文档库 最新最全的文档下载
当前位置:文档库 › 点和圆的位置关系同步练习

点和圆的位置关系同步练习

点和圆的位置关系同步练习
点和圆的位置关系同步练习

24.2.1 点和圆的位置关系同步练习 姓名__班级_

一、课前预习 (5分钟训练)

1.已知圆的半径等于5 cm ,根据下列点P 到圆心的距离:(1)4 cm ;(2)5 cm ;(3)6 cm ,判

定点P 与圆的位置关系,并说明理由.

2.点A 在以O 为圆心,3 cm 为半径的⊙O 内,则点A 到圆心O 的距离d 的范围是________.

3.若⊙A 的半径为5,点A 的坐标为(3,4),点P 的坐标为(5,8),则点P 的位置为( )

A.在⊙A 内

B.在⊙A 上

C.在⊙A 外

D.不确定

4.两个圆心为O 的甲、乙两圆,半径分别为r 1和r 2,且r 1<OA <r 2,那么点A 在( )

A.甲圆内

B.乙圆外

C.甲圆外,乙圆内

D.甲圆内,乙圆外

5.若一个三角形的外心在三角形内,那么这个三角形是( )

A 锐角三角形

B 直角三角形

C 钝角三角形

D 不能确定

二、课中强化(10分钟训练)

1.已知⊙O 的半径为3.6 cm ,线段OA=725

cm ,则点A 与⊙O 的位置关系是( )

A.A 点在圆外

B.A 点在⊙O 上

C.A 点在⊙O 内

D.不能确定

2.⊙O 的半径为5,圆心O 的坐标为(0,0),点P 的坐标为(4,2),则点P 与⊙O 的位置关

系是( )

A.点P 在⊙O 内

B.点P 在⊙O 上

C.点P 在⊙O 外

D.点P 在⊙O 上或⊙O 外

3.在△ABC 中,∠C=90°,AC=BC=4 cm ,D 是AB 边的中点,以C 为圆心,4 cm 长为半径

作圆,则A 、B 、C 、D 四点中在圆内的有( )

A.1个

B.2个

C.3个

D.4个

4.如图,在△ABC 中,∠ACB=90°,AC=2 cm ,BC=4 cm ,CM 为中线,以C 为圆心,5

cm 为半径作圆,则A 、B 、C 、M 四点在圆外的有___在圆上的有___在圆内的有________

三、课后巩固(30分钟训练)

1.已知a 、b 、c 是△ABC 的三边长,外接圆的圆心在△ABC 一条边上的是( )

A.a=15,b=12,c=1

B.a=5,b=12, c=12

C.a=5,b=12,c=13

D.a=5,b=12,c=14

2.在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=8 cm ,则它的外心与顶点C 的距离为( )

A.5 cm

B.6 cm

C.7 cm

D.8 cm

3.已知△ABC 中,AB=10cm ,AC=8cm ,AB=6cm ,则△ABC 外接圆的半径为 。 4.已知Rt △ABC 中∠C=900,若AC=12cm ,BC=5cm ,△ABC 的外接圆半径___。 5.等腰△ABC 的顶角∠A=120°,BC=12cm ,它的外接圆的直径为____

6.如图,点A 、B 、C 表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由

.

7.已知Rt △ABC 的两直角边为a 和b ,且a 、b 是方程x 2

-3x +1=0的两根,求Rt △ABC 的外接圆面积.

8.有一个未知圆心的圆形工件.现只允许用一块直角三角板(注:不允许用三角板上的刻度)画出该工件表面上的一根直径并定出圆心.要求在图上保留画图痕迹,写出画法

.

9.如图,AD 是△ABC 的外角∠EAC 的平分线,AD 与三角形的外接圆交于点D ,连接BD ,求证:DB=DC.

点与圆的位置关系

点与圆的位置关系Revised on November 25, 2020

35.1 点与圆的位置关系 教学目标: 1.掌握点与圆的三种位置关系及这三三种位置关系对应圆的半径与点到圆心距离之间数量关系. 2.经历探索点与圆三种位置关系,体会数学分类讨论思考问题的方法. 教学重点: 用数量判定点与圆的位置关系.教学难点: 判定点与圆的位置关系. 教学过程: 一、创设问题情境 1.足球运动员踢出的地滚球在球场上滚动,再其穿越中间圆形区域的过程中,足球与这个圆的位置关系呢 2.代号为"白沙"的台风经过了小岛A 。在每一时刻,台风所侵袭的区域总是以其中心为圆心的一个圆。小岛在遭受台风袭击前后,他与台风的侵袭区域有什么不同的位置关系呢 二、合作探索 1.点与圆有几种不同的位置关系你还能举出类似的的实例吗 点与圆有三种位置关系:点在圆内,点在圆上,点在圆外。 2.如图表示点与圆的三种位置关系。 点P 在⊙O 内 点P 点P 3.在你画出的三幅图中,分别测量点到圆心的距离 d ,并与圆的半径的r 大小进行比较. 4.点与圆有三种位置关系对应的r 与d 之间的数量关系分别是怎样的与同学交流并填写下表 P O

位置关系。 6.归纳与概括: 点在圆内 d

高中数学圆的方程典型例题总结归纳(极力推荐)

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(2 2 . ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆42 2 =+y x O :,求过点()42, P 与圆O 相切的切线. 解:∵点()42, P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422 =++-k k 解得4 3 = k

点、直线、圆与圆的位置关系

点、直线、圆与圆的位置关系 【要点梳理】 要点一、点和圆的位置关系 1.点和圆的三种位置关系: 由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有 2.三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心. 三角形的外心到三角形三个顶点的距离相等. 要点诠释: (1)点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系; (2)不在同一直线上的三个点确定一个圆. 要点二、直线和圆的位置关系 1.直线和圆的三种位置关系: (1) 相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线. (2) 相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点. (3) 相离:直线和圆没有公共点时,叫做直线和圆相离. 2.直线与圆的位置关系的判定和性质. 直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢? 由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.

如果⊙O的半径为r,圆心O到直线的距离为d,那么 要点诠释: 这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定. 要点三、切线的判定定理、性质定理和切线长定理 1.切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 要点诠释: 切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理: 圆的切线垂直于过切点的半径. 3.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 4.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 5.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 6.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径). 名称确定方法图形性质

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

中考点直线与圆的位置关系试题汇编

点直线与圆的位置关系 一、选择题 1. (2016·湖北鄂州) 如图所示,AB 是⊙O 的直径,AM 、BN 是⊙O 的两条切线,D 、C 分别在AM 、BN 上,DC 切⊙O 于点E ,连接OD 、OC 、BE 、AE ,BE 与OC 相交于点P ,AE 与OD 相交于点Q ,已知AD=4,BC=9. 以下结论: ①⊙O 的半径为213 ②OD ∥BE ③PB=1318 13 ④tan ∠CEP=3 2 其中正确的结论有( ) A. 1个 B. 2个 C.3个 D. 4个 【考点】直线与圆的位置关系(直线与圆的相交,直线与圆的相切),平行线的判定,矩形的判定和性质,直角三角形的性质及判定,相似三角形的判定和性质,勾股定理,全等三角形的判定和性质,三角函数等. 【分析】①连接OE ,则OE ⊥DC ,易证明四边形ABCD 是梯形,则其中位线长等于21(4+9)=213,而梯形ABCD 的中位线平行于两底,显而易见,中位线的长(斜边)大于直角边(或运用垂线段最短判定),故可判断①错误;另外的方法是直接计算出⊙O 的半径的长(做选择题时,不宜); ②先证明△AOD ≌△EOD ,得出∠AOD=∠EOD=21∠AOE ,再运用同弧所对的圆周角等于圆心角的一半证明∠AOD=∠ABE ,从而得出OD ∥BE ,故②正确;

③由①知OB=6,根据勾股定理示出OC ,再证明△OPB ∽△OBC ,则BC PB =OC OB ,可得出PB 的长. ④易知∠CEP >∠ECP ,所以CP >PE ,故tan ∠CEP=3 2错误. 【解答】①解法一:易知四边形ABCD 是梯形,则其中位线长等于21(4+9)=213,OE 为⊙O 的半径,且OE ⊥DC ,而梯形ABCD 的中位线平行于两底,显而易见,中位线的长(斜边)大于直角边的长(或运用垂线段最短判定),故可判断①错误; 解法二:过点D 作DF ⊥BC 于点F , ∴AM ,BN 分别切⊙O 于点A ,B , ∴AB ⊥AD ,AB ⊥BC , ∴四边形ABFD 是矩形, ∴AD=BF ,AB=DF , 又∵AD=4,BC=9, ∴FC=9﹣4=5, ∴AM ,BN ,DC 分别切⊙O 于点A ,B ,E ,

点与圆的位置关系教案

点与圆的位置关系 肖海霞 学习目标:1、理解点与圆的位置关系由点到圆心的距离决定; 2、理解不在同一条直线上的三个点确定一个圆; 3、会画三角形的外接圆,熟识相关概念 学习过程 一、点与圆的位置三种位置关系 生活现象:阅读课本P53页,这一现象体现了平面内...点与圆的位置关系. 如图1所示,设⊙O 的半径为r , A 点在圆内,OA r B 点在圆上,OB r C 点在圆外,OC r 反之,在同一平面上.....,已知的半径为r ⊙O ,和A ,B ,C 三点: 若OA >r ,则A 点在圆 ; 若OB <r ,则B 点在圆 ; 若OC=r ,则C 点在圆 。 二、多少个点可以确定一个圆 问题:在圆上的点有 多个,那么究竟多少个点就可以确定一个圆呢? 试一试 画图准备: 1、圆的 确定圆的大小,圆 确定圆的位置; 也就是说,若如果圆的 和 确定了, 那么,这个圆就确定了。 2、如图2,点O 是线段AB 的垂直平分线 上的任意一点,则有OA OB 图2 画图: 1、画过一个点的圆。 右图,已知一个点A ,画过A 点的圆. 小结:经过一定点的圆可以画 个。 图 1 o B A A

2、画过两个点的圆。 右图,已知两个点A 、B ,画经过A 、B 两点的圆. 提示:画这个圆的关键是找到圆心, 画出来的圆要同时经过A 、B 两点, 那么圆心到这两点距离 ,可见, 圆心在线段AB 的 上。 小结:经过两定点的圆可以画 个,但这些圆的圆心在线段的 上 3、画过三个点(不在同一直线)的圆。 提示:如果A 、B 、C 三点不在一条直线上,那么经过A 、B 两点所画的圆的圆心在线段AB 的垂直平分线上, 而经过B 、C 两点所画的圆的圆心在 线段BC 的垂直平分线上,此时,这 两条垂直平分线一定相交,设交点为O , 则OA =OB =OC ,于是以O 为圆心, OA 为半径画圆,便可画出经过A 、B 、C 三点的圆. 小结:不在同一条直线.....上的三个点确定 个圆. 三、概括 我们已经知道,经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点. 如图:如果⊙O 经过△ABC 的三个顶点, 则⊙O 叫做△ABC 的 ,圆心O 叫 做△ABC 的 ,反过来,△ABC 叫做 ⊙O 的 。 △ABC 的外心就是AC 、BC 、AB 边的 交点。 四、分组练习 A B C B

初中直线与圆的位置关系经典练习题

圆与直线的基本性质 一、定义 [例1]在ABC Rt?中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?为什么? (1)r=2cm; (2)r=2.4cm; (3)r=3cm。 [例2]在ABC ?中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离? [变式题]已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】 A.相切B.相离C.相离或相切 D.相切或相交 二、性质 例1:如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于【】A.40°B.50°C.60°D.70°变式1:如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠ACP=【】 A. 30B. 45 C. 60D.67.5 例3:如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】 A.80° B.110° C.120° D.140° 变式2:如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交与点P,则∠BPC=°. 例5:如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.

变式3:如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为cm2.例7:如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N. (1)求证:OM=AN; (2)若⊙O的半径R=3,PA=9,求OM的长.变式4:如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF 于点H,交⊙O于点C,连接BD. (1)求证:BD平分∠ABH; (2)如果AB=12,BC=8,求圆心O到BC的距离. 三、切线的判定定理: 例1:如图,AB是⊙O的直径,AC和BD是它的两条 切线,CO平分∠ACD.(1)求证:CD是⊙O的切线; (2)若AC=2,BC=3,求AB的长.

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

点和圆的位置关系教学设计

点和圆的位置关系
【教学目标】
教学知识点: 了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的 方法,了解三角形的外接圆、三角形的外心等概念。 能力训练要求: 1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力。 2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的 策略。 情感与价值观要求: 1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精 神。 2.学会与人合作,并能与他人交流思维的过程和结果。
【教学重点】
1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论。 2.掌握过不在同一条直线上的三个点作圆的方法。 3.了解三角形的外接圆、三角形的外心等概念。
【教学难点】
经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三 个点作圆。
【教学方法】
教师指导学生自主探索交流法。
【教学用具】
投影片
【教学过程】
一、创设问题情境,引入新课 [师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线。那么,经过一点
能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索。 二、新课讲解
1

1.回忆及思考 投影片 1.线段垂直平分线的性质及作法。 2.作圆的关键是什么? [生]1.线段垂直平分线的性质是:线段垂直平分线上的点到线段两端点的距离相等。 作法:如下图,分别以 A.B 为圆心,以大于 1 AB 长为半径画弧,在 AB 的两侧找出两交
2 点 C.D,作直线 CD,则直线 CD 就是线段 AB 的垂直平分线,直线 CD 上的任一点到 A 与 B 的距 离相等。
[师]我们知道圆的定义是:平面上到定点的距离等于定长的所有点组成的图形叫做圆。 定点即为圆心,定长即为半径。根据定义大家觉得作圆的关键是什么?
[生]由定义可知,作圆的问题实质上就是圆心和半径的问题。因此作圆的关键是确定圆 心和半径的大小。确定了圆心和半径,圆就随之确定。
2.做一做(投影片) (1)作圆,使它经过已知点 A,你能作出几个这样的圆? (2)作圆,使它经过已知点 A.B.你是如何作的?你能作出几个这样的圆?其圆心的分 布有什么特点?与线段 AB 有什么关系?为什么? (3)作圆,使它经过已知点 A.B.C(A.B.C 三点不在同一条直线上)。你是如何作的? 你能作出几个这样的圆? [师]根据刚才我们的分析已知,作圆的关键是确定圆心和半径,下面请大家互相交换意 见并作出解答。 [生](1)因为作圆实质上是确定圆心和半径,要经过已知点 A 作圆,只要圆心确定下来, 半径就随之确定了下来。所以以点 A 以外的任意一点为圆心,以这一点与点 A 所连的线段为半 径就可以作一个圆。由于圆心是任意的。因此这样的圆有无数个。如图(1)。
2

学生版高中数学必修2直线与圆的位置关系知识点总结经典例题与习题

高中数学必修2 直线与圆的位置关系 【一】、圆的定义及其方程. (1)圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆,定点叫做圆心,定 长就是半径;(圆心是定位条件,半径是定型条件) (2)圆的标准方程: ;圆心),(b a 圆的一般方程:)04(02 2 2 2 >-+=++++F E D F Ey Dx y x ;圆心 ,半径为 ; 【二】、点与圆的位置关系(仅以标准方程为例,其他形式,则可化为标准式后按同样方法处理) 设),(00y x P 与圆2 2 2 )()(r b y a x =-+-;若P 到圆心之距为d ; ①P 在在圆C 外 ; ②P 在在圆C 内 ; ③P 在在圆C 上 ; 【三】、直线与圆的位置关系: 设直线0:=++C By Ax l 和圆2 2 2 )()(:r b y a x C =-+-,圆心C 到直线l 之距为 d ,由直线l 和圆C 联立方程组消去x (或y )后,所得一元二次方程的判别式为?,则它 们的位置关系如下: 相离 ;相切 ;相交 ; 注意:这里用d 与r 的关系来判定,称为几何法,只有对圆才实用,也是最简便的方法; 利用?判定称为代数法,对讨论直线和二次曲线的位置关系都适应。 【四】、两圆的位置关系: (1)代数法:解两个圆的方程所组成的二元二次方程组;若方程组有两组不同的实数解, 则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离。 (2)几何法:设圆1O 的半径为1r ,圆2O 的半径为2r ①两圆外离 ; ②两圆外切 ; ③两圆相交 ; ④两圆内切 ⑤两圆内含 ; (五) 已知圆C :(x-a)2+(y-b)2=r 2(r>0),直线L :Ax+By+C=0

点和圆的位置关系 专题练习题 含答案

点和圆的位置关系专题练习题 1.⊙O的半径为5 cm,点A到圆心O的距离OA=3 cm,则点A与⊙O的位置关系为( ) A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定 2.已知⊙P的半径为5,点P的坐标为(2,1),点Q的坐标为(0,6),则点Q与⊙P的位置关系是( ) A.点Q在⊙P外B.点Q在⊙P上C.点Q在⊙P内D.不能确定 1.⊙O的半径为5 cm,点A到圆心O的距离OA=3 cm,则点A与⊙O的位置关系为( ) A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定 2.已知⊙P的半径为5,点P的坐标为(2,1),点Q的坐标为(0,6),则点Q与⊙P的位置关系是( ) A.点Q在⊙P外B.点Q在⊙P上C.点Q在⊙P内D.不能确定 5.过一点可以作_________个圆;过两点可以作_______个圆,这些圆的圆心在两点连线的___________________上;过不在同一条直线上的三点可以作________个圆. 6.下列关于确定一个圆的说法中,正确的是( ) A.三个点一定能确定一个圆B.以已知线段为半径能确定一个圆 C.以已知线段为直径能确定一个圆D.菱形的四个顶点能确定一个圆 7.下列命题中,错误的有( ) ①三角形只有一个外接圆;②三角形的外心是三角形三条边的垂直平分线的交点;③等边三角形的外心也是其三边的垂直平分线、高及角平分线的交点;④任何三角形都有外心. A.3个B.2个C.1个D.0个 8.如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( ) A.点P B.点Q C.点R D.点M 9.直角三角形的外心是________的中点,锐角三角形的外心在三角形的_________,钝角三角形的外心在三角形的__________. 10.如图,一只猫观察到一老鼠洞的三个洞口A,B,C,这三个洞口不在同一条直线上,请问这只猫应该在什么地方才能最省力地同时顾及三个洞口?作出这个位置.

直线与圆知识点及经典例题

圆的方程、直线和圆的位置关系 【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程这个方程叫做圆的标准方程。 说明: 1 、若圆心在坐标原点上,这时,则圆的方程就是。 2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要三个量确定了且〉0,圆的方程就给定了。 就是说要确定圆的方程,必须具备三个独立的条件确定,可以根据条件,利用待定系数法来解决。 (二)圆的一般方程 将圆的标准方程, 展开可得。可见,任何一个圆的方程都可以写成: 问题:形如的方程的曲线是不是圆 将方程左边配方得: (1)当〉0时,方程(1 )与标准方程比较,方程表示以为圆心,以为半径的圆。, (3)当v 0时,方程没有实数解,因而它不表示任何图形。 圆的一般方程的定义: 当〉0时,方程称为圆的一般方程? 圆的一般方程的特点: ( 1 )和的系数相同,不等于零; ( 2)没有xy 这样的二次项。 (三)直线与圆的位置关系 1、直线与圆位置关系的种类 ( 1 )相离--- 求距离;(2) 相切--- 求切线;( 3)相交--- 求焦点弦长。 2、直线与圆的位置关系判断方法: 几何方法主要步骤: ( 1)把直线方程化为一般式,利用圆的方程求出圆心和半径 ( 2)利用点到直线的距离公式求圆心到直线的距离 (3)作判断:当d>r时,直线与圆相离;当 d = r时,直线与圆相切;当d0时,直线与圆相交。 【典型例题】 类型一:圆的方程 例 1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系. 变式1:求过两点、且被直线平分的圆的标准方程. 变式2:求过两点、且圆上所有的点均关于直线对称的圆的标准方程. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为????圆心在上,故????圆的方程为. 又???该圆过、两点.??? 解之得:, 所以所求圆的方程为.解法二:(直接求出圆心坐标和半径) 因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线 的方程为:即. 又知圆心在直线上,故圆心坐标为.??半径. 故所求圆的方程为.又点到圆心的距离为

24.2点及圆的位置关系

o C B A 24.2.1 点和圆的位置关系(第六课时) 一.学习目标: 1、掌握点和圆的三种位置关系及数量间的关系, 2、通过探求点和圆三种位置关系,渗透数形结合、分类讨论等数学思想 二.学习重点、难点: 重点:点和圆的三种位置关系; 难点:点和圆的三种位置关系及数量间的关系; 教学过程 一、预习检测: 1、圆的定义是 2、放暑假了,爱好运动的小华、小强、小兵三人相邀搞掷飞镖比赛。他们把靶子钉在一面墙上,规则是谁掷出落点离红心越近,谁就胜。如下图中A 、B 、C 三点分别是他们三人某一轮掷镖的落点,就这一轮来讲,很显然,_____的成绩好。 若把靶子看作以O 点为圆心的圆,你能得出点和圆有几种位置关系吗? 二、合作探究: (一)自学指导: 阅读课本P92 并完成以下各题 点和圆的位置关系:若设⊙O 的半径为r ,点P 到圆心的距离为d ,那点和圆的位置关系可表示成怎样的数量关系? ?d >r ; ?d=r ?d <r (二)交流展示,精讲解惑 例:如图,在ABC ?中,?=∠90ACB ,?=∠30A ,AB CD ⊥,cm AC 3=,以点C 为圆心,3cm 为半径画⊙C ,请判断A 、B 、D 与⊙C 的位置关系,并说明理由. (三)当堂训练 1、已知⊙O 的半径为5cm ,有一点P 到圆心O 的距离为3cm ,求点P 与圆有何位置关系? 2、⊙O 的半径为10cm ,A 、B 、C 三点到圆心的距离分别为8cm 、10cm 、12cm ,则点A 、B 、C 与 ⊙O 的位置关系是:点A 在 ;点B 在 ; 点C 在 ; 3、若⊙A 的半径为5,圆心A 的坐标为(3,4),点P 的坐标(5,8),则点P 的位置为( ) A .⊙A B .⊙A 上 C .⊙A 外 D .不确定 4、⊙O 的直径18cm ,根据下列点P 到圆心O 的距离,判断点P 和圆O 的位置关系. (1)PO =8cm (2)PO =9cm (3)PO =20cm 5、已知⊙O 的半径为5cm ,P 为一点,当cm OP 5=时,点P 在 ;当OP 时, 点P 在圆;当cm OP 5>时,点P 在 . 6、正方形ABCD 的边长为2cm ,以A 为圆心2cm 为半径作⊙A ,则点B 在⊙A ;点C 在⊙A ;点D 在⊙A 。 课后反思:

与圆有关的位置关系(习题)

与圆有关的位置关系(习题) ?巩固练习 1.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下 列说法中不正确 ...的是() A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内 C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外 2.如图,若△ABC的顶点都在⊙P上,则点P的坐标是______. 第2题图第3题图 3.小英家的圆形镜子被打碎了,她拿了如图所示(网格中每个小正方形的边长 均为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是__________. 4.已知⊙O1,⊙O2的半径分别是r1=2,r2=4,若两圆相交,则圆心距O1O2可 能取的值是() A.2 B.4 C.6 D.8 5.如图,在矩形ABCD中,AB=6,BC=4,⊙O是以AB为直径的圆,则直线 CD与⊙O的位置关系是() A.相离B.相切C.相交D.无法确定 D C B A 第5题图第6题图 6.如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°.点 P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是______. 7.如图,PA,PB是⊙ O的两条切线,切点分别为A,B.如果OP=4,PA= 那么∠AOB=_______.

A 第7题图 第8题图 8. 如图,AB 是⊙O 的直径,点D 在线段AB 的延长线上,DC 切⊙O 于点C .若∠A =25°,则∠D =_________. 9. 如图,P A ,PB 是⊙O 的两条切线,切点分别为A ,B ,AC 是⊙O 的直径.若 ∠BAC =35°,则∠P =________. 10. 已知宽为3 cm 的刻度尺的一边与⊙O 相切,另一边与⊙O 的两个交点处的 读数如图所示(单位:cm ),则⊙O 的半径为__________cm . 11. 如图1,将一个量角器与一张等腰直角三角形(△ABC )纸片放置成轴对称 图形,∠ACB =90°,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,且CE =5 cm .如图2,将量角器沿DC 方向平移2 cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,则AB 的长为________cm .(结果保留根号) E C B A A B C D 图1 图2 ? 思考小结 1. 判断与圆有关的位置关系,关键是找准_____和_______,在直线与圆位置关 系中,它们分别代表____________________和_________________. 2. 已知圆锥的母线长为l ,底面圆的半径为r ,借助扇形及其所围成圆锥间的等 量关系,推导圆锥的侧面积公式S =πlr .(写出证明的关键环节)

《直线与圆的位置关系》典型例题

《直线与圆的位置关系》典型例题 例1在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么? (1)r=1cm;(2)r=cm;(3)r=2.5cm. 例2 在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆,若直线AB与⊙C,(1)相交;(2)相切;(3)相离.求半径r的取值. 例3如图,在直角梯形ABCD中,AD∥BC,∠C=∠D=90°,若AB=6,AD=4,BC=2,试问:DC上是否存在点P,使R t△PBC∽R t△APD?

例4如图,直角梯形中,,,,为上的一点,平分,平分.求证:以为直径的圆与相切. 例5已知中,,于,,,以为圆心,为半径画圆.求证直线和⊙相离.

参考答案 例1分析如图,欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可. 解:过C点作CD⊥AB于D, 在R t△ABC中,∠C=90°,AB=4,BC=2, ∴AC=2 , ∴AB·CD=AC·BC, ∴, (1)当r =1cm时CD>r,∴圆C与AB相离; (2)当r=cm时,CD=r,∴圆C与AB相切; (3)当r=2.5cm时,CD<r,∴圆C与AB相交. 说明:从“数”到“形”,判定圆与直线位置关系. 例2 解:过C点作CD⊥AB于D, 在R t△ABC中,∠C=90°,AB=4,BC=2, ∴AC=2 , ∴AB·CD=AC·BC, ∴, (1)∵直线AB与⊙C相离,∴0rCD,即r>. 说明:从“形”到“数”,由圆与直线位置关系来确定半径. 例3 分析:若R t△PBC∽R t△APD,则∠APD+∠BPC=90°,可知∠APB=90°,所以P点为以AB为直径的圆O与DC的交点,由条件可知为⊙O与DC相切,

点与圆的位置关系

35.1 点与圆的位置关系 教学目标: 1、掌握点与圆的三种位置关系及这三三种位置关系对应圆的半径与点到圆心距离之间数量关系、 2、经历探索点与圆三种位置关系,体会数学分类讨论思考问题的方法、 教学重点: 用数量判定点与圆的位置关系、教学难点: 判定点与圆的位置关系、 教学过程: 一、创设问题情境 1、足球运动员踢出的地滚球在球场上滚动,再其穿越中间圆形区域的过程中,足球与这个圆的位置关系呢? 2、代号为"白沙"的台风经过了小岛A 。在每一时刻,台风所侵袭的区域总就是以其中心为圆心的一个圆。小岛在遭受台风袭击前后,她与台风的侵袭区域有什么不同的位置关系呢? 二、合作探索 1.点与圆有几种不同的位置关系?您还能举出类似的的实例不? 点与圆有三种位置关系:点在圆内,点在圆上,点在圆外。 2.如图表示点与圆的三种位置关系。 点P 在⊙O 内 点P 在⊙O 上 点P 在⊙O 外 3、在您画出的三幅图中,分别测量点到圆心的距离d,并与圆的半径的r 大小进行比较、 6.归纳与概括: 点在圆内 dr 三、典型例题 1、 例:如图,在△ABC 中,∠C=90°,AB=5㎝,BC=4㎝,以A 为圆心 ,以3㎝为半径画圆,请您判断: (1) 点C 与⊙A 的位置关系 (2) 点B 与⊙A 的位置关系 (3) AB 的中点D 与⊙A 的位置关系 P O

2、练习:P36 四、回顾与反思:点与圆的三种位置关系及这三三种位置关系对应圆的半径与点到圆心距离之间数量关系、 五、作业:P36 1、2、3 35、2 直线与圆的位置关系 教学目标: 1使学生掌握直线与圆的三种位置以及位置关系的判定与性质。 2培养学生用运动变化的观点,去观察图形,研究问题的能力。 3渗透类比、分类、化归、数形结合的思想,指导相应的学习方法,使学生不仅学会数学,而且会学数学教学重点:掌握直线与圆的三种位置关系的性质与判定 教学难点:如何引导学生发现隐含在图形中的两个数量d与r并加以比较。 教学过程: 一、复习引入 我们已经研究了点与圆的位置关系,回忆一下有几种情况?就是怎样判定各个位置关系的?点与圆的位置关系就是用什么方法研究?(演示投影或放录像) 今天我们将借鉴这些方法与经验共同探讨在同一平面内“直线与圆的位置关系”(板书课题) 二、探索、学习新知识 1、直线与圆的位置关系 ①利用投影演示直线与圆的运动变化过程,要求学生观察,圆与直线的位置关系在哪些方面发生了变化?设法引导观察“公共点个数”的变化。 Ⅰ没有公共点Ⅱ有唯一公共点Ⅲ有两个公共点, ②引导学生思考:Ⅰ直线与圆有三个(或三个以上)的公共点不?为什么? Ⅱ通过刚才的研究,您认为直线与圆的位置关系可分为几种类型?分类的标准各就是什么? ③在此基础上,揭示直线与圆的位置关系的定义(板书)

点与圆的位置关系习题

24.2.1点与圆的位置关系 自主学习、课前诊断 一、温故知新 1.圆心确定圆的_____,半径确定圆的 ______,圆心为O、半径为r的圆可以看 成是___________________的点的集合. 2.若PA=PB则点P在_____________. 3..用尺规作出线段AB 的垂直平分线. 二、设问导读 阅读课本P92-95完成下列问题: 1.点和圆的位置关系。完成下表: 图形点和圆的 位置关系 点到圆心 的距离d与 r的关系点在圆外 d =r 点在圆内 d <r 2.“?”读作,它的意义是什么? 3.动手操作: (1)作圆,使它经过已知点A,你能作出几个这样的圆? (2)作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么? (3)作圆,使它经过已知点A、B、C(A、 B、C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?得出的结论是什么? 3. 叫三角形外接圆,_________________叫做三角形的外心. 4.认真阅读课本P94归纳反证法证明问题的三个步骤. 三、自学检测 1.如果⊙O的半径为r,点P到圆心O的距离为6,那么: ①点P在⊙O外,则r ; ②点P在,则r=6; ③点P在,则r>6. 2. 经过平面上的两点可以作个圆,这些圆的圆心在 __________________;经过平面内的三个点可以作圆。

O H G F E D C B A 互动学习、问题解决 一、导入新课 二、交流展示 学用结合、提高能力 一、巩固训练 1.⊙O 的半径为6,圆心O 的坐标(0,0 ),点P (3,4)与⊙O 的位置关系是________. 2.用反证法证明命题“三角形中必须有一个内角小于或等于 60°”时,首先应假设这个三角形中_________________. 3.已知a,b,c 是△ABC 的三边长,外接圆的圆心在△ABC 一条边上的是( ) A.a=15,b=12,c=4 B.a=5,b=12,c=12 C.a=5,b=12,c=13 D.a=5,b=12,c=14 4. 小明家的房前有一块矩形的空地,空地上有三棵树A,B,C,小明想建一个圆形花坛,使三棵树都在花坛的边上. (1)请你帮小明把花坛的位置画出来 (尺规作图,不写作法,保留作图痕迹). (2)若在△ABC 中,AB=8m,AC=6m,∠BAC =90°,试求小明家圆形花坛的面积. 二、当堂检测 如图,菱形ABCD 的对角线AC ,BD 相交于点O ,四条边AB ,BC ,CD ,DA 的中点分别为E ,F ,G ,H.这四个点共圆吗?圆心在哪儿? 三、拓展延伸 如图,已知直角坐标系中,A(0,4), B(4,4),C(6,2). (1)写出经过A,B,C 三点的圆弧所在圆的圆心M 的坐标. (2)判断点D(5,-2)和⊙M 的位置关系. 课堂小结、形成网络 ________________________________________________________________________________________________________________________________________

点与圆的三种位置关系

点与圆的三种位置关系 一、学习目标: 1、了解点与圆的三种位置关系; 2、能根据点与圆心的距离判断点与圆的位置关系; 3、能画出经过一点、经过两点的圆。 二、探索: 问题1:点与圆的位置关系有哪几种? (做一做)如图,直线上有四点O、A、B、 C , 且OA=1,OB=2,OC=3, 以O为圆心,2 , r 为半径画O 则点A在圆,点B在圆, 点C在圆。 结论:⑴点与圆的位置关系有三种:点在,点在,点在。 ⑵设O 的半径为r, ①若点A OA r; ②若点B OB r; ③若点C OC r。 三、练习A

填一填:1、设O 的半径为10㎝, ⑴若PO=8㎝,则点P在圆。 ∵r=,OP=, ∴OP r(填“>”、“<”、“=”), ∴点P在圆。 ⑵若PO=10㎝,则点P在圆。 ∵r=,OP=, ∴OP r(填“>”、“<”、“=”), ∴点P在圆。 ⑶若PO=12㎝,则点P在圆。 ∵r=,OP=, ∴OP r(填“>”、“<”、“=”), ∴点P在圆。 2、已知O 的半径为5 r=㎝,A为线段OP的中点,当OP满足下列条件时,分别指出点A和O 的位置关系: ①OP=6㎝②OP=10㎝③OP=14㎝解:∵OP=6㎝,解:∵OP=10㎝,解:∵OP=14㎝,∴AO=㎝,∴AO=㎝,∴AO=㎝,

A B A B C ∴AO r , ∴AO r , ∴AO r , ∴点A 在 。 ∴点A 在 。 ∴点A 在 。 问题二:如何判定一个圆经过已知点? 1、如图经过已知点A 的圆是( ) 2、根据以下条件,作O (1)经过一个已知点A ,作O 思考:这样的圆能做 个,请在上图中再做一个经过A 点的O 结论:过一点可以画 个圆。 (2)经过两个已知点A 、B ,作O 分析:圆心O 在线段AB 的 线上, 思考:这样的圆能画 个。 结论:过已知两点可以画 个圆。 (3)经过不共线的三点A 、B 、C ,作O 分析:∵O 经过A 、B 、C 三点 ∴O 经过A 、B 两点

相关文档
相关文档 最新文档