文档库 最新最全的文档下载
当前位置:文档库 › 基于约束Delaunay三角网的茶鲜叶几何参数识别

基于约束Delaunay三角网的茶鲜叶几何参数识别

基于约束Delaunay三角网的茶鲜叶几何参数识别
基于约束Delaunay三角网的茶鲜叶几何参数识别

19-20版 第1章 1.2 第3课时 三角形中的几何计算

第3课时三角形中的几何计算 学习目标核心素养 1.掌握三角形的面积公式的应 用.(重点 ) 2.掌握正、余弦定理与三角函数 公式的综合应用.(难点) 1.通过三角形面积公式的学习,培 养学生的数学运算的素养. 2.借助三角形中的综合问题的学 习,提升学生的数学抽象的素养. 1.三角形的面积公式 (1)S= 1 2a·h a= 1 2b·h b= 1 2c·h c(h a,h b,h c分别表示a,b,c边上的高); (2)S= 1 2ab sin C= 1 2bc sin A= 1 2ca sin B; (3)S= 1 2(a+b+c)·r(r为内切圆半径). 2.三角形中常用的结论 (1)∠A+∠B=π-∠C, ∠A+∠B 2= π 2- ∠C 2; (2)在三角形中大边对大角,反之亦然; (3)任意两边之和大于第三边,任意两边之差小于第三边; (4)三角形的诱导公式 sin(A+B)=sin_C,cos(A+B)=-cos_C, tan(A+B)=-tan_C? ? ? ? ? ∠C≠ π 2, sin A+B 2=cos C 2, cos A+B 2=sin C 2. 1.在△ABC中,已知a=2,b=3,∠C=120°,则S△ABC=()

A .3 2 B .33 2 C .3 D .3 B [S △AB C =12ab sin C =12×2×3×32=33 2.] 2.在△ABC 中,a =6,∠B =30°,∠C =120°,则△ABC 的面积为________. 93 [由题知∠A =180°-120°-30°=30°.∴6sin 30°=b sin 30°,∴b =6,∴S =1 2×6×6×sin 120°=9 3.] 3.若△ABC 的面积为3,BC =2,∠C =60°,则边AB 的长度等于________. 2 [在△ABC 中,由面积公式得S =12BC ·AC ·sin C =12×2·AC ·sin 60°=3 2AC =3, ∴AC =2. ∵BC =2,∠C =60°, ∴△ABC 为等边三角形. ∴AB =2.] 三角形面积的计算 【例1】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠B =π3,cos A =4 5,b = 3. (1)求sin C 的值; (2)求△ABC 的面积. [解] (1)∵角A ,B ,C 为△ABC 的内角,且∠B =π3,cos A =4 5, ∴∠C =2π3-∠A ,sin A =3 5. ∴sin C =sin ? ?? ?? 2π3-A =32cos A +12sin A =3+4310.

2016五年级几何图形计算练习题

五年级数学几何图形练习题 一、计算题 1、一块平行四边形的水稻田,底180厘米、高70米。它的面积是多少平方米?(画图及计算) 2、一个近似于梯形的林地,上底1.5千米、下底3.9千米、高0.9千米。这个林地的面积是多少平方千米?(画图及计算) 3、一个长方形的苗圃,长41米、宽19米,按每平方米育树苗5棵计算。这个苗 圃一概可以育多少棵树苗? 4、爷爷家有一块三角形的小麦地,底32米、高15米,今年一共收小麦134.4千 克。平均每平方米收小麦多少千克? 5、张大伯家有一块梯形的玉米地,上地120米、下底160米、高40米。预计每 公顷可以收玉米6000千克。这块玉米地一共可以收玉米多少千克?按每千克玉米0.8元计算,玉米收入有多少元?

6、爷爷家的一块长120米、宽30米的地,按照每平方米收稻谷0.92千克计算。 今年这块地收稻谷多少千克?收的稻谷的质量是小麦的2.4倍,今年收小麦多少千克? 7、一块三角形的果园,面积是0.84公顷,已知底是250米。它的高是多少米? 选择题 1、把一个平行四边形活动框架拉成一个长方形,那么现在的长方形与原来的平行四边形相比,周长(),面积() A 、变大B、变小C、没变D、无法比较 2、一个三角形底不变,高扩大6倍,面积() A、不变B扩大6倍C、扩大3倍D、缩小3倍 3、一个平行四边形的底是40厘米,高是20厘米,与它等底等高的三角形的面积是() A 、4平方分米 B 400平方分米C、8平方分米 4、下列说法中错误的是() A 、在6与7之间的小数有无数个B、0既不是正数也不是负数。 C 、生活中,一般把盈利用正数表示D、两个不同形状的三角形面积也一定不相等 5、图中阴影部分与空白部分相比( A、面积相等,周长相等 B、面积不等,周长相等。 C、面积相等,周长不等。 D、无法比较。 三、求下面图形的周长和面积。

2020届高考数学(理)热点猜押练一 热点练15 立体几何中的证明与计算问题(含解析)

2020届高考数学(理)热点猜押练一致胜高考必须掌握的 20个热点 热点练15 立体几何中的证明与计算问题 1.如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC. (1)证明:A1C⊥平面BED. (2)求二面角A1-DE-B的余弦值. 2.如图,三棱台ABC-EFG的底面是正三角形,平面ABC⊥平面BCGF,CB=2GF, BF=CF. (1)求证:AB⊥CG. (2)若BC=CF,求直线AE与平面BEG所成角的正弦值.

3.如图,在底面为矩形的四棱锥P-ABCD中,PB⊥AB. (1)证明:平面PBC⊥平面PCD. (2)若异面直线PC与BD所成角为60°,PB=AB,PB⊥BC,求二面角B-PD-C的大小. 4.如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠BAD=45°,PD=2,M 为PD的中点,E为AM的中点,点F在线段PB上,且PF=3FB. (1)求证:EF∥平面ABCD. (2)若平面PDC⊥底面ABCD,且PD⊥DC,求平面PAD与平面PBC所成锐二面角的余弦值.

5.如图,多面体ABC-DB1C1为正三棱柱ABC-A1B1C1沿平面DB1C1切除部分所得,M为CB1的中点,且BC=BB1=2. (1)若D为AA1中点,求证AM∥平面DB1C1. (2)若二面角D-B1C1-B大小为错误!未找到引用源。,求直线DB1与平面ACB1所成角的正弦值. 6.如图所示,等腰梯形ABCD的底角∠BAD=∠ADC=60°,直角梯形ADEF所在的平面垂直于平面ABCD,且∠EDA=90°,ED=AD=2AF=2AB=2. (1)证明:平面ABE⊥平面EBD. (2)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的锐二面角的余弦值为错误!未找到引用源。.

三角形中的几何计算

三角形中的几何计算 【知识与技能】 1.通常对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的度量问题. 2.能够运用正弦定理、余弦定理等知识和方法解决一些有关三角形的边和角以及三角形的面积等问题. 3.深刻理解三角形的知识在实际中的应用,增强应用数学建模意识,培养分析问题和解决实际问题的能力. 【重点】应用正、余弦定理解三角形. 【难点】灵活应用正、余弦定理及三角恒等变换解决三角形中的几何计算. 【三角形常用面积公式】(对应教材P25页B 组第2小题) (1)S = 2 1 ; (2)S = 21ab sin C =21 =21 ; (3)S = 2 1 ·r · (r 为三角形内切圆半径); (4)2a b c S p ++?= =?? 其中(海伦公式); (5)22sin sin sin sin sin sin b A C c A B S B C = == ; (6)4abc S R = (其中R 为三角形外接圆半径)。 类型1 三角形中的面积计算问题 【例1】△ABC 中,已知C =120°,AB =23,AC =2,求△ABC 的面积. 解:由正弦定理AB sin C =AC sin B ,∴sin B =AC sin C AB =2sin 120°23=12.因为AB >AC ,所以C >B , ∴B =30°,∴A =30°.所以△ABC 的面积S =12AB ·AC ·sin A =1 2 ·23·2·sin 30°= 3. 小结:由于三角形的面积公式有三种形式,实际使用时要结合题目的条件灵活运用;如果已知两边及其夹角可以直接求面积,否则先用正、余弦定理求出需要的边或角,再套用公式计算. 【练习】(2013·蒙阴高二检测)在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =3 2 ,则边BC 的长为________. 解:由S △ABC = 32,得12AB ·AC sin A =32,即12×2AC ×32=32 ,∴AC =1.由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A =22+12-2×2×1×1 2 =3.∴BC = 3. 类型2 三角形中的长度、角度计算问题 【例2】如图所示,在四边形ABCD 中,AD ⊥CD,AD =10,AB =14,∠BDA =60°, ∠BCD =135°,求BC 的长. 解:在△ABD 中,由余弦定理,得AB 2=AD 2+BD 2-2AD ·BD ·cos ∠ADB ,

delaunay三角网生长准则及算法

Delaunay 三角网是Voronoi(或称thiessen多边形,V 图)图的伴生图形 ◆Delaunay 三角网的定义: 由一系列相连的但不重叠的三角形的集合, 而且这些 三角形的外接圆不包含这个面域的其他任何点。 ◆Voronoi图的定义: Voronoi图把平面分成N 个区,每一个区包括一个点, 该点所在的区域是距离该点最近的点的集合。 ◆Delaunay三角网的特性: ◆不存在四点共圆; ◆每个三角形对应于一个Voronoi图顶点; ◆每个三角形边对应于一个Voronoi图边; ◆每个结点对应于一个Voronoi图区域; ◆Delaunay图的边界是一个凸壳; ◆三角网中三角形的最小角最大。 空外接圆准则最大最小角准则最短距离和准则 在TIN中,过每个三角形的外接圆均不包含点集的其余任何点在TIN中的两相邻三角形形成 的凸四边形中,这两三角形 中的最小内角一定大于交换 凸四边形对角线后所形成的 两三角形的最小内角 一点到基边的两端的距离 和为最小 Delaunay三角剖分的重要的准则

张角最大准则面积比准则对角线准则 一点到基边的张角为最大三角形内切圆面积与三角形 面积或三角形面积与周长平 方之比最小 两三角形组成的凸四边形 的两条对角线之比。这一 准则的比值限定值,须给 定,即当计算值超过限定 值才进行优化 Delaunay三角剖分的重要的准则 不规则三角网(TIN)的建立 ●三角网生长算法就是从一个“源”开始,逐步形成覆盖整个数据区域的三角网。 ●从生长过程角度,三角网生长算法分为收缩生长算法和扩张生长算法两类。 方法说明方法实例 收缩生长算法先形成整个数据域的数据边界(凸壳), 并以此作为源头,逐步缩小以形成整个三 角网 分割合并算法 逐点插入算法 扩张生长算法从一个三角形开始向外层层扩展,形成覆 盖整个区域的三角网 递归生长算法

机械制图三视图的第三角法和第一角如何区分

三视图的第三角法和第一角法划分: 一、第一角投影法 1.凡将物体置於第一象限内,以「视点(观察者)」→「物体」→「投影面」关系而投影视图的画法,即称为第一角法。亦称第一象限法 2.第一角投影箱之展开方向,以观察者而言,为由近而远之方向翻转展开。 3.第一角法展开后之视图排列如下,以常用之三视图(前视、俯视、右侧视图)而言,其右侧视图位於前视图之左侧,俯视固则位於前视图之正下方。 二.、第三角投影法 1.凡将物体置於第三象限内,以「视点(观察者)」→「投影面」→「物体」关系而投影视图的画法,即称为第三角法。亦称第三象限法。

2.第三角投影箱之展开方向,以观察者而言,为由远而近之方向翻转展开。 3.第三角法展开后之六个视固排列如下,以常用之三视图而言,其右侧视图位於前视图之右侧,而俯视图则位於前视图之正上方。 CNS 相关规定 CNS中国国家标准之象限投影符号,系将一截头圆锥之前视图与左侧视图,依投影之排列而得。主要之区别为第一角法符号(左侧视图排在右边),而第三角法符号(左侧视图位在左边)。 对於正投影方法之使用,CNS规定第一角法或第三角法同等适用。但在同一张图纸上不可混合使用,且须在标题概内或其他明显处绘制符号或加注「第一角法」或「第三角法」字样。以作为读图之识别。 由於第二象限投影与第四象限投影因水平投影面旋转后与直立投影面重叠,致使投影视图线条混淆不清,增加绘固及识图不便,故不予采用。 欧洲各国盛行第一角法投影制,所以第一角法投影亦有「欧式投影制」之称呼。例如德国(DIN)、瑞士(VSM)、法国(NF).挪威(NS)等国家使用之。 美国采用第三角投影制,故有「美式投影制」之称呼。除美国(ANSI)外,尚盛行於美洲地区。而中华民国(CNS)、国际标准化机构(ISO)与日本[JIS]则采第一角法及第三角两制并行。 视图之排列,应依投影原理上下左右对齐排列,不得任意更换或未依据投影方式排置。 六种视图中最常用之三视图组合为:前视图、上视圆及右侧视图,一般均以L字形或逆向L字形之方式排列於图纸上。 我们国内用的是第一角画法,国外用第三角画法的比较多 第一角画法和第三角画法的区别是视图放的位置 第一角画法:左视图放右边,右视图放左边,上视图放下面,依此类推 第三角画法:左视图放左边,右视图放右边,上视图放上面,依此类推 在我们国家有关制图方面的国家标准中规定,我国采用第一角投影法。但有些国家(如美国、日本)则采用第三角投影法。伴随着我国的对外开放和WTO的加入及对外贸易和国际间技术交流的日趋增多,我们会越来越多的接触到采用第三角投影法绘制的图纸。为了更好地进行国际间的技术交流和发展国际贸易的需要,我们应该了解和掌握第三角投影法。 如图

数学运算之几何问题专题

数学运算之几何问题专题 面积基本公式:(1)三角形的面积S=1/2ah (2)长方形的面积S=a×b (3)正方形的面积S=a2 (4)梯形的面积S=(a+b)/2×h (5)圆的面积=πr2=1/4πd2 (1)等底等高的两个三角形面积相同; (2)等底的两个三角形面积之比等于高之比; (3)等高的两个三角形面积之比等于底之比。 解决面积问题的核心是“割、补”思维,即当我们看到一个关于求解面积的问题,不要立刻套用公式去求解,这样做很可能走入误区,最后无法求解或不能快速求解。对于此类问题通常的使用的方法就是“辅助线法”即通过引入新的辅助线将图形分割或者补全为很容易得到的规则图形,从而快速求得面积。 体积基本公式:(1)长方体的体积V=abc (2)正方体的体积V=a3 (3)圆柱的体积V=Sh =πr2,S为圆柱底面积。 (4)圆锥的体积V=1/3Sh =1/3πr2h ,S为圆锥底面积。 周长基本公式:(1)长方形的周长C=(a+b)×2 (2)正方形的周长C=a×4 (3)圆的周长C=2πr =πd

例1、现有边长1米的一个木质正方体,已知将其放入水里,将有0.6米浸入水中,如果将其分割成边长0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为()。 A 3.4平方米B9.6平方米C13.6平方米D16平方米 【解析】边长1米的一个木质正方体放入水里,有0.6米浸入水中,说明要考虑水的浮力的作用,并且告诉了浮力的大小。可以得到的小正方体有64个,每一个直接和水接触的表面积包括一个底面和4个侧面的60%。根据题意,直接和水接触的表面积总量为64×(0.25×0.25+40.6×0.25×0.25)=13.6(平方米)。答案选C。 例2、甲、乙两个容器均有50厘米深,底面积之比为5∶4,甲容器水深9厘米,乙容器水深5厘米,再往两个容器各注入同样多的水,直到水深相等,这时两容器的水深是()。 A20厘米B25厘米C30厘米D35厘米 【解析】不妨假设两个容器的底面积分别为5和4,设注入同样多的水后相等的水深为x厘米,根据题意,注入水的体积相等,得到方程5(x-9)=4(x-5),解方程得x=25(厘米)。答案选B。 例3、半径为5厘米的三个圆弧围成如右图所示的区域,其中AB弧与AD弧为四分之一圆弧,而BCD弧是一个半圆弧,则此区域的面积是多少平方厘

基于delaunay三角剖分的三维地形生成

基于delaunay三角剖分的三维地形生成 1、问题背景 地图是几个世纪以来最重要的空间信息表达的载体“近年来随着高技术 的发展特别是基于计算机平台GIS的发展,地理信息系统得到日益广泛的应用。 地形与人类的生产生活息息相关,在城市规划、路径选取、资源调查与分配、工程勘查与设计、项目选址、环境监测、灾害预测与预报、军事、游戏娱乐等领域有广泛的应用,因此人们一直关心如何真实地表达自然界的地形,以满足人们生活的需要。目前,随着计算机技术的进一步发展,计算能力的不断提高,使用计算机进行地的三维表达成为目前研究的热点,这种地形的表达方式,不但感觉直观、真实性好、而且具有二维电子地图的其它优点,例如分层显示!位置顶点查找等。二维地形生成技术是当今社会的热门技术,正在被越来越多的人所重视和研究。 2、算法描述 Lawson提出了用逐点插入法建立D-三角网的算法思想[11]。Lee和Schachter,Bowyer,Watson,Sloan,Macedonio和Pareschi,Floriani和Puppo,Tsai先后进行了发展和完善。 本次实验算法为delaunay三角剖分的逐点插入法,算法步骤如下: 1、创建一个最大的三角形包含所有离散的数据点,构成初始的三角网。 2、遍历各点(p) (1)、在三角网查找包含p的三角形t。 (2)、若p在三角形内:p与三角形t的三个顶点相连构成三个三角形。加 入三角网中。如下图:

若p 在三角形边上:找出边所对应的另一个三角形的顶点,并与当前的三角形的顶点构成四个顶点,加入三角形网中。如下图: (3)、移除三角形t 。 (4)、用LOP 算法对各个三角形进行优化处理。 3、移除外围三角形。 LOP 算法 在相邻的两个三角形( abd 和bcd) 所组成的四边形中,如果对角线交换所得的两个新三角形ABC 和ABD( 如下图) 比原来的两个三角形更优,则用新的两个三角形替代原来的两个三角形。更优的标准之一是最小角度最大原则: 调整前的二个三角形共六个内角中的最小角和调整后的六个角中的最小角相比较,若前者小于后者则调整,否则不调整; 标准之二是空外接圆性质: 在由点集V 所形成。D-三角网中,其每个三角形的外接圆均不包含点集V 中的其他任意点。结合本文定义的数据结构,本文采取了以相邻三角形作为优化着眼点的处理算法。根据Delaunay 三角网空外接圆性质有以下判断: 当sin( ∠C + ∠D) ≤0, 不进行优化,p

浙教版初中数学几何计算型综合问题(含答案)

几何计算型综合问题 【考点透视】 几何计算型综合问题,是以计算为主线的综合各种几何知识的问题.在近年全国各地中考试卷中占有相当的分量.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力,要求学生熟练掌握三角形、四边形、三角函数、圆等几何知识,较熟练地应用转化思想、方程思想、分类讨论思想、数形结合思想等常见的数学思想. 解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 值得注意的是近年中考几何综合计算的呈现形式多样,如折叠类型、探究型、开放型、运动型、情境型等,背景鲜活,具有实用性和创造性,在考查考生计算能力的同时,考查考生的阅读理解能力、动手操作能力、抽象思维能力、建模能力……力求引导考生将数学知识运用到实际生活中去. 【典型例题】 例1 在生活中需要测量一些球(如足球、篮球…)的直径,某学校研究性学习小组,通过实验发现下面的测量方法:如图,将球放在水平的桌面上,在阳光的斜射下,得到球的影子AB,设光线AD、CB分别与球相切于点E、F,则E、F即为球的直径.若测得AB的长为41.5cm,∠ABC=37°.请你计算出球的直径(精确到1cm) 分析:本题实际上是解直角梯形ABFE中的问题, 作AG⊥CB于G,在Rt△ABG中,求出AG即可. 解:作AG⊥CB于G, ∵AD、CB分别与圆相切于E、F, ∴EF⊥FG,EF⊥EA, ∴四边形AGFE是矩形, ∴AG=EF 在Rt△ABG中,AB=41.5,∠ABG=37°, ∴AG=AB·sin∠ABG=41.5×sin37°≈25. ∴球的直径约为25cm. 说明:将几何计算题与研究性学习问题和方案设计问题有机的结合起来,是近年中考题的又一热点.这类题一般难度不太大,关键是考查建模能力. 例2.在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在

有限元分析中的二维Delaunay三角网格剖分代码实现

有限元分析中的二维Delaunay三角网格剖分代码实现 //二维平面点集的Delaunay三角剖分 #include "stdafx.h" #include #include #include #include using namespace std; #define point_size 600 #define pi 3.1415926 struct point { float x,y; }; struct triangle { point* Pv[3]; float r_of_sqrt; point o_of_tr; }; struct d_t_node { triangle Tnode; d_t_node*Pt_l[3]; int position_in_dt; int zhuangtai_when_new; }; point p1,p2,p3,p4; int n; point p[point_size]; int dt_last=0; point p_in_dtriangle1[point_size+1]; d_t_node Dtriangle[point_size]; point p_in_dtriangle2[point_size+1]; d_t_node *queue_t[point_size]; point p_in_dtriangle3[point_size+1]; int ps_last=0; int queue_t_last=0; point get_spoint_cin(point*p,int n); point get_spoint_rank(point*p,int n);

网格中的三角形

网格中的三角形 河北张家口市第十九中学 贺峰 随着新课程的实施,在近几年的中考试卷中出现了许多新颖的网格型试题,这类试题具有很强的直观性、可操作性、开放性及综合性等特点,不仅能够考查学生的数学知识,体现分类、数形结合等重要的数学思想,同时也考查和培养学生的识图、归纳、动手操作、自主探究等多种能力,有利于培养学生的探究意识和创新精神。现以近几年中考试题中出现的“网格中的三角形”为例,为同学们加以归类分析: 一、网格中的“等面积三角形” 例1 已知在正方形网格中,每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图1所示,点C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1,则点C 的个数为( ) (A )3个 (B )4个 (C )5个 (D )6个 析解:此题以网格为载体来考查同学们等面积三角形的构成,体现分类讨论思想,若使点C 在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1, 即保证△ABC 的底为2,高为1,因此须分类讨论的思想方法,即按AC =2时、BC =2时进行分类求解。答案如图2所示: 说明:此题也可通过对图形对称变换进行求解,即确定第(1)、(3)、(5)三种情况,分别以AB 所在的直线为对称轴将△ABC 翻折,使点C 落在格点上即可求解。 即可求解。 二、网格中的“等腰三角形” 例2如图3所示,A 、B 是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A 、B 、C 为顶点的三角形是等腰三角形的 所有格点C 的位置. 析解:此题以网格为载体来考查同学们等腰三角形的构成,体现分类讨论思 想,若使点C 在小方格的顶点上,且以A 、B 、C 为顶点的三角形为等腰三角形,即保证△ABC 中AB =AC 或AB =BC 或AC =AB ,即分别以AC 、AB 、BC 为腰时进行分类求解。答案如图4所示: 说明:此题也可通过对图形旋转变换进行求解,即以AB 为腰,分别以点A 、点B 为旋转中心,将线段AB 进行旋转,使点B 、点A 落在格点上即可求解。 三、网格中的“直角三角形” 例3如图5,正方形网格中,小格的顶点叫做格点,小华按下列要求作图: ①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线 上;②连结三个格点,使之构成直角三角形, 小华在左边的正方形网格中作出了Rt △ABC ,请你按照同样的要求,在右边的两个 正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等。 析解:此题开放性很强, 给学生广阔的思维空 图1 A 图3 图 4 A B C 图5 图6 C C C C C C (1) (2) (3) (5) (6) 图2

珠三角地区划分及各地区介绍

珠三角地区: 广州、深圳、珠海、东莞、佛山、中山、惠州、江门和肇庆等九市。 一、广州(10区2市) 10区: 荔湾区、越秀区、天河区、白云区、海珠区、黄埔区、番禺区、萝岗区、花都区、南沙区、 从化市: 从化市位于广东省中部,广州市东北面。市境东面与龙门县、增城市接壤,南面跟广州郊区毗邻,西面和清远市、广州市花都区交界,北面同佛岗、新丰县相连。地理坐标为东经113°17′-114°04′,北纬23°22′-23°56′。境内西北到东南最长直线距离约45千米,东北到正南边最大距离80千米。 增城市: 增城市是广州的一个县级市,隶属广州市管理。增城位于珠江三角洲东北部、广州市区东部,背靠大广州,南与东莞隔江相望,东临惠州,北界从化、龙门。总面积1616平方千米。总人口81.03万人(2008年)。市人民政府驻荔城街道,邮编:511300。代码:440183。区号:020。 (广州市)

二、佛山市: 佛山简称“禅”,是一座历史悠久的文化名城,1951年6月26日成立。是黄飞鸿、李小龙的故乡,珠三角的经济重地。一个荣耀千年的商贸名城,用生生不息的陶都圣火锻造出“敢为人先,崇文务实”的城市。 佛山市地处珠江三角洲腹地,东倚广州,西通肇庆,南连江门、中山,北接清远,南邻港澳,地理位置优越。自古就是富饶的鱼米之乡。珠江水系中的西江、北江贯穿全境。 现管辖禅城区、南海区、顺德区、高明区和三水区。全市总面积3848.49平方公里。 禅城区面积154平方千米,区人民政府驻岭南大道(原为大福路)。南海区面积1074平方千米,区人民政府驻桂城街道南海大道。 顺德区面积806平方千米,区人民政府驻大良街道德民路。 三水区面积874平方千米,区人民政府驻西南街道人民三路。 高明区面积960平方千米,人口29.17万。邮政编码528500。区人民政府驻荷城街道文汇路。 (佛山市)

中考数学几何计算题

分析中考的几何计算题 几何计算题历年来是中考的热点问题。几何计算是以推理为基础的几何量的计算,主要有线段与弧的长度计算、角和弧的度数计算、三角函数值的计算、线段比值的计算以及面积、体积的计算,从图形上分类有:三角形、四边形、多边形以及圆的有关计算。解几何计算题的常用方法有:几何法、代数法、三角法等。 一、三种常用解题方法举例 例1. 如图,在矩形ABCD 中,以边AB 为直径的半圆O 恰与对边CD 相切于T ,与对角线AC 交于P , PE ⊥AB 于E ,AB=10,求PE 的长。 解法一:(几何法)连结OT,则OT ⊥CD ,且OT=2 1 AB =5,BC=OT=5,AC=25100+=55 ∵BC 是⊙O 切线,∴BC 2 =CP ·CA ∴PC=5,∴AP=CA-CP=54 ∵PE ∥BC ∴ AC AP BC PE =,PE=5 55 4×5=4 说明:几何法即根据几何推理,由几何关系式进行求解的方法,推理时特别 要注意图形中的隐含条件。 解法二:(代数法)∵PE ∥BC ,∴AB AE CB PE = ∴2 1 ==AB CB AE PE 设:PE=x ,则AE=2x ,EB=10–2x 连结PB 。 ∵AB 是直径,∴∠APB=900 在Rt △APB 中,PE ⊥AB ,∴△PBE ∽△APE ∴ 2 1 ==AE PE EP EB ∴EP=2EB ,即x=2(10–2x ) 解得x=4 ∴PE=4 说明:代数法即为设未知数列方程求解,关键在于找出可供列方程的相等关系,例如:相似三角形中的线段比例式;勾股定理中的等式;相交弦定理、切割线定理中的线段等积式,以及其他的相等关系。 解法三:(三角法)连结PB ,则BP ⊥AC 。设∠PAB=α 在Rt △APB 中,AP=10COS α 在Rt △APE 中,PE=APsin α, ∴PE=10sin αCOS α 在Rt △ABC 中, BC=5,AC=55 ∴sin α= 555 55= ,COS α=5525 510= ∴PE=10×55255?=4 说明:在几何计算中,必须注意以下几点: (1) 注意“数形结合”,多角度,全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系。

基于MATLAB实现二维delaunay三角剖分

34 基于MATLAB 实现二维delaunay 三角剖分 刘锋涛 凡友华 (哈尔滨工业大学深圳研究生院 深圳 518055) 【摘要】在已知凸多边形的顶点坐标的前提情况下,利用MATLAB 中的meshgrid 函数产生多边 形附近矩形区域内的网格点的坐标,然后再利用inpolygon 函数判断哪些点位于多边形内和哪 些点位于多边形的边界上。在此基础上利用delaunay 函数来完成delaunay 三角剖分。 【关键词】delaunay 三角剖分;MATLAB 网格划分是有限元分析前处理中的关键步骤,网格划分的密度以及质量对有限元计算的精度、效率以及收敛性有着重要的影响作用。自20世纪70年代开始,关于有限元网格生成方法的研究已经取得了许多重要成果,提出许多有效的算法。Ho-Le 对网格生成方法进行了系统的分类[1]。许多学者也对网格生成的方法进行了综述,如我国的学者胡恩球等[2]、关振群等[3]。 Delaunay 三角剖分(简称DT)是目前最流行的通用的全自动网格生成方法之一。DT 有两个重要特性:最大-最小角特性和空外接圆特性。DT 的最大-最小角特性使它在二维情况下自动地避免了生成小内角的长薄单元。因此特别适用于有限元网格生成。大体上可将DT 算法分为三大类:分治算法,逐点插入法和三角网生长法。经典DT 技术已经相当成熟,近年来的研究重点是约束DT 的边界恢复算法,以及如何克服算法退化现象所产生的薄元(sliver element)问题[3]。 然而,实现DT 有限元网格生成,对于非计算机图形学专业的工程师来说还是很复杂的。在处理一些对有限元网格划分质量不过的问题时,如极限分析的有限元方法,可以采用一些更为简单的方法来实现。在Matlab 计算软件中,已有一个成熟的函数delaunay 可以实现对一系列点的DT 划分。因此,本文基于Matlab 的delaunay 等一些函数来完成一个凸多边形的DT 网格划分。 1 MATLAB 中的函数 1.1 delaunay 函数 delaunay 函数可以按照DT 网格划分的要求将一个点集中的点划归某一个有限网格所有。它在Matlab 中的用法如下: =delaunay(,) or, =delaunay(,,)TRI x y TRI x y options 其输入为点集中所有点的横、纵坐标向量x 和y ,返回值为一个3m ×的矩阵,矩阵中每一行表示DT 网格中一个三角形网格的三个顶点。 1.2 meshgird 函数 为了在任意凸多边形内产生一个点集,可以利用Matlab 中的meshgrid 命令。其用法如下: [,] = meshgrid(,)X Y x y

完整版初中三角形知识点总结

图形的初步认识: 三角形 考点一、三角形 1、三角形的三边关系定理及推论 (1)三角形三边关系定理:三角形的两边之和大于第三边。 推论:三角形的两边之差小于第三边。 2、三角形的内角和定理及推论 三角形的内角和定理:三角形三个内角和等于180°。 推论: ①直角三角形的两个锐角互余。 ②三角形的一个外角等于和它不相邻的来两个内角的和。 ③三角形的一个外角大于任何一个和它不相邻的内角。 注:在同一个三角形中:等角对等边;等边对等角;大角对大边; 大边对大角。 4、三角形的面积 三角形的面积=丄X底X高 2 考点二、全等三角形 1 、全等三角形的概念 能够完全重合的两个三角形叫做全等三角形。 2、三角形全等的判定

三角形全等的判定定理: (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“ SAS) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ ASA) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“ SSS)。 (4)角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“ AAS)。 直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“ HL”) 3、全等变换 只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。 (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置, 这种变换叫做旋转变换。 考点三、等腰三角形 1 、等腰三角形的性质

基于MATLAB 实现二维delaunay 三角剖分

基于MATLAB 实现二维delaunay 三角剖分 刘锋涛凡友华 (哈尔滨工业大学深圳研究生院深圳518055) 【摘要】在已知凸多边形的顶点坐标的前提情况下,利用MATLAB 中的meshgrid 函数产生多边形附近矩形区域内的网格点的坐标,然后再利用inpolygon 函数判断哪些点位于多边形内和哪些点位于多边形的边界上。在此基础上利用delaunay 函数来完成delaunay 三角剖分。 【关键词】delaunay 三角剖分;MATLAB 网格划分是有限元分析前处理中的关键步骤,网格划分的密度以及质量对有限元计算的精度、效率以及收敛性有着重要的影响作用。自20世纪70年代开始,关于有限元网格生成方法的研究已经取得了许多重要成果,提出许多有效的算法。Ho-Le 对网格生成方法进行了系统的分类[1]。许多学者也对网格生成的方法进行了综述,如我国的学者胡恩球等[2]、关振群等[3]。 Delaunay 三角剖分(简称DT)是目前最流行的通用的全自动网格生成方法之一。DT 有两个重要特性:最大-最小角特性和空外接圆特性。DT 的最大-最小角特性使它在二维情况下自动地避免了生成小内角的长薄单元。因此特别适用于有限元网格生成。大体上可将DT 算法分为三大类:分治算法,逐点插入法和三角网生长法。经典DT 技术已经相当成熟,近年来的研究重点是约束DT 的边界恢复算法,以及如何克服算法退化现象所产生的薄元(sliver element)问题[3]。 然而,实现DT 有限元网格生成,对于非计算机图形学专业的工程师来说还是很复杂的。在处理一些对有限元网格划分质量不过的问题时,如极限分析的有限元方法,可以采用一些更为简单的方法来实现。在Matlab 计算软件中,已有一个成熟的函数delaunay 可以实现对一系列点的DT 划分。因此,本文基于Matlab 的delaunay 等一些函数来完成一个凸多边形的DT 网格划分。 1MATLAB 中的函数 1.1delaunay 函数 delaunay 函数可以按照DT 网格划分的要求将一个点集中的点划归某一个有限网格所有。它在Matlab 中的用法如下: =delaunay(,) or, =delaunay(,,) TRI x y TRI x y options 其输入为点集中所有点的横、纵坐标向量x 和y ,返回值为一个的矩阵,矩阵中每一3m ×行表示DT 网格中一个三角形网格的三个顶点。 1.2meshgird 函数 为了在任意凸多边形内产生一个点集,可以利用Matlab 中的meshgrid 命令。其用法如下: [,] = meshgrid(,) X Y x y

三角剖分

Delaunay三角剖分算法 默认分类2009-12-16 11:41:23 阅读33 评论0 字号:大中小订阅 转载:https://www.wendangku.net/doc/1d7349715.html,/renliqq/archive/2008/02/06/1065399.html 1. 三角剖分与Delaunay剖分的定义 如何把一个散点集合剖分成不均匀的三角形网格,这就是散点集的三角剖分问题,散点集的三角剖分,对数值分析以及图形学来说,都是极为重要的一项预处理技术。该问题图示如下: 1.1.三角剖分定义 【定义】三角剖分:假设V是二维实数域上的有限点集,边e是由点集中的点作为端点构成的封闭线段, E为e的集合。那么该点集V的一个三角剖分T=(V,E)是一个平面图G,该平面图满足条件: 1.除了端点,平面图中的边不包含点集中的任何点。 2.没有相交边。 3.平面图中所有的面都是三角面,且所有三角面的合集是散点集V的凸包。 1.2. Delaunay三角剖分的定义 在实际中运用的最多的三角剖分是Delaunay三角剖分,它是一种特殊的三角剖分。先从Delaunay边说起: 【定义】Delaunay边:假设E中的一条边e(两个端点为a,b),e若满足下列条件,则称之为Delaunay边:存在一个圆经过a,b两点,圆内(注意是圆内,圆上最多三点共圆)不含点集V中任何其他的点,这一特性又称空圆特性。 【定义】Delaunay三角剖分:如果点集V的一个三角剖分T只包含Delaunay边,那么该三角剖分称为Delaunay三角剖分。 1.3.Delaunay三角剖分的准则 要满足Delaunay三角剖分的定义,必须符合两个重要的准则:

几何计算题参考答案.

几何计算题 1.如图6,矩形纸片ABCD 的边长AB=4,AD=2.翻折矩形纸片,使点A 与点C 重合,折痕分别交AB 、CD 于点E 、F , (1)在图6中,用尺规作折痕EF 所在的直线(保留作图痕迹,不写作法),并求线段EF 的长; (2)求∠EFC 的正弦值. 解:(1) 作图正确 ∵矩形ABCD , ∴90B ∠=,BC AD =. ∵在Rt △ABC 中,AB =4,AD =2 ∴由勾股定理得:AC =设EF 与AC 相交与点O , 由翻折可得 AO CO ==90AOE ∠=. ∵在Rt △ABC 中, tan 1BC AB ∠=, 在Rt △AOE 中,tan 1EO AO ∠=. ∴ EO BC AO AB = , ∴2EO =. 同理:2FO = . EF =. (2)过点E 作EH CD ⊥垂足为点H , 2EH BC == ∴sin 5EH EFC EF ∠= == 2、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE . (1)求证:ABE △DFA ≌△; (2)如果10AD AB =,=6,求sin EDF ∠的值. D C B A D A B C E F

3、如图7,△ABC 中,AB=AC , 4 cos ∠(1) 求AB 的长; (2) 求ADC ∠的正切值. 解:(1)过点 A 作AH ⊥BC ,垂足为 ∵AC A B = ∴B C HC BH 2 1==设x CD AC AB === ∵6=BD ∴6+=x BC , 2 6+=x BH 在Rt △AHB 中,AB BH ABC =∠cos ,又5 4 cos =∠ABC ∴ 5 426 =+x x 解得:10=x ,所以10=AB (2)82 1===BC HC BH 2810=-=-=CH CD DH 在Rt △AHB 中,222AB BH AH =+,又10=AB ,∴6=AH 在Rt △AHD 中,32 6tan ===∠DH AH ADC ∴ADC ∠的正切值是3 4、如图,AB 为⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线交AB 的延长线于点D ,已知∠D =30°. (1)求∠A 的度数; (2)若点F 在⊙O 上,CF ⊥AB ,垂足为E ,CF =34,求图中阴影部分的面积. 解:(1) 连结OC ,∵CD 切⊙O 于点C ,∴∠OCD =90°∵∠D =30°,∴∠COD =60°. ∵OA=OC ,∴∠A=∠ACO=30°. (2)∵CF ⊥直径AB , CF =34,∴CE = ∴在Rt △OCE 中,OE =2,OC =4. ∴2 BOC 6048 3603 S ππ?扇形= =,EOC 1 22 S ??=∴EOC BOC S S S π阴影扇形8=-=-3

word版本hslogic_Delaunay三角剖分算法应用

本课题的研究方法 三角网格化主要有两种准则:一种称为Delaunay三角剖分,即在生成的三角形网格中,各三角形的最小内角和为最大;另一种是在生成的三角网格中,所有三角形的边长和最小.其中, Delaunay三角剖分是目前研究应用最广的一种剖分方法.本课题的研究方法主要是以Delaunay三角网的两个重要性质(空外接圆性质和最大最小角度性质)以及Delaunay三角网的基本原理为基础,参照传统算法思路,在构建三角网的过程中,改进算法的实现方法,数据结构,以达到提高效率的目的。 Delaunay的重要性质 空外接圆性质:在由点集V生成的Delaunay三角网中,每个三角形的外接圆均不包含该点集的其他任意点。λ 最大最小角度性质:在由点集V生成的Delaunay三角网中,所有三角形中的最小角度是最大的,即在生成的三角形网格中,各三角形的最小内角和为最大。λ唯一性:不论从区域何处开始构网,最终都将得到一致的结果。λ 由于以上特性,决定了Delaunay三角网具有极大的应用价值。Miles证明了Delaunay三角网是“好的”三角网;Lingas进一步论证了“在一般情况下,Delauany三角网是最优的。”同时以上特性也成为建立Delaunay三角网的重要算法依据。 3.3 详细算法描述 算法基于上述的传统构建算法,但仅有两步: 第一步: (1)在离散点集中寻找一纵坐标最小的点A。 (2)以点A为起点,寻找两个点B、D,使得向量AB与横坐标轴夹角最小,向量AD与横坐标轴夹角最大。若点A、B、D共线,将原B点标记为A,寻找点D,使得向量AD与直线AB夹角最大;寻找点C使得向量BC与线段AB夹角最小。否则,若A、B、D不共线,则寻找点C使得向量BC与线段AB夹角最小。这样,所有点都在逆时针旋转的折线DABC的左侧。 (3)上面一步生成的点C、D如果为同一点,则△ABC(或△ABD)即为包含所有不规则点的Delaunay三角形,生成凸包的过程结束跳过一下各步;否

相关文档
相关文档 最新文档