文档库 最新最全的文档下载
当前位置:文档库 › 实验三 离心泵性能综合实验

实验三 离心泵性能综合实验

实验三 离心泵性能综合实验
实验三 离心泵性能综合实验

实验三离心泵特性曲线的测定

一、实验目的

1、了解离心泵的结构和特性,熟悉离心泵的操作;了解并熟悉离心泵的工作原理;

2、掌握离心泵主要参数的测定方法,测量一定转速下的离心泵特性曲线;

3、了解离心泵的工作点与流量调节;

4、泵串、并联实验(选做);

5、泵汽蚀实验(选做)。

二、实验内容

1、练习离心泵的操作。

2、测定某型号离心泵在一定转速下,H(扬程)、N(轴功率)、h(效率)与q v(流

量)之间的特性曲线。

3、测定离心泵出口阀门开度—定时的管路特性曲线

三、实验原理

1、概述

生产中所处理的原料及产品,大多为流体。按照生产工艺的要求,制造产品时往往需要把他们依次输送到各设备内进行反应;产品又常需输送到贮罐内贮存。如果欲达到上述所规定的条件,把流体从一个设备输送到另一个设备,需要输送设备要给流体以一定的速度。生产中,由于各种因素的制约,如场地、设备费用、工艺要求等等;各设备之间流体流动需要消耗能量,流体以一定速度在管内流动亦需要能量。这样,就必须给流体提供能量的输送设备。我们把为液体提供能量的输送设备称为泵,为气体提供能量的输送设备称为风机及压缩机。泵种类很多,按照工作原理的不同,分为离心泵、往复泵、旋转泵、旋涡泵等几种;风机及压缩机有通风机、鼓风机、压缩机、真空泵等。其作用均是:对流体做功,提高流体的压强。本实验主要介绍离心泵。

离心泵一般用电机带动,在启动前需向壳内灌满被输送的液体,启动电机后,泵轴带动叶轮一起旋转,充满叶片之间的液体也随着转动,在离心力的作用下,液体从叶轮中心被抛向外缘的过程中便获得了能量,使叶轮外缘的液体静压强提高,同时增加了液体的动能。液体离开叶轮进入泵壳后,由于泵壳中流道逐渐加宽,液体的流速逐渐降低,一部分动能转化为静压能,使泵出口处液体的压强进一步提高,于是液体以较高的压强,从泵的排出口进入管路,输送至所需的场所。

一个完整的流体输送系统所必须包括的主要设备及仪表有:

1)泵(或风机、压缩机):对流体作功,提高流体压强;

2)进、出口阀门:控制流体流量; 3)压力表:测量流体的压强; 4)管道:流体流动的通道。

2、实验原理

A 离心泵的特性曲线

离心泵是化工生产中应用最广的一种流体输送设备。它的主要特性参数包括:流量Q ,扬程He ,功率N ,和效率η。这些特性参数之间是相互联系的,在一定转速下,He 、N 、η都随着输液量Q 变化而变化;离心泵的压头He 、轴功率N 、效率η与流量Q 之间的对应关系,若以曲线H~Q 、N~Q 、η~Q 表示,则称为离心泵的特性曲线,可由实验测定。特性曲线是确定泵的适宜操作条件和选用离心泵的重要依据。

离心泵在出厂前均由制造厂提供该泵的特性曲线,供用户选用。泵的生产部门所提供的离心泵的特性曲线一般都是在一定转速和常压下,以常温的清水为介质测定。在实际生产中,所输送的液体多种多样,其无论性质(如密度、粘度等)各异,泵的性能亦将发生变化,厂家提供的特性曲线将不再适用,如泵的轴功率随液体密度变化而改变,随粘度变化,泵的压头、效率、轴功率等均发生变化。此外,若改变泵的转速或叶轮直径,泵的性能也会发生变化。因此,用户在使用时要根据介质的不同,重新校正其特性曲线后选用。 B 曲线的测定 1)流量Q 的测定

转速一定,用泵出口阀调节流量,管路中流过的液体量通过文丘里及压差计来确定流量,m 3/s 。

ρ

ρρg

R C A V i s )(20

0-= (3-1)

ρρρg

R C A V i r

r s )(2-= (3-2)

式中

s V —体积流量,

s

m 3

0A —孔板孔口的截面积,2m ; 0C —孔板流量系数;

r A —文丘里喉管的截面积,2m ;

r C —文丘里流量系数;

R —U 型压差计的读数,m ;

i ρ—U 型压差计指示液密度,3

m Kg

ρ—被测流体的密度,3

m Kg

2)扬程(压头)He 的测定

根据泵进出口管上安装的真空表和压力表读数可计算出扬程:

He =h 0 +

g

P P ρ入

出- (3-3) 式中:

出P 、入P —分别为泵出口压力表和入口真空表测得的读数Pa ;

ρ—输送液体密度,kg/3m ; h 0—两测压口间的垂直距离,m 。

3)功率N 的测定

由功率表直接测定电机功率N (Kw ); 4)效率η的测定

Ne =HeQρg (3-4) η泵=Ne / N 轴×100% (3-5)

其中:

He —扬程,m ;

Ne —离心泵有效功率,Kw 。 Q —泵的流量,m 3/s ; ρ—流体密度,Kg/m 3; N 轴—泵的轴功率。 C 离心泵的工作点与调节

1)管路特性曲线与泵的工作点:当离心泵安装在特定的管路系统中时,实际的工作压头和流量不仅与离心泵本身的性能有关,还与管路特性有关,即在输送液体的过程中,泵和管路是相互制约的,对一特定的管路系统,可得出:

He=K+BQ 2

其中:操作条件一定时,K 为常数。

由上式看出,在固定管路中输送流体时,管路所输送的流体的压头He 随被输送流体的流量Q 的平方而变(湍流状态),该关系画在相应坐标纸上,即为管路特性曲线,该线的形状取决于系数K 、B ,即取决于操作条件和管路的几何条件,与泵的性能无关。

将离心泵的特性曲线H~Q与其所在管路的特性曲线绘于同一坐标图上,两线交点M称为泵在该管路上的工作点,该点所对应的流量和压头既能满足管路系统的要求,又为离心泵所能提供。

D 离心泵串并联操作

在实际生产中,当单台离心泵不能满足输送任务要求时,可采用几台离心泵加以组合。离心泵的组合方式原则上有两种:串联和并联。

并联操作:设将两台型号相同的离心泵并联操作,而且各自的吸入管路相同,则两台泵的流量和压头必相同,也就是说具有相同的管路特性曲线和单台泵的特性曲线。在同一压头下,两台并联泵的流量等于单台泵的两倍,但由于流量增大使管路流动阻力增加,因此两台泵并联后的总流量必低于原单台泵流量的两倍。由此可见,并联的台数越多,流量增加得越少,所以三台泵以上的泵并联操作,一般无实际意义。

串联操作:将两台型号相同的泵串联工作时,每台泵的压头和流量也是相同的。因此,在同一流量下,串联泵的压头为单台泵的两倍,但实际操作中两台泵串联操作的总压头必低于单台泵压头的两倍。应当注意,串联操作时,最后一台泵所受的压力最大,如串联泵组台数过多,可能会导致最后一台泵因强度不够而受损坏。

3、实验流程图

图3-1 离心泵性能综合实验流程图

四、实验操作步骤与注意事项

1、先将一定量的水输入蓄水箱,加入水量应为水箱的三分之二以上,关闭计量水箱

底部排液阀。

2、泵特性曲线实验

①泵启动前,泵壳内应注满被输送的液体(本实验为水),打开所有阀往其内加

水排走管道空气,然后关闭阀2、阀4加水直至有水溢流;并且泵的出口阀需关闭,避免泵刚启动时的空载运转。若出现泵无法输送液体,则说明泵未灌满或者其内有空气,气体排尽后必然可以输送液体。

②关闭阀1,启动泵B,待泵出口有一定的压力后再开启泵出口阀(阀6)但幅

度不要太大;记录下泵在一定转速下泵的功率、进出口压力、流量等于原始记录表格中。流量通过涡轮流量计来测量。

③加大泵出口阀(阀6)的开度,记录下相关实验数据。

④关泵时,应注意泵的出口阀门必须关闭,再停泵;

3、泵并联实验

①开阀2、阀5、阀1,灌泵排气后关阀1。

②同时开启泵A、泵B,稍开阀6和阀3。

③记录下涡轮流量计、泵入口负压传感器读数、泵出口正压传感器读数和功率

表读数等数据。

4、泵串联实验

①做完泵并联实验后同时开启阀4、关闭阀3和阀5,泵A和泵B同时运转。

②记录下涡轮流量计、泵入口负压传感器读数、泵出口正压传感器读数和功率

表读数等数据。

5、泵汽蚀实验

①关闭阀7,立即开启阀1,使泵入口管路抽空。

②按泵特性曲线实验的操作步骤进行实验,开泵便可听到一声响声。

③注意泵汽蚀实验操作的时间不宜过久,以免缩短泵的使用寿命。

五、实验数据记录表

六、实验报告内容

1、将实验数据和计算结果列在数据表格中,并以一组数据进行计算举例。

2、在合适的坐标系上标绘离心泵的特性曲线,并在图上标出离心泵的各种性能(泵

的型号和转速、高效率区)。

七、设备性能与主要技术参数

1、本实验装置主要由:离心泵、压力表、真空表、文丘里流量计、蓄水箱、操作台

架等组成。

2、离心泵采用25SG2.5-15G型管道离心泵,额定功率:0.37KW,转速:2800r/min,

吸程:8m,效率:34%,流量:2.5m3/h,扬程:15m,必须汽蚀余量:2.3m。

3、压力表压力传感器量程为(0-0.6MPa),真空表采用负压传感器量程为(-0.1~0 MPa)。

4、流量测量采用涡轮流量计:0.6~6 m3/h。

5、蓄水箱容积约100L,不锈钢材质,当停止供水通过开启灌泵阀时,可使泵运行时

出现汽蚀现象。

6、金属操作台架上装有一电控箱,除开关指示灯外,还装有功率表、压力显示仪、

流量显示仪。

八、思考题

1、试分析实验数据,看一看,随着泵出口流量调节阀开度的增大,泵入口真空表读

数是减少还是增加,泵出口压强表读数是减少还是增加。为什么?

2、本实验中,为了得到较好的实验结果,实验流量范围下限应小到零,上限应尽量

的大。为什么?

3、离心泵的流量,为什么可以通过出口阀来调节?往复泵的流量是否也可采用同样的

方法来调节。为什么?

4、什么情况下会出现“汽蚀”现象?

5、管路特性曲线的形状与泵的性能有关吗?它取决于哪些因素?改变管路特性曲线的

方法有哪些?

6、为什么离心泵启动时要关闭出口阀?

7、正常工作的离心泵,在其进口管上设阀门是否合理?为什么?

离心泵性能测定实验报告

离心泵性能测定 一、实验目的: 1、了解离心泵的构造与特性,掌握离心泵的操作方法; 2、测定并绘制离心泵在恒定转速下的特性曲线。 二、实验原理: 离心泵的压头H、轴功率N及功率η与流量Q之间的对应关系,若以曲线H~Q、N~Q、η~Q表示,则称为离心泵的特性曲线,可由实验测定。 实验时,在泵出口阀全关至全开的范围内,调节其开度,测得一组流量及对应的压头、轴功率和效率,即可测定并绘制离心泵的特性曲线。 泵的扬程He有下式计算: 而泵的有效功率Ne与泵效率η的计算式为:Ne=Qheηg;η=Ne/N 测定时,流量Q可用涡轮流量计或孔板流量计来计量。轴功率N可用马达-天平式测功器或功率来表测量。 离心泵的性能与其转速有关。其特性曲线是某一恒定的给定转速(一般nl=2900PRM)下的性能曲线。因此,如果实验中的转速n与给定转速nl有差异,应将实验结果换算成给定转速下的数值,并以此数值绘制离心泵的特性曲线。换算公式如下: 时, 三、装置与流程: 水由水箱1,经泵进口 阀2、离心泵4、出口阀8 9

涡轮流量计9,最后 流 10 8 6 回水 箱 7 3 5 4 2 1 四、操作步骤: 1、熟悉实验装置及仪器仪表等设备,做好启动泵前的准备工作;将泵盘车 数转,关闭泵进口阀,打开泵出口阀并给泵灌水,待泵内排尽气体并充满水后,再关闭泵出口阀。 2、启动离心泵,全开泵进口阀,并逐渐打开离心泵出口阀以调节流量。在 操作过程稳定条件下,在流量为零和最大值之间,进行8次测定。 3、在每次测定流量时,应同时记录流量计、转速表、真空计、压力表、功 率测定器示值。 数据取全后,先关闭泵出口阀,再停泵。 五、实验数据记录和数据处理:

实验2 离心泵性能特性曲线测定实验

1.2离心泵性能特性曲线测定实验 1. 2.1实验目的 1).了解离心泵结构与特性,学会离心泵的操作。 2).测定恒定转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。 3).测定改变转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。 4).测定串联、并联条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。 5).掌握离心泵流量调节的方法(阀门、转速和泵组合方式)和涡轮流量传感器及智能流量积算仪的工作原理和使用方法。 6).学会轴功率的两种测量方法:马达天平法和扭矩法。 7).了解电动调节阀、压力传感器和变频器的工作原理和使用方法。 8).学会化工原理实验软件库(组态软件MCGS 和VB 实验数据处理软件系统)的使用。 1.2.2基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下扬程H 、轴功率N 及效率η与流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。 1 ) 流量V 的测定与计算 采用涡轮流量计测量流量,智能流量积算仪显示流量值V m 3/h 。 2) 扬程H 的测定与计算 在泵进、出口取截面列柏努利方程: g u u Z Z g p p H 22122121 2-+ -+-=ρ (1—9) p 1,p 2:分别为泵进、出口的压强 N/m 2 ρ:液体密度 kg/m 3 u 1,u 2:分别为泵进、出口的流量m/s g :重力加速度 m/s 2 当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为: g p p H ρ1 2-= (1—10) 由式(1-10)可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。 本实验中,还采用压力传感器来测量泵进口、出口的真空度和压力,由16路巡检仪显示真空度和压力值。 3) 轴功率N 的测量与计算 轴功率可按下式计算: N=M ω=M 60 281.9602n PL n ππ.. = (1—11)

北京化工大学离心泵性能实验报告

报告题目:离心泵性能试验 实验时间:2015年12月16日 报告人: 同组人: 报告摘要 本实验以水为工作流体,使用了额定扬程He为20m,转速为2900 r/min IS 型号的离心泵实验装置。实验通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过计量槽和秒表测量。实验中直接测量量有P真空表、P 压力表、电机功率N电、孔板压差ΔP、计量槽水位上升高度ΔL、时间t,根据上述测量量来计算泵的扬程He、泵的有效功率Ne、轴功率 N轴及效率η,从而绘制He-Q、Ne-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作范围;又由P、Q求出孔流系数C0、Re,从而绘制C0-Re曲线图,求出孔板孔流系数C0;最后绘制管路特性曲线H-Q曲线图。 本实验数据由EXCEL处理,所有图形的绘制由ORIGIN来完成 实验目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 基本理论 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图4-3中的曲线。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为选泵的依据。

泵的性能曲线测定实验汇总

离心泵的特性曲线的测定 2010-11-28 00:12:33| 分类:默认分类|字号订阅 实验四、离心泵的特性曲线的测定 一、实验目的: 1.掌握离心泵操作,了解离心泵的结构和性能; 2.测定离心泵在一定转速下的特性曲线的测定。 3.测定离心泵的管路特性曲线 4.了解离心泵的工作点与流量调节 二、实验原理: 1.离心泵的特性曲线 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论扬程与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图-23的曲线。由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,例如摩擦损失、环流损失等,因此,实际扬程比理论扬程小,且难以通过计算求得,因此通常采用实验方法,直接测定扬程、功率、效率与流量的关系,并将测得:H e~Q、N~Q和η~Q三条曲线称为离心泵的特性曲线。另外,根据此曲线可以得出离心泵的最佳操作范围,泵的高效率区作为选用离心泵的依据。 图2-23 离心泵的理论压头与实际压头 (1)泵的扬程He 在离心泵进出口管装设真空表和压力表的管截面列出柏努利方程式,(以单位重量液体为衡算标准)

则: (2-23) 由于两取压口紧靠离心泵进出口,因此直管段摩擦损失很小,其阻力损失归入离心泵的效率,故=0。 (2 -24)若离心泵进出口管径相同,则 u1=u2 上式可写成为: (2-25) (2-26) 式中:H压强表、H真空表——分别为压强表和真空表所测得的表压和真空度,以(m液柱)表示的数值。 h0——压强表和真空表中心之垂直距离。 (2)泵的轴功率N轴 离心泵从电机获得的实际功率(即单位时间内电机向离心泵输入的功)称离心泵的轴功率。 泵的轴功率和电机的电功率之间有如下的关系: N轴=N电·η电·η传(2-27)式中:N电——电动机的电功率,由功率表测得(KW); η电——电动机效率,取0.9; η传——传动效率,η传=1.0。 (3)泵的效率η 离心泵的有效功率Ne与轴功率之比称为效率。

离心泵性能测定实验

离心泵性能测定实验

离心泵性能测定实验 一、实验目的: 1、 了解离心泵的构造,掌握其操作和调节方法; 2、 测量离心泵在恒定转数下的特性曲线,并确定其最佳工作范围; 3、 测量管路特性曲线及双泵并联时特性曲线; 4、 了解工作点的含义及确定方法; 5、 测定孔板流量计孔流系数C 0与雷诺数Re 的关系(选做)。 二、基本原理: 1、离心泵特性曲线测定 离心泵的特征方程是从理论上对离心泵中液体质点的运动情况进行分析研究后,得出的离心泵压头与流量的关系。离心泵的性能受到泵的内部结构、叶轮形式和转数的影响,故在实际工作中,其内部流动的规律比较复杂,实际压头要小于理论压头。因此,离心泵的扬程尚不能从理论上作出精确的计算,需要实验测定。 在一定转数下,泵的扬程、功率、效率与其流量之间的关系,即为特性曲线。泵的扬程可由进、出口间的能量衡算求得: He = H 压力表 + H 真空表 + H 0 [ m ] 其中:H 真空表,H 压力表分别为离心泵进出口的压力 [ m ]; H 0为两测压口间的垂直距离,H 0= 0.3m 。 N 轴 = N 电机?η电机?η传动 [ kw ] 其中:η电机—电机效率,取0.9; η传动—传动装置的效率,取1.0; 102 ρ ??=He Q N [ kw ] 因此,泵的总效率为: 轴 N Ne = η 2、孔板流量计孔流系数的测定 孔板流量计孔板孔径处的流速u 0可以简化为: u 0=C 0(2gh )1/2 根据u 0和S 0,即可算出流体的体积流量Vs 为: Vs=u 0S 0=C 0S 0(2gh )1/2 或: Vs= C 0S 0(2△p/ρ)1/2 式中Vs ——流体的体积流量,m 3/s ; △ p ——孔板压差,Pa ; S 0——孔口面积,m 2; ρ——流体的密度,kg/m 3; C 0——孔流系数。

离心泵特性实验报告

离心泵特性测定实验报告 一、实验目的 1.了解离心泵结构与特性,熟悉离心泵的使用; 2.测定离心泵在恒定转速下的操作特性,做出特性曲线; 3.了解电动调节阀、流量计的工作原理和使用方法。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: f h g u g p z H g u g p z ∑+++=+++222 2222111ρρ (1) 由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g p p z z ρ1 212)-+ - 210(H H H ++=表值) (2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ; ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2; p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N 的测量与计算 k N N ?=电 (3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。

离心泵特性曲线测定实验

离心泵特性曲线测定实验 一、实验目的 1. 了解离心泵的结构特性,掌握离心泵的操作方法; 2. 了解无纸记录仪及压力、流量等传感器的使用方法; 3. 测定离心泵在恒定转速下的运行特性,测定特性曲线。 二、实验装置与流程 实验装置如图1所示,由水箱、离心泵、涡轮流量计、电动调节阀、压力表、真空表、转速传感器、功率表和不锈钢进、出管道等组成。 1-底阀; 2-引水阀; 3-离心泵; 4-真空表前切断阀; 5-真空表; 6-负压传感器;7-压力表前切断阀; 8-压力表; 9-压力传感器; 10-温度传感器; 11-涡轮流量传感器;12-电动调节阀; 13-切断阀; 14-旁路阀; 15-转速表; 16-功率表 ; 17-水箱 图1 离心泵特性曲线测定实验装置流程示意图 水从水箱17经泵底阀1吸入,流过吸入管路到离心泵3,经离心泵增压后,流经涡轮流量计11、电动调节阀12返回水箱,循环使用。在泵的进、出口管线上分别装有真空表5、负压传感器6、压力表8和压力传感器9,在它们的进口管线上分别装有真空表前切断阀4和压力表前切断阀7。管路内流量由涡轮流量计11测量,并由出口电动调节阀12调节流量。 所用离心泵型号为 IT-6,涡轮流量传感器型号为LWGY-40,电动调节阀的开度和流量均 可在无纸记录仪上操作和读数。 三、原理和方法 在转速n 固定不变的情况下,离心泵的实际扬程H 、功率消耗N 及总效率 与泵送液 2 1 1

能力(即流量)Q 之间的关系以曲线表示,称为离心泵的特性曲线,它能反映出泵的运行性能,可作为选择离心泵的依据。 离心泵的特性曲线可用下列三个函数关系表示: H = f 1 (Q ) N = f 2 (Q ) η = f 3 (Q ) ( 1 ) 这些函数关系均可由实验测得,其测定方法如下: 1.流量Q (l/s ) 流体在管内的流量由涡轮流量计测量,并在无纸记录仪上读取。 Q= Q ’×1000/3600 (l/s ) 式中: Q ’—无纸记录仪上的泵流量读数, m 3/h 。 2.实际扬程H (mH 2O ) 在泵进、出口真空表及压力表处列柏努利方程可得: f H g u g p z H g u g p z +++=+++222 2222 111ρρ ( 2 ) 因两截面间的管长很短,通常可忽略阻力损失项H f ,则: g u u g p p z z H 2)(2 12 21212-+-+-=ρ ( 3 ) 式中: h 0 = z 2 - z 1,指真空表、压力表接口间垂直距离,本装置h 0=0.1m ; P 1 —由真空表读出的真空度(读数为负数),Pa ; P 2 —由压力表读出的压力,Pa ; ρ —流体(水)的密度,可近似取 ρ=1000 kg/m 3 g —重力加速度,g = 9.807m/s 2 。 u 1 —泵进口处液体流速,m/s ;本装置进口处内径d 1=0.040m ; 112 4 3600'd Q u ?? = π u 2 —泵出口处液体流速,m/s ;本装置出口处内径d 2=0.031m 。 222 4 3600'd Q u ?? = π 3.轴功率N (W ) 传电电ηη??=N N ( 4 ) 式中: N 电 —电动机的输入功率,由功率表测得,W ; η电 —与电动机的输入功率N 电相对应的电机效率,根据电动机的输入功率N 电的大小, 查实验室提供的电机效率曲线图可得到; η传 —传动效率,本装置为联轴节传动,故η传 =1 。 4.总效率η

离心泵性能实验报告(带数据处理)

实验三、离心泵性能实验姓名:杨梦瑶学号:1110700056 实验日期:2014年6月6日 同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵 预习问题: 1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线? 答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。 2.为什么离心泵的扬程会随流量变化? 答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程: H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f 沿叶轮切线速度变大,扬程变大。反之,亦然。 3.泵吸入端液面应与泵入口位置有什么相对关系? 答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。 4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些 是需要最后计算得出的? 答:恒定的量是:泵、流体、装置; 每次测试需要记录的是:水温度、出口表压、入口表压、电机功率; 需要计算得出的:扬程、轴功率、效率、需要能量。 一、实验目的: 1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。 2.熟练运用柏努利方程。 3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。 4.了解应用计算机进行数据处理的一般方法。 二、装置流程图: 图5 离心泵性能实验装置流程图

离心泵性能实验

实验名称:离心泵性能试验 一、实验目的及任务: 1.了解离心泵的构造,掌握其操作和调节方法。 2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3.测定管路的特性曲线。 4.熟悉个孔板流量计的构造、性能和安装方法。 5.测定孔板流量计的孔流系数。 二、实验原理: 1. 离心泵特性曲线的测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系可以通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可不免的会产生阻力损失,如摩擦损失、环流损失等,实际压头小于理论压头,且难以计算。因此,通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q、η-Q三条曲线称为离心泵的特性曲线。根据曲线可以找到最佳操作范围,作为选择泵的依据。 (1)泵的扬程 由伯努利方程,泵的实际压头He如下: 其中,动能项相比于压头项数量级很小,可以忽略;损失项由于管路较短,损失较小,可以忽略,因此得到:

式中——泵出口处的压力,mH2O ——泵入口处的压力,mH2O ——出口压力表和入口压力表的垂直距离,m (2)泵的有效功率和效率 泵在运转过程中存在能量损失,因此泵的实际和流量较理论低,而输入功率又比理论值高,有泵的总效率: 轴 轴电电转 式中——泵的有效功率,kW ——流量,m3/s ——扬程,m ——流体密度,kg/ m3 N轴——泵轴输入离心泵的功率,kW N电——电机的输入功率,Kw η电——电机效率,取0.9 η转——传动装置的效率,取1.0 2. 孔板流量计孔流系书的测定 孔板流量计的结构如图1所示。

图1 孔板流量计构造原理 在水平管路上装有一块孔板,其两侧接测压管,分别与压力传感器的两端连接。孔板流量计是根据流通通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压差作为测量依据。若管路的直径为d 1,锐孔的直径为d 0,流体流经孔板后所形成缩脉的直径为d 2,流体的密度为ρ,孔板前测压导管截面处与缩脉截面处的速度和压强分别为u 1、u 2和p 1、p 2,根据伯努利方程,不考虑能量损失可得: 或 由于缩脉的位置随流速的变化而变化,缩脉处的截面积S 2难以知道,而孔口的面积已知,且测压口的位置不变,因此可以用孔口处的u 0代替u 2,考虑流体因局部阻力造成的能量损失,用校正系数C 校正后,有: 对不可压缩流体,根据连续性方程有: 整理得: 令 ,则可简化为: u d d

化工原理实验报告-离心泵试验

化工原理实验报告-离心泵试验

化工原理 实 验 报 告 班级: XXXXXX 指导老师: XXX 小组: XXX

组员:XXX XXX XXX XXX 实验时间: X年X月X日 目录 一、摘要 (2) 二、实验目的及任务 (3) 三、基本原理 (3) 1.泵的扬程He (4) 2.泵的有效功率和效率 (4) 四、实验装置和流程 (5) 五、操作要点 (6) 六、实验数据记录与处理 (7) 1.泵的扬程与流量关系曲线的测定(H e~Q) (7) 2.泵的轴功率与流量关系曲线的测定(N轴~Q) (8) 3.泵的总效率与流量关系曲线的测定(η~Q) (10)

4.计算示例 (13) (1)泵的扬程与流量关系曲线的测定(H e~Q) (13) (2)泵的轴功率与流量关系曲线的测定(N 轴~Q) (13) (3)泵的总效率与流量关系曲线的测定(η~Q) (13) 七、实验结果及分析 (14) 八、误差分析 (15) 九、思考题 (16) 实验二离心泵性能试验 一、摘要 本实验以水为工作流体,使用WB70/055型离心泵实验装置。通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过涡轮流量计测量。实验中直接测量量有P真空表、P压力表、电机功率N电、水流量Q、水温℃。根据上述测量量来计算泵的扬程He、泵的有效功率Ne、泵的总效率η。从而绘制He-Q、N e-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作

范围。 关键词:离心泵特性曲线 二、实验目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵的扬程与流量关系曲线。 ③测定离心泵的轴功率与流量关系曲线。 ④测定离心泵的总效率与流量关系曲线。 ⑤综合测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 三、基本原理 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。

离心泵性能测定实验报告doc

离心泵性能测定实验报告 篇一:离心泵性能测定实验报告 化工原理实验 实验题目: ——离心泵性能实验 姓名:沈延顺 同组人:覃成鹏 臧婉婷 王俊烨 实验时间:XX.11.21 一、实验题目:离心泵性能实验。 二、实验时间:XX.11.21 三、姓名:沈延顺 四、同组人:覃成鹏、臧婉婷、王俊烨 五、实验报告摘要: 通过实验学习和练习离心泵的灌泵等注意事项和离心泵的使用,通过孔板压计对压将的测量和水温等的测量,得到实验数据绘制离心泵的特性曲线。通过改变离心泵的转速来测的压头和流速的关系来测绘实验的管道特性曲线。通过实验也从实验的方向来了解化工原理的知识点,从感性的方向来了解书本上的知识点。 六、实验目的及任务:

1、了解离心泵的构造,掌握其操作和调节方法。 2、测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3、熟悉孔板流量计的构造、性能及安装方法。 4、测定孔板流量计的孔流系数。 5、测定管路特性曲线。 七、基本原理: 1、离心泵特性曲线的测定。 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通孤傲对泵内液体之地那运动的理论分析得到,如图所示的曲线。 由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦阻力、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数见的关系,并将测出的He~Q、N~Q、和η~Q 三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出最佳操作范围,作为选泵的依据。 图 (1)、泵的扬程He 式中: ——泵出口处的压力。 ——泵入口处的真空度。——压力表和真空表测压口

化工原理实验报告_离心泵

离心泵特性曲线的测定 一、实验目的 1.学习离心泵的操作。 2.测定单级离心泵在固定转速下的特定曲线。 二、实验原理 离心泵的性能一般用三条特性曲线来表示,分别为H-Q 、N-Q 和-Q 曲线,本实验利用 如图1所示的实验装置进行测定工作。 泵的压头用下式计算 g u u h H H H 22 1 220-+++=真空表压力表 其中压力表H 及真空表H 分别表示离心泵出口压力表和进口真空表的读数换算成米液柱的数值,0h 表示进、出口管路两测压点间的垂直距离,可忽略不计,21u u =,故 真空表压力表H H H += g QH N e ρ=/(36001000) 效率%100?= N N e η, 式中:e N ——泵的有效功率,kW ; N ——电机的输入功率,由功率表测出,kW ; Q ——泵的流量,-13h m ?。

图1. 实验装置流程图 1-底阀 2-入口真空表 3-离心泵 4-出口压力表 5-充水阀 6-差压变送器 7-涡轮流量计 8-差压变送器 9-水箱 离心泵入口和出口管的规格为 1#~2#装置,入口内径为,出口内径为 3#~8#装置,入口内径为41mm,出口内径为48 三、实验步骤 1.打开充水阀向离心泵泵壳内充水。 2.关闭充水阀、出口流量调节阀,启动总电源开关,启动电机电源开关。 3.打开出口调节阀至最大,记录下管路流量最大值,即控制柜上的涡轮流量计的读数。 4.调节出口阀,流量从最大到最小测取8次,再由最小到最大测取8次,记录各次实验数据,包括压力表读数、真空表读数、涡轮流量计的读数、功率表的读数。 5.测取实验用水的温度。 6.关闭出口流量调节阀,关闭电机开关,关闭总电源开关。 注意事项:离心泵禁止在未冲满水的情况下空转。 四、数据处理与讨论 水温:℃,离心泵型号规格: 序流量泵入口压力(表压)泵出口压力(表压)电机功率扬程效率

离心泵实验

一、 实验题目 离心泵性能实验 二、 实验摘要 本实验使用转速为2900 r/min ,WB70/055型号的离心泵实验装置,以水为工作流体,通过调节阀门改变流量,测得不同流量下离心泵的性能参数,并画出特性曲线同时标定孔板流量计的孔流系数C 0,测定管路的特性曲线。实验中直接测量量有q v 、P 出、P 入、电机输入功率N 电、孔板压差ΔP 、水温T 、频率f ,根据上述测量量来计算泵的扬程He 、泵的有效功率Ne 、轴功率N 轴及效率η,从而绘制泵的特性曲线图;又由P 、q v 求出孔流系数C 0、Re ,从而绘制C 0-Re 曲线图,求出孔板孔流系数C 0;最后绘制管路特性曲线图。 关键词: 特性曲线图、孔流系数、He 、N 轴、η、q v 三、 实验目的及内容 1、解离心泵的构造,掌握其操作和调节方法。 2、定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3、熟悉孔板流量计的构造、性能及安装方法。 4、测定孔板流量计的孔流系数。 5、测定管路特性曲线。 四、实验原理 1、离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如下图的曲线。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。 (1)泵的扬程He 式中: ——泵出口处的压力,mH 2O ; ——泵出口处的压力, mH 2O ; ——出口压力表与入口压力表的垂直距离, =0.2m 。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为 轴 N Ne = η 102 e ρ QHe N = 式中 Ne ——泵的有效效率,kW ;

离心泵特性曲线实验报告

化工原理实验报告 实验名称:离心泵特性曲线实验报告:克川 专业:化学工程与工艺(石油炼制)班级:化工11203 学号:201202681

离心泵特性曲线实验报告 一、 实验目的 1. 了解离心泵的结构与特征,熟悉离心泵的使用。 2. 测定离心泵在恒定转速下的特征曲线,并确定离心泵的最佳工作围。 3. 熟悉孔板流量计的构造与性能以及安装方法。 4. 测量孔板流量计的孔流系数C 岁雷诺数R e 变化的规律。 5. 测量管路特性曲线。 二、 基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒 定转速下泵的扬程H 、功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵流动规律的宏观表现形式。由于泵部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 2.1扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: z 1+ P 1ρg +U 12 2g +H=z 2+ P 2 ρg +U 22 2g +∑h f (1-1) 由于两截面间的管子较短,通常可忽略阻力项∑h f ,速度平方差也很小,故也可忽略,则有 H=(z 1-z 2)+ p 1?p 2ρg =H 1+H 2(表值)+H 3 (1-2) 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.2轴功率N 的测量与计算 N=N 电k(w) (1-3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取0.90 2.3效率η的计算 泵的效率η是泵的有效功率Ne 与轴功率N 的比值。有效功率Ne 是单位时间流体经过泵时所获得的实际功率,轴功率N 是单位时间泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。 泵的有效功率Ne 可用下式计算: N e =HQ ρg (1-4) η= HQρg N ×100% (1-5)

化工原理实验报告离心泵的性能试验北京化工大学

北京化工大学 化工原理实验报告 实验名称:离心泵性能实验 班级:化工13 姓名: 学号: 20130 序号: 同组人: 实验二:离心泵性能实验 摘要:本实验以水为介质,使用离心泵性能实验装置,测定了不同流速下,离心泵的性能、孔板流量计的孔流系数以及管路的性能曲线。实验验证了离心泵的扬程He随着流量的增大而减小,且呈2次方的关系;有效效率有一最大值,实际操作生产中可根据该值选取合适的工作范围;泵的轴功率随流量的增大而增大; 当Re大于某值时,C 0为一定值,使用该孔板流量计时,应使其在C 为定值的条 件下。 关键词:性能参数(N H Q, , , )离心泵特性曲线管路特性曲线C0一.目的及任务

1.了解离心泵的构造,掌握其操作和调节方法。 2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3.熟悉孔板流量计的构造,性能和安装方法。 4.测定孔板流量计的孔流系数。 5.测定管路特性曲线。 二. 实验原理 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构,叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图1中的曲线。由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等,因此通常采用实验方法,直接测定参数间的关系,并将测出的He-Q,N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为泵的选择依据。 图1.离心泵的理论压头与实际压头 (1)泵的扬程He He=0真空表压力表H H H ++ 式中 H 压力表——泵出口处的压力,mH 2o ; H 真空表——泵入口处的真空度,mH 2o ; H 0——压力表和真空表测压口之间的垂直距离,H 0=。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为 轴 ηN Ne = 102 QHe Ne ρ = 式中 Ne ——泵的有效功率,kW ;

离心泵实验

离心泵实验(第6组)——工程楼102&104 摘要 本实验以水为介质,使用IHG32-125型离心泵性能实验装置,测定了不同流速下,离心泵的性能、孔板流量计的孔流系数以及管路的性能曲线。实验验证了离心泵的扬程He随着流量的增大而减小,且呈2次方的关系;有效效率有一最大值,实际操作生产中可根据该值选取合适的工作范围;泵的轴功率随流量的增大而增大;当Re大于某值时,C0为一定值,使用该孔板流量计时,应使其在C0为定值的条件下。 一、实验目的 1、熟悉离心泵的结构、性能铭牌及配套电机情况 2、了解孔板流量计的结构、使用及变频器的作用 3、了解计算机数据采集和控制系统 4、掌握最小二乘法回归管路特性方程、扬程方程中的参数A、B 5、学会选择、使用离心泵(由物性+泵特性+管路特性等决定) 二、实验内容 1、测定某一转速条件下的离心泵特性曲线 2、测定阀门处于某一开度条件下的管路特性曲线 3、测定孔板流量计的孔流系数C0随Re d变化关系 二、实验原理 1,离心泵特性曲线测定 由于流体流经泵时,不可避免的会遇到种种损失,产生能量损失和摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验直接测定其参数间的关系,并将测出的He—Q,N—Q,和η—Q三条曲线称为离心泵的特性曲线,根据此曲线也可求出泵的最佳操作范围,作为选泵的依据。 (1)泵的扬程 He He = H压力表+ H真空表+ H0 H压力表——泵出口处的压力,mH2o;H真空表——泵入口处的真空度,mH2o;H0——压力表和真空表测压口之间的垂直距离,H0=0.85m (2)泵的有效功率和效率 由于泵在运转过程中存在能量损失,使泵的实际压头和流量较理论值低,而输入功率又比理论值高,所以泵的总效率为 η=N e N 轴 N e=QH 102 e Ne—泵的有效功率,Kw; Q—流量,m3/s; He—扬程,m;ρ—液体密度,kg/m3 由泵轴输入离心泵的功率为 N轴= N电*η电*η转 N电—电机的输入功率,Kw;η电—电机效率,取0.9;η—传动装置的传动效率;一般取1.0 2,孔板流量计孔流系数的测定 孔板流量计的构造原理如下图所示。

离心泵性能实验报告

北京化工大学化工原理实验报告 实验名称:离心泵性能实验 班级:化工100 学号:2010 姓名: 同组人: 实验日期:2012.10.7

一、报告摘要: 本次实验通过测量离心泵工作时,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ?、电机输入功率Ne 以及流量Q (t V ??/)这些参数的关系,根据公式 0e H H H H ++=压力表真空表、转电电轴ηη??=N N 、102e ρ ??= He Q N 以及轴 N Ne =η可以得出 离心泵的特性曲线;再根据孔板流量计的孔流系数ρp u C ?=2/ 0与雷诺数 μ ρdu = Re 的变化规律作出Re 0-C 图,并找出在Re 大到一定程度时0C 不随Re 变化时的0C 值;最后测量不同阀门开度下,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ?,根据已知公式可以求出不同阀门开度下的Q H -e 关系式,并作图可以得到管路特性曲线图。 二、目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 三、基本原理 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。 (1)泵的扬程He :e 0H H H H =++真空表压力表 式中:H 真空表——泵出口的压力,2mH O , H 压力表——泵入口的压力,2mH O 0H ——两测压口间的垂直距离,0H 0.85m = 。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入

离心泵的性能测试实验报告

实验名称:离心泵的性能测试 班级: 姓名: 学号: 一、 实验目的 1、 熟悉离心泵的操作,了解离心泵的结构和特性。 2、 学会离心泵特性曲线的测定方法。 3、了解单级离心泵在一定转速下的扬程、轴功率、效率和流量之间的关系。 二、 实验原理 离心泵的特性主要是指泵的流量、扬程、功率和效率,在一定转速下,离心泵的流量、扬程、功率和效率均随流量的大小改变。即扬程和流量的特性曲线H=f (Q );功率消耗和流量的特性曲线N 轴=f (Q e );及效率和流量的特性曲线?=f(Qe);这三条曲线为离心泵的特性曲线。他们与离心泵的设计、加工情况有关,必须由实验测定。 三条特性曲线中的Qe 和N 轴由实验测定。He 和?由以下各式计算,由伯努利方程可知: He=H 压强表+H 真空表+h 0+g u u 22 1 20- 式中: He ——泵的扬程(m ——液柱) H 压强表——压强表测得的表压(m ——液柱) H 真空表——真空表测得的真空度(m ——液柱) h 0——压强表和真空表中心的垂直距离(m ) u 0——泵的出口管内流体的速度(m/s ) u1——泵的进口管内流体的速度(m/s ) g ——重力加速度(m/s 2 ) 流体流过泵之后,实际得到的有效功率:Ne= 102ρ HeQe ;离心泵的效率:轴 N N e =η。在实验中,泵的周效率由所测得的电机的输入功率N 入计算:N 轴=η传η电N 入 式中: Ne ——离心泵的有效功率(kw ) Qe ——离心泵的输液量(m3/s) ρ——被输进液体的密度(kg/m3) N 入——电机的输入功率(kw ) N 轴——离心泵的轴效率(kw ) η——离心泵的效率 η传——传动效率,联轴器直接传动时取1.00 η电——电机效率,一般取0.90 三、 实验装置和流程

离心泵特性测定实验报告

离心泵特性测定实验报告 姓名:刘开宇 学号:1410400g08 班级:14食品2班 实验日期:2016.10.10 学校:湖北工业大学 实验成绩: 批改教师:

一、实验目的 1.了解离心泵结构与特性,熟悉离心泵的使用; 2.掌握离心泵特性曲线测定方法; 3.了解电动调节阀的工作原理和使用方法。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: f h g u g p z H g u g p z ∑+++=+++222 2222111ρρ (1-1) 由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g p p z z ρ1 212)-+ - 210(H H H ++=表值) (1-2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ;和 ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2; p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N 的测量与计算 k N N ?=电 (W ) (1-3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。 3.效率η的计算 泵的效率η是泵的有效功率Ne 与轴功率N 的比值。有效功率Ne 是单位时间内流体经过泵时所获得的实际功,

离心泵性能测定实验

离心泵性能测定实验 一、实验目的: 1、了解离心泵的构造,掌握其操作和调节方法; 2、 测量离心泵在恒定转数下的特性曲线,并确定其最佳工作范围; 3、 测量管路特性曲线及双泵并联时特性曲线; 4、了解工作点的含义及确定方法; 5、测定孔板流量计孔流系数C 0与雷诺数Re 的关系(选做)。 二、基本原理: 1、离心泵特性曲线测定 离心泵的特征方程是从理论上对离心泵中液体质点的运动情况进行分析研究后,得出的离心泵压头与流量的关系。离心泵的性能受到泵的内部结构、叶轮形式和转数的影响,故在实际工作中,其内部流动的规律比较复杂,实际压头要小于理论压头。因此,离心泵的扬程尚不能从理论上作出精确的计算,需要实验测定。 在一定转数下,泵的扬程、功率、效率与其流量之间的关系,即为特性曲线。泵的扬程可由进、出口间的能量衡算求得: He = H 压力表 + H 真空表 + H 0 [ m ] 其中:H 真空表,H 压力表分别为离心泵进出口的压力 [ m ]; H 0为两测压口间的垂直距离,H 0= 0.3m 。 N 轴 = N 电机?η电机?η传动 [ kw ] 其中:η电机—电机效率,取0.9; η传动—传动装置的效率,取1.0; 102 ρ ??=He Q N [ kw ] 因此,泵的总效率为: 轴 N Ne = η 2、孔板流量计孔流系数的测定 孔板流量计孔板孔径处的流速u 0可以简化为: u 0=C 0(2gh )1/2 根据u 0和S 0,即可算出流体的体积流量Vs 为: Vs=u 0S 0=C 0S 0(2gh )1/2 或: Vs= C 0S 0(2△p/ρ)1/2 式中Vs ——流体的体积流量,m 3/s ; △ p ——孔板压差,Pa ; S 0——孔口面积,m 2; ρ——流体的密度,kg/m 3; C 0——孔流系数。

离心泵综合实验报告

离心泵综合实验报告 篇一:XX化工原理实验报告(离心泵性能实验) 化工原理实验报告 (离心泵性能实验) 班级:姓名:同组人: XX年11月 一、报告摘要 本次实验通过测量离心泵工作时,泵入口真空表真P、泵出口压力表压P、孔板压差计两端压差?p、电机输入功率Ne以及流量Q这些参数的关系,根据公式 NeQHe??= He?H压力表+H真空表+H0N轴=N电?电?转Ne=102N轴 、、以及 C0?u0/ 可以得出离心泵的特性曲线;再根据孔板流量计的孔流系数 与雷诺数 Re? ?du ?的变化规律作出C0-Re图,并找出在Re大到一定程度时C0不随Re变化时的C0 值;最后测量不同阀门开度下,泵入口真空表真P、泵

出口压力表压P、孔板压差计两端压差?p,根据已知公式可以求出不同阀门开度下的He-Q关系式,并作图可以得到管路特性曲线图。 二、目的及任务 ①、了解离心泵的构造,掌握其操作和调节方法。 ②、测定离心泵在恒定转速下的特征曲线,并确定泵的最佳工作范围。③、熟悉孔板流量计的构造、性能及安装方法。④、测定孔板流量计的孔流系数。⑤、测定管路特征曲线。三、实验原理 1、离心泵特征曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图中的曲线。由于流体流经泵是,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等等,因此,实际压头比理论压头小,且难以通过计算求得,因此常通过实验方法,直接测定其参数间的关系,并将测出的He-Q,N-Q,η-Q三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为选泵的依据。(1)、泵的扬程He 式中 He?H压力表+H真空表+H0 H压力表H真空表

相关文档
相关文档 最新文档