排向冷凝器,使制冷剂在冷凝器中液化。由此可知,压缩机的作用是不断从蒸发器吸入制冷剂气体,又不断将制冷剂蒸汽压缩后送入冷凝器,同时维持吸气端和排气端的压力差,和其他部件来完成它的相态变化。 2、冷凝器 冷凝器是热交换器的一种,这种热交换器常采用水或空气作为冷却介质正常运行时,压缩机排出的高压高温制冷剂蒸汽进入冷凝器,通过与冷却水进行热交换(若为风冷式冷凝器则和周围的空气进行热交换),使制冷剂整蒸汽的热量传递给冷却水或空气,从而使高压高温的制冷剂蒸汽冷凝成一定压力下的液体。所以说,冷凝器是使制冷剂有气态转变为液态的关键性部件。 3、节流器 节流器是通过突然缩小通道截面,使制冷剂节流降压和适当调节制冷剂流量的设备。节流器通常布置在向蒸发器、中冷器等设备的供液管上。常用的有节流阀、浮球阀、热力膨胀阀、电子膨胀阀及节流孔板及毛细管等。当制冷剂液体由冷凝器(或储液器)流出,经过节流阀时,由于节流作用,压力和温度都降低。由冷凝压力降至蒸发压力,

冷凝(或过冷)温度降至蒸发温度。由此可知节流阀在制冷系统中的重要作用在于节流降压。 4、蒸发器 蒸发器也是一种热交换装置。只是它的作用与冷凝器相反。制冷剂液体在其中气化时吸收被冷却的物体的热量,使被冷却物体的温度降低,从而实现制冷的目的。 应该指出“四大部件”中的每一件,都有其独特的重要作用,它们在密封的循环系统中,按一定的位置和顺序排列,在由管道连接起来,各尽其则,实现制冷制热的目的。 分享 顶

(完整版)暖通空调复习题

一、填空题 1、集中采暖系统主要由热源、输送管网和散热设备三部分组成。 2、根据供暖系统散热方式不同,主要可分为对流供暖和辐射供暖。 3、以对流换热为主要方式的供暖,称为对流供暖。 4、辐射供暖是以辐射传热为主的一种供暖方式。 5、利用热空气作为热媒,向室内供给热量的供暖系统,称为热风供暖系统。 6、机械循环热水采暖系统与自然循环热水采暖系统的主要区别是在系统中设置了循环水泵,主要靠水泵的机械能使水在系统中强制循环。 7、蒸汽采暖系统按干管布置方式的不同,可分为上供式、中供式和下供式蒸汽采暖系统。 8、蒸汽采暖系统按立管布置特点的不同,可分为单管式和双管式蒸汽采暖系统。 9、蒸汽采暖系统按回水动力的不同,可分为重力回水和机械回水蒸汽采暖系统两种形式。 10、集中供热系统都是由热源、供热管网和热用户三大部分组成。 11、热负荷概算法一般有两种:单位面积热指标法和单位体积热指标法。 12、我国目前常用的铸铁柱型散热器类型主要有二柱M-132、四柱、五柱三种类型 13、最常用的疏水器主要有机械型疏水器、热动力型疏水器和热静力型疏水器三种。 14、按照通风系统的作用动力可分为自然通风和机械通风。 15、通风房间气流组织的常用形式有:上送下排、下送上排、中间送上下排等。 16、局部排风系统由排风罩、风管、净化设备和风机等组成。 17、有害气体的净化方法有燃烧法、冷凝法、吸收法和吸附法。 18、自然通风可分为有组织的自然通风,管道式自然通风和渗透通风等形式。 19、风机的基本性能参数有风量、风压、轴功率、有效功率、效率、转数。 20、常见的避风天窗有矩形天窗、下沉式天窗、曲线形天窗等形式。 21、通风系统常用设计计算方法是假定流速法。 22、一般把为生产或科学实验过程服务的空调称为工艺性空调,而把为保证人体舒适的空调称为舒适性空调。

大型中央空调工作原理及系统结构图(1)

大型中央空调工作原理及系统结构图 中央空调系统主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和冷却塔组成。各部分的作用及工作原理如下: 制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻泵将冷冻水送到各风机风口的冷却盘管中,由风机吹送达到降温的目的。经蒸发后的制冷剂在冷凝器中释放出热量成气态,冷却泵将冷却水送到冷却塔上由水塔风机对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。 中央空调系统部分组成: 冷冻水循环系统 该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。

冷却水循环部分 该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。 主机 主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下: 首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使其达到较低温度。最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复

相关文档
相关文档 最新文档