文档库 最新最全的文档下载
当前位置:文档库 › 光学第04章答案_理想光学系统

光学第04章答案_理想光学系统

光学第04章答案_理想光学系统
光学第04章答案_理想光学系统

工程光学习题参考答案第二章理想光学系统

第二章 理想光学系统 1.针对位于空气中的正透镜组() 0'>f 及负透镜组() 0'f ()-∞=l a ()' 2f l b -= ()f f l c = -=

() /f l d -= () 0=l e ()/f l f = ')(f f l g -== '22)(f f l h -==

+∞=l i )( 2.0'

0 e l (= ) f= l 2/ (f ) ( ) f g= l (= h) l l i)( +∞ =

2. 已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点) =x ,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远 的地方。 解: (1)x= -∝ ,xx ′=ff ′ 得到:x ′=0 (2)x ′= (3)x ′= (4)x ′= (5)x ′= (6)x ′= 3.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm , 物镜两焦点间距离为1140mm 。求该物镜焦距,并绘出基点位置图。 解: ∵ 系统位于空气中,f f -=' 10' '-=== l l y y β 由已知条件:1140)('=+-+x f f 7200)('=+-+x l l 解得:mm f 600'= mm x 60-= 4.已知一个透镜把物体放大*-3投影到屏幕上,当透镜向物体移近18mm 时,物体将被放大 *-4,试求透镜的焦距,并用图解法校核之。 解:方法一: 31 ' 11-==l l β ? ()183321'1--=-=l l l ①

理想光学系统

[考试要求] 本章要求考生掌握理想光学系统的基本理论、特性、物像关系及系统组合。[考试内容] 通过作图法或计算法来了解分析理想光学系统的基本成像特性、物像位置关系的求取等。 [作业] P37:2、3、4、5、6、7、8、9、10、11、12、17 第二章理想光学系统 §2---1 理想光学系统及共线成像理论 一、理想光学系统(1841年高斯提出的,故又称为高斯系统) 理想光学系统是一假想的、抽象的理论模型。 所谓理想光学系统就是能够对任意宽空间内的任意点,以任意宽光束成完善像的光学系统。 二、共线成像理论(是理想光学系统的理论基础) 1、物空间中的每一点都对应于像空间中相应的点,且只对应一点,我们称为共轭点; 2、物空间中每一条直线对应于像空间中相应的直线,且是唯一的,我们称之为共轭线; 3、物空间中任一点位于一条直线上,在像空间中其共轭点仍位于该直线的共轭线上。 简单的说:物空间的任一点、线、面都有与之相共轭的点、线、面存在,且是唯一的。

§2-2 理想光学系统的基点和基面 一、基点及基面 基点就是一些特殊的点,基面就是一些特殊的面。正是这些特殊的点与面的存在,从而使理想光学系统的特性有了充分体现,只有掌握了这些基点基面的特性,才能够分析计算理想光学系统。 基点:物方焦点,像方焦点;物方主点,像方主点;物方节点,像方节点。 基面:物方主面,像方主面;物方焦面,像方焦面。 二、焦点、焦面 1、焦点(物方焦点、像方焦点) 图2-1 理想光学系统的像方焦点 现有一系统如图,光线平行于光轴入射(理解为物在无限远的光轴上),那么根据共线成像理论,一定在像空间有一条直线与之相共轭,且是唯一共轭的。则这条共轭的光线与光轴有一交点,称为像方焦点,用'F来描述,(又称为第二焦点或后焦点)。 同理,从右方无限远处射入的平行于光轴的光,经系统后也一定有一共轭光线,它也将交光轴上于一点F,则F叫物方焦点;同样,从F发出的光经系统后,也一定变为平行光。 2、焦平面(物方焦面、像方焦面) 物方焦面:过F点作垂直于光轴的平面。 像方焦面:过'F点作垂直于光轴的平面。 焦面上一点发出的所有光,经系统后一定变成斜平行光束;而当斜平行光射入(可能是任意方向的光)时,一定会聚于像方焦面上一点。所以焦面实际上是许多不同方向的光的会聚点的集合。在焦点则是焦面上的最特殊的点,它是平行于光轴的光的会聚点。 三、主点及主面 1、作图说明

理想光学系统与共线成像理论 复习重点1

§2.1 理想光学系统与共线成像理论 一、基本概念 1、高斯光学: 暂时抛开光学系统的具体结构, 将一般仅在光学系统的近轴区存在的完善成像拓展成在任意大的空间中以任意宽的光束都成完善像的理想模型, 这个理想模型就是理想光学系统。 理想光学系统理论是在1841年由高斯所提出来的,所以理想光学系统理论又被称为“高斯光学”。 2、共轭: 将这种物像对应关系叫做“共轭”。 3、共线成像: 这种点对应点、直线对应直线、平面对应平面的成像变换谓之共线成像。二、共轴理想光学系统的成像性质

1、位于光轴上的物点对应的共轭像点必然在光轴上; 位于过光轴的某一截面内的物点对应的共轭像点必位于该平面内,且在物面的共轭像面内; 过光轴的任意截面成像性质都相同; 垂直于光轴的物平面,它的共轭像平面也必然垂直于光轴。 2、垂直于光轴的平面物与其共轭平面像的几何形状完全相似,即:在垂直于光轴的同一平面内,物体的各部分具有相同的放大率β。 3、一个共轴理想光学系统,如果已知两对共轭面的位置和放大率,或者一对共轭面的位置和放大率,以及轴上两对共轭点的位置,则其它一切物点的共轭像点都可以根据这些已知的共轭面和共轭点来表示。 基面和基点: 通常将这些已知的共轭面和共轭点分别称为共轴系统的“基面”和“基点”。作图法证明: ①已知两对共轭面的位置和放大率

②已知一对共轭面的位置和放大率,以及轴上两对共轭点的位置

§2.2 理想光学系统的基点和基面一、无限远的轴上物点和它对应的像点F’ 无限远的轴上物点发出的光线: 结论:无限远的轴上物点发出的光线与光轴平行。 像方焦点、焦平面;像方主点、主平面;像方焦距 定义:像方焦点、焦平面;像方主点、主平面;像方焦距

第三章 理想光学系统(修改)

第三章理想光学模型 理想光学系统:对任意大的空间范围,用任意宽的光束都能得到完善像的光学系统。 理想光学系统物像关系:点对点、线对线、面对面。(物像空间、有且仅有)

第一节理想像和理想光学系统 理想光学系统——能够对足够大空间内的点以足够宽光束成完善像的光学系统。 在理想光学系统中有如下定义: 1、物空间内每一点对应于像空间内唯一的一像点,这一对点称为共轭点。 2、物空间内每一条直线对应于像空间内唯一的一条直线,这一对线称为共轭线。 3、如果物空间的任意一点位于直线上,那么在像空间的共轭点也必须在该直线的共轭线上。 4、任意垂轴于光轴的平面,其共轭平面仍与光轴垂直;

5、物空间中任意平面对应于像空间中唯一的共轭平面; 6、物空间中任意同心光束对应于像空间中有一共轭的同心光束。 理想光学系统对物体成完善像,实际的理想光学系统的性质只能在近轴区实现。

共轴球面系统的成像特性(常用): ①位于光轴上的物点,其对应的像也一定位于光轴上; ②物为垂直于光轴的线段时,其像也一定垂直于光轴; ③物为垂轴(垂直于主轴)平面,则对应的像也一定是垂轴平面; ④位于光轴某一截面的物点,其对应的像点也一定位于这个平面 内,同时过光轴的任意截面的成像性质都是完全一样的; ⑤位于垂直于光轴的物体所对应的像,其几何形状物体完全相似, 也就是说在整个物平面上,无论什么位置,物和像的大小之比始终为常数。 理想光学系统可以由一个折射或反射面组成;也可以是k 个折射、反射球面(或平面)组成;还可以由几个理想光学系统组成,只要满足共线成像关系。

第二节理想光学模型的基点、基面 为了研究理想光学系统的成像特性,需要建立一个简单的光学模型来代替理想光学系统。这个光学模型称为理想光学模型。 能表征光学系统特性的点、面称为基点、基面。 1.焦点和焦平面 焦平面:过焦点的垂轴平面(物方焦点、像方焦点、物方焦面、像方焦面)。焦点:沿主轴方向的平行光束经球面反射(或折射)后将会聚于主轴上一点,该点称为反射球面的焦点 光学中的共轭平面指的是什么? 在光学成像中,物方和像方具有一对一映射关系的两点Q 和Q',根据光路可逆原理,如果在Q 点放置光源,将在Q'点成像,反之亦然。这样互相对应的两点,称为一对共轭点。共轭点可组成共轭线,进而有共轭面。

光学基本概念和规律

光学包括两大部分内容:几何光学和物理光学.几何光学(又称光线光学)是以光的直线传播性质为基础,研究光在煤质中的传播规律及其应用的学科;物理光学是研究光的本性、光和物质的相互作用规律的学科. 一、重要概念和规律 (一)、几何光学基本概念和规律 1、基本规律 光源发光的物体.分两大类:点光源和扩展光源.点光源是一种理想模型,扩展光源可看成无数点光源的集合.光线——表示光传播方向的几何线.光束通过一定面积的一束光线.它是温过一定截面光线的集合.光速——光传播的速度。光在真空中速度最大。恒为C=3×108m/s。丹麦天文学家罗默第一次利用天体间的大距离测出了光速。法国人裴索第一次在地面上用旋转齿轮法测出了光这。实像——光源发出的光线经光学器件后,由实际光线形成的.虚像——光源发出的光线经光学器件后,由发实际光线的延长线形成的。本影——光直线传播时,物体后完全照射不到光的暗区.半影——光直线传播时,物体后有部分光可以照射到的半明半暗区域. 2.基本规律 (1)光的直线传播规律先在同一种均匀介质中沿直线传播。小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。 (2)光的独立传播规律光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。(3)光的反射定律反射线、人射线、法线共面;反射线与人射线分布于法线两侧;反射角等于入射角。 (4)光的折射定律折射线、人射线、法织共面,折射线和入射线分居法线两侧;对确定的两种介质,入射 角(i)的正弦和折射角(r)的正弦之比是一个常数.介质的折射串n=sini/sinr=c/v。全反射条件①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。 (5)光路可逆原理光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射. 3.常用光学器件及其光学特性 (1)平面镜点光源发出的同心发散光束,经平面镜反射后,得到的也是同心发散光束.能在镜后形成等大的、正立的虚出,像与物对镜面对称。 (2)球面镜凹面镜有会聚光的作用,凸面镜有发散光的作用. (3)棱镜光密煤质的棱镜放在光疏煤质的环境中,入射到棱镜侧面的光经棱镜后向底面偏折。隔着棱镜看到物体的像向项角偏移。棱镜的色散作用复色光通过三棱镜被分解成单色光的现象。 (4)透镜在光疏介质的环境中放置有光密介质的透镜时,凸透镜对光线有会聚作用,凹透镜对光线有发散作用.透镜成像作图利用三条特殊光线。成像规律1/u+1/v=1/f。线放大率m=像长/物长=|v|/u。说明①成像公式的符号法则——凸透镜焦距f取正,凹透镜焦距f 取负;实像像距v取正,虚像像距v取负。②线放大率与焦距和物距有关. (5)平行透明板光线经平行透明板时发生平行移动(侧移).侧移的大小与入射角、透明板厚度、折射率有关。 4.简单光学仪器的成像原理和眼睛 (1)放大镜是凸透镜成像在。u

应用光学各章知识点归纳

第一章 几何光学基本定律与成像概念 波面:某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。光的传播即为光波波阵面的传播,与波面对应的法线束就是光束。 波前:某一瞬间波动所到达的位置。 光线的四个传播定律: 1)直线传播定律:在各向同性的均匀透明介质中,光沿直线传播,相关自然现象有:日月食,小孔成像等。 2)独立传播定律:从不同的光源发出的互相独立的光线以不同方向相交于空间介质中的某点时彼此不影响,各光线独立传播。 3)反射定律:入射光线、法线和反射光线在同一平面内,入射光线和反射光线在法线的两侧,反射角等于入射角。 4)折射定律:入射光线、法线和折射光线在同一平面内;入射光线和折射光线在法线的两侧,入射角和折射角正弦之比等于折射光线所在的介质与入射光线所在的介质的折射率之比,即 n n I I ' 'sin sin = 光路可逆:光沿着原来的反射(折射)光线的方向射到媒质表面,必定会逆着原来的入射方向反射(折射)出媒质的性质。 光程:光在介质中传播的几何路程S 和介质折射率n 的乘积。 各向同性介质:光学介质的光学性质不随方向而改变。 各向异性介质:单晶体(双折射现象) 马吕斯定律:光束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。 费马原理:光总是沿光程为极小,极大,或常量的路径传播。 全反射临界角:1 2 arcsin n n C = 全反射条件: 1)光线从光密介质向光疏介质入射。 2)入射角大于临界角。

共轴光学系统:光学系统中各个光学元件表面曲率中心在一条直线上。 物点/像点:物/像光束的交点。 实物/实像点:实际光线的汇聚点。 虚物/虚像点:由光线延长线构成的成像点。 共轭:物经过光学系统后与像的对应关系。(A ,A ’的对称性) 完善成像:任何一个物点发出的全部光线,通过光学系统后,仍然聚交于同一点。每一个物点都对应唯一的像点。 理想成像条件:物点和像点之间所有光线为等光程。 第二章 高斯光学 子午线:通过物点和光轴的截面 物方截距L :顶点O 到入射光线与光轴的交点的距离。 物方孔径角U :入射光线与光轴的夹角 光线经过单个折射球面的实际光路计算公式: 给定单个折射球面的结构参量n ,n ’,r 时,由已知入射光线的坐标L 和U ,求出出射光线的坐标L ’和U ’。 U r L I sin r sin -= (2-1)

相关文档