文档库 最新最全的文档下载
当前位置:文档库 › 钳式制动器

钳式制动器

钳式制动器
钳式制动器

盘式制动器毕业设计

1.课题研究的目的及意义 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。随着汽车的形式速度和路面情况复杂程度的提高,更加需要高性能、长寿命的制动系统。其性能的好坏对汽车的行驶安全有着重要影响,如果此系统不能正常工作,车上的驾驶员和乘客将会受到车祸的伤害。 汽车是现代交通工具中用得最多、最普遍、也是运用得最方便的交通工具。汽车制动系统是汽车底盘上的一个重要系统,它是制约汽车运动的装置,而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,必须为汽车配备十分可靠的制动系统。 车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。 现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。 2.汽车制动器的国内外现状及发展趋势 对制动器的早期研究侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。 目前,汽车所用的制动器几乎都是摩擦式的,可分为鼓式和盘式两大类。盘式制动器被普遍使用。但由于为了提高其制动效能而必须加制动增力系统,使其造价较高,故低端车一般还是使用前盘后鼓式。汽车制动过程实际上是一个能量转换过程,它把汽车行驶时产生的动能转换为热能。高速行驶的汽车如果频繁使用制动器,制动器因摩擦会产生大量的热量,使制动器温度急剧升高,如果不能及时的为制动器散热,它的效率就会大大降低,影响制动性能,出现所谓的制动效能热衰退现象。 在中高级轿车上前后轮都已经采用了盘式制动器。不过,时下还有不少经济型轿车采用的还不完全是盘式制动器,而是前盘后鼓式混合制动器(即前轮采用盘式制动器、后轮采用鼓式制动器),这主要是出于成本上的考虑,同时也是因为轿车在紧急制动时,负荷前移,对前轮制动的要求比较高,一般来说前轮用盘式制动器就够了。当然,前后轮都使用盘式制动器是一种趋势。在货车上,盘式制动器也有被采用的,但离完全取代鼓式制动器还有相当长的一段距离。 现代汽车制动器的发展起源于原始的机械控制装置,最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,那时的汽车重量比较小,速度比较低,机械制动已经能够满足汽车制动的需要,但随着汽车自身重量的增加,助力装置对机械制动器来说越来越显得非常重

高速列车轮装式盘形制动器的开发_M_Tirovic

?动态?综述? 文章编号:100726077(2001)0120001206 高速列车轮装式盘形制动器的开发 [英国]M.T irovic 摘 要:介绍了高速列车动车轮装式盘形制动器的开发情况。这种制动盘由用螺栓连接到轮毂的两个圆环组成,车轮两侧各装一个。在制动盘的最初设计阶段就大量采用有限元法。这大大缩短了开发时间,并成功设计出在恶劣工况的载荷下使用的制动盘。在开发过程中发现,对总的热效应进行计算机模拟是形状优化和预测圆盘总体特性最有效的方法,而要确定更详细的设计公差还需进行更加细致的分析。测功试验和装车试验结果与理论结果之间有很好的相互关系,并表明这种设计完全能适应所要求的载荷。 关键词:盘形制动器;轮装式;高速列车;有限元分析;制动盘 中图分类号:U260.351 文献标识码:A Abstract:T h is paper describes the developm en t of a w heel2m oun ted disc b rake fo r the pow er car of a h igh2sp eed train.T he disc design con sists of tw o rings bo lted on to the w heel hub,one either side of the w heel.T he fin ite elem en t m ethod w as u sed ex ten sively from the very beginn ing of the design p rocess.T h is con siderab ly re2 duced developm en t ti m e and enab led the successfu l design of a disc fo r an ex trem ely severe du ty.M odelling of bu lk ther m al effects w as found to be m o st effective fo r shap e op ti m izati on and p redicti on of global disc behavi ou r,w ith m o re soph isticated analyses requ ired to deter m ine m o re detailed design li m its.R esu lts from dynam om e2 ter tests and veh icle trials gave good co rrelati on w ith theo retical resu lts and p roved the design su itab ility fo r the requ ired du ty. Key words:disc b rake;w heel2m oun ted typ e;h igh2speed train;fin ite elem ecn t analy2 sis;b rake disc 1 引言 由于空间的限制,铁道车辆驱动轴的制动尤其困难。动力传动部件占了相当的空间,因而留给装用在从动轴(拖车车轴)上相同制动装置的安装空间常常就很有限了。因此,要安装轴装式盘形制动器,尽管每轴只装一个盘,都是不可能的。通常不大要求对驱动轴实施常规摩擦制动,因为实际上采用的是动力制动。然而,万一动力制动失灵,那么实施紧急制动时对驱动轴摩擦制动器的要求就要高得多。 为了对驱动轴实施有效制动,开发了一系列制动装置,其中有些只适用于如传动闸的某些应用领域,而有些也适用于拖车轴制动,例如,踏面制动装置和轮装式制动装置。 就空间要求而言,最老式的踏面制动装置的优点十分明显。制动装置不需要有旋转部分,因为车轮本身在旋转。这就有了安装空间大的优点,且同时大大节省了成本,减小了质量(重量)。这项技术人人皆知,而其缺点也同样如此,主要缺点有:能量耗散能力有限、车轮踏面磨耗大和车轮损坏快。踏面制动装置与车轮踏面修整有关的另一大缺点是,在轮轨界面产生的噪声。“不良”的车轮表面使得车辆产生的噪声更大,尤其是高速车辆。 传动闸也具有某些优点,因为其旋转速度比车轮速度高,这样就有比例地减少了转矩要求。然而,空间限制、可接近性、高旋转速度以及因传动轴断裂而致使制动器失效,均限制了传动闸的应用。 现在已开发和应用了各种不同型式的轮装式制动装置。除在车轴周围提供更多的空间外,它们的主要优点还有简化了车轴的设计,因为不需要轴“座”。

(完整版)毕业设计浮钳盘式制动器

原始数据: 整车质量:空载:1550kg ;满载:2000kg 质心位置:a=L 1=1.35m ;b=L 2=1.25m 质心高度:空载:hg=0.95m ;满载:hg=0.85m 轴 距:L=2.6m 轮 距: L 0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮 胎:195/60R14 85H 1.同步附着系数的分析 (1)当0φφ<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当0φφ>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当0φφ=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为0φ的路面上制动(前、后车轮同时抱死)时,其制动减速度为g qg dt du 0φ==,即0φ=q ,q 为制动强度。而在其他附着系数φ的路面上制动时,达到前轮或后轮即将抱死的制动强度φ

根据相关资料查出轿车≥0φ0.6,故取6.00=φ. 同步附着系数:=0φ0.6 2.确定前后轴制动力矩分配系数β 常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动 力分配系数,用β表示,即:u F F u 1 =β,21u u u F F F += 式中,1u F :前制动器制动力;2u F :后制动器制动力;u F :制动器总制动力。 由于已经确定同步附着系数,则分配系数可由下式得到: 根据公式:L h L g 02φβ+= 得:68.06 .285.06.025.1=?+=β 3.制动器制动力矩的确定 为了保证汽车有良好的制动效能,要求合理地确定前,后轮制动器的制动力矩。 根据汽车满载在沥青,混凝土路面上紧急制动到前轮抱死拖滑,计算出后轮制动器的最大制动力矩2M μ 由轮胎与路面附着系数所决定的前后轴最大附着力矩: e g r qh L L G M ?υ)(1max 2-= 式中:?:该车所能遇到的最大附着系数; q :制动强度; e r :车轮有效半径; max 2μM :后轴最大制动力矩;

定钳盘式制动器的CAD图纸 装配 零件图

定钳盘式制动器的CAD图纸装配零件图 目录 一、性能与用途 (1) 二、结构特征与工作原理 (1) 三、安装与调整 (4) 四、使用与维护 (9) 五、润滑 (12) 六、特别警示 (13) 七、故障原因及处理方法 (12) 附图1:盘式制动器结构图 (15) 附图2:盘形闸结构图 (16) 附图3: 制动器限位开关结构图 (17) 附图4: 盘式制动器的工作原理图 (18) 附图5: 盘式制动器安装示意图 (19) 附图6: 制动器信号装置安装示意图 (20)

一、性能与用途 盘式制动器是靠碟形弹簧产生制动力,用油压解除制动,制动力沿轴向作用的制动器。 盘式制动器和液压站、管路系统配套组成一套完整的制动系统。适用于码头缆车、矿井提升机及其它提升设备,作工作制动和安全制动之用。 其制动力大小、使用维护、制动力调整对整个提升系统安全运行都具有重大的影响,安装、使用单位必须予以重视,确保运行安全。 盘式制动器具有以下特点: 1、制动力矩具有良好的可调性; 2、惯性小,动作快,灵敏度高; 3、可靠性高; 4、通用性好,盘式制动器有很多零件是通用的,并且不同的矿井提升机可配不同数量相同型号的盘式制动器; 5、结构简单、维修调整方便。 二、结构特征与工作原理 1、盘式制动器结构(图1) 盘式制动器是由盘形闸(7)、支架(10)、油管(3)、(4)制动器信号装置(8)、螺栓(9)、配油接头(11)等组成。盘形闸(7)由螺栓(9)成对地把紧在支架(10)上,每个支架上可以同时安装1、2、3、4对甚至更多对盘形闸,盘形闸的规格和对数根据提升机对制动力矩的大小需求来确定。 2、盘形闸结构(图2) 盘形闸由制动块(1)、压板(2)、螺钉(3)、弹簧垫圈(4)、滑套(5)、碟形

盘形制动器的使用维护注意事项

盘形制动器的使用维护注意事项 盘形制动器的使用维护注意事项 和常见事故及处理方法 1闸瓦不得沾油,使用中闸盘不得有油,以免降低闸瓦的摩擦系数影响制动力。 2在正常使用中应经常检查闸瓦间隙,如闸瓦间隙超过#$$时应及时调整,以免影 响制动力。 3在作重物下放使用的矿井,不能全靠机械制动,这样会使闸盘发热,一旦出现紧急 情况就会影响制动力矩、造成重大事故,应采用动力制动等。 4更换闸瓦时应注意将闸瓦压紧,尺寸不符合时应修配。 5在提升机正常运转时,若发现制动器液压缸漏油应及时更换密封圈。6修理制动盘时应将容器搁在井底或井口的罐坐上(空容器),或将两容器提升到中 间平衡状态进行检修。检修时要有一、二副制动器处于制动状态。 7闸盘粗糙度不够和闸盘端面偏摆量大都将加速闸瓦的磨损,建议重车闸盘。 8提升机在正常运行中发现松闸慢时应用放气阀放气。 9每年或经5×103次制动作用后,应检查蝶形弹簧组。 检查方法:首先使制动器处于全制动状态,再逐步向液压缸充入压力

油,使制动液压 缸内压力慢慢升高,各闸就在不同压力下逐个松开,记录下不同闸瓦的松闸压力,其中最 高油压与最低油压之差不应超过最大工作压力P的百分之十,否则应更换其中松闸油压最低的制动器中的蝶形弹簧。 常见故障及其处理方法 1制动器不开闸。原因是液压站没有油压或油压不足应检查液压站。2制动器不能制动。原因可能是液压站或制动器损坏,卡住引起的,应检查液压站 和制动器并修理。 3制动时间长,制动时滑行距离长、制动力小。原因可能是: 3.1超负荷使用、超速使用; 3.2闸瓦间隙太大; 3.3制动盘和闸瓦上有油和水等杂物; 3.4蝶形弹簧有毛病,找出原因对症采取处理措施。 4闸瓦磨损不均匀、磨损太快。原因是制动器安装不正,制动盘偏摆太大,窜动或主 轴倾斜太大,查明原因分别处理。 5松闸和制动缓慢。原因是: 5.1液压系统有空气; 5.2闸瓦间隙太大;

毕业设计浮钳盘式制动器

原始数据: 整车质量:空载:1550kg;满载:2000kg 质心位置:a=L1=1.35m;b=L2=1.25m 质心高度:空载:hg=0.95m;满载:hg=0.85m 轴距:L=2.6m 轮距: L 0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮胎:195/60R14 85H 1.同步附着系数的分析 (1)当0 时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当0 时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当0 时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为0的路面上制动( 前、后车轮同时抱死)时,其制动减速度为du dt qg 0g ,即q 0,q为制动强度。而在其他附着系数 的路面上制动时,达到前轮或后轮即将抱死的制动强度q , 这表明只有在0的路面上,地面的附着条件才可以得到充分利用。

根据相关资料查出轿车 0 0.6 ,故取 0 0.6. 同步附着系数: 0 0.6 2. 确定前后轴制动力矩分配系数 常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动 F 力分配系数,用 表示,即: u1 , F u F u1 F u2 u 式中, F u 1 :前制动器制动力; F u2 :后制动器制动力; F u :制动器总制动力 3. 制动器制动力矩的确定 为了保证汽车有良好的制动效能,要求合理地确定前, 后轮制动器的制动力矩 根据汽车满载在沥青,混凝土路面上紧急制动到前轮抱死拖滑,计算出后轮制 动器的最大制动力矩 M 2 由轮胎与路面附着系数所决定的前后轴最大附着力矩: G M 2max (L 1 qh g ) r e 2max L 1 g e 式中: :该车所能遇到的最大附着系数; q :制动强度; r e :车轮有效半径; M 2max :后轴最大制动力矩; 根据公式: L 2 0h g L 由于已经确定同步附着系数,则分配系数可由下式得到: 1.25 0.6 0.85 2.6 得:

盘式制动器结构和原理

盘式制动器结构和原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

盘式制动器结构和原理 2、定钳盘式制动器 如下图所示:制动钳体通过导向销与车桥相连,可以相对于制动盘轴向移动,制动钳只在制动盘的内侧设置油缸,而外侧的制动块附装在钳体上,制动时,来自制动主缸的液压油通过进油口进入制动油缸,推动活塞及其上的制动块向右移动,并压到制动盘,于是制动盘给活塞一个向左的反作用力,使得活塞连同制动钳体整体沿导销向左移动,直到制动盘右侧的制动块也压紧在制动盘上,此时两侧的制动块都压在制动盘上,夹住制动盘使其制动。 定钳盘式制动器 转播到腾讯微博 定钳盘式制动器 3、典型浮钳盘式制动器 浮钳盘式制动器 如下图所示为桑塔纳轿车前轮制动器。 转播到腾讯微博 桑塔纳轿车前轮制动器 制动钳体用螺栓与支架相连,螺栓同时兼作导向销,支架固定在前悬架总成轮毂轴承座凸缘上。壳体可沿导各销与支架作轴向相对移动,两制动块装在支架上,用保持弹簧卡住,使两制动块可以在支架上作轴向移动,但不会上下窜动。制动盘装在两制动块之间,

并通过轮胎螺栓固定在前轮毂上,制动块由无石棉的活塞在制动液压力作用下,推动内制动块压向制动盘内侧,制动钳上的反力使制动钳壳体向内侧移动,从而带动外制动块压向制动盘外侧面。于是内、外摩擦块将制动盘的两端面紧紧夹住,实现了制动。 4、制动间隙自调结构 利用活塞矩形密封圈的弹性变形实现制动间隙的自动调整。 转播到腾讯微博 制动间隙自调结构 矩形密封圈嵌在制动钳油缸的矩形槽内,密封圈刃边与活塞外圆配合较紧,制动时刃边在摩擦作用下随活塞移动,使密封圈发生弹性变形,相应于极限摩擦力的密封圈极限变形量应等于制动器间隙为设定值时完全制动所需的活塞行程,解除制动时,密封圈恢复变形,活塞在密封圈弹力作用下退回原位,当制动盘与摩擦衬块磨损后引起的制动间隙超过设定值时,则制动时活塞密封圈变形量达到极限值后,活塞仍可在液压作用下,克服密封圈的摩擦力而继续移动,直到实现完全制动为止。解除制动后,制动器间隙即恢复到设定值δ,因活塞密封将活塞拉回的距离仍然等于原设定值δ,活塞密封圈兼起活塞复位弹簧和一次调准式间隙自调装置的作用。 5、制动块磨损报警装置 许多盘式制动器上装有制动块摩擦片磨损报警装置,用来提配驾驶员制动块上的摩擦片需要更换。下图为应用较广泛的声音式制动块磨损损装置。 转播到腾讯微博

钳盘式制动器简介

定钳盘式制动器的制动钳固定安装在车桥上,既不能旋转,也不能沿制动盘轴向移动,因而必须在制动盘两侧都装设制动块促动装置,以便将两侧 的制动块压向制动盘。因此,结构较为复杂,尺寸较大,热负荷较大,制动液容易受热汽化,而且若用于驻车制动,必须加装一个机械促动的制动器。由于以上缺点,使得定钳盘式制动器难以适应现代汽车的使用要求,自上世纪70年代,逐渐让位于浮钳盘式制动器。浮钳盘式制动器的制动钳一般可设计得可以相对制动盘轴向滑动。其中,只在制动盘的内侧设置液压缸。浮钳盘式制动器的工作原理如图十八所示。制动钳支架3固定在转向节上(盘式制动器一般用于前轮,当用于后轮时,一般是高级轿车,则制动钳支架就装在后轴分头上),制动钳体1与支架3可沿导向销2轴向滑动。制动时,活塞8在液压力p1的作用下,将活动制动块6(带摩擦块磨损报警装置)推向制动盘4。与此同时,作用在制动钳体1的反作用力p2推动制动钳体沿导向销2向右移动,使固定在制动钳体1上的固定制动块5压靠到制动盘上。于是,制动盘两侧的摩擦块在p1和p2的作用下压紧制动盘,使之在制动盘上产生与运动方向相反的制动力矩,促使汽车制动。盘式制动器与鼓式制动器相比有以下优点:⑴一般无摩擦助势作用,因而制动器效能受摩擦因素的影响较小,即效能较稳定。⑵浸水后效能降低较少,而且只需经一两次制动即可恢复正常。⑶在输出制动力矩相同的情况下,尺寸和质量一般较小。⑷制动盘沿厚度方向的热膨胀量较小,不会象制动鼓的热膨胀那样使制动器间隙明显增加而导致制动踏板行程过大。⑸较容易实现间隙自动调整,其他保养修理作业也比较简单。但盘式制动器也有明显的不足之处:⑴效能较低,故用于液压制动系时所需的制动促动管路压力较高,一般要伺服装置。⑵兼用于驻车制动时,需要加装的驻车制动传动装置较鼓式制动器复杂,因而在后轮上的应用受到限制。目前,盘式制动器已广泛应用于轿车,但除了在一些高性能轿车上用于全部车轮外,大都只用作前轮制动器,而与后轮的鼓式制动器配合,以获得汽车在较高车速下制动时的方向稳定性。在货车上,盘式制动器目前也采用,但离普及还有相当的距离

盘式制动器使用说明书

盘式制动器使用说明书 盘式制动器使用说明书盘式制动器使用说明书目录一、性能与用途.1二、结构特征与工作原理..1三、安装与调整..4四、使用与维护..9五、润滑...12六、特别警示...13七、故障原因及处理方法...12附图1:盘式制动器结构图...15附图2:盘形闸结 盘式制动器使用说明书 目录 一、性能与用途 (1) 二、结构特征与工作原理 (1) 三、安装与调整 (4) 四、使用与维护 (9) 五、润滑 (12) 六、特别警示 (13) 七、故障原因及处理方法 (12) 附图1:盘式制动器结构图 (15) 附图2:盘形闸结构图 (16) 附图3: 制动器限位开关结构图 (17) 附图4: 盘式制动器的工作原理图 (18) 附图5: 盘式制动器安装示意图 (19) 附图6: 制动器信号装置安装示意图 (20) 一、性能与用途 盘式制动器是靠碟形弹簧产生制动力,用油压解除制动,制动力沿轴向作用的制动器。 盘式制动器和液压站、管路系统配套组成一套完整的制动系统。适用于码头缆车、矿井提升机及其它提升设备,作工作制动和安全制动之用。 其制动力大小、使用维护、制动力调整对整个提升系统安全运行都具有重大的影响,安装、使用单位必须予以重视,确保运行安全。 盘式制动器具有以下特点: 1、制动力矩具有良好的可调性; 2、惯性小,动作快,灵敏度高; 3、可靠性高; 4、通用性好,盘式制动器有很多零件是通用的,并且不同的矿井提升机可配不同数量相同型号的盘式制动器; 5、结构简单、维修调整方便。

二、结构特征与工作原理 1、盘式制动器结构(图1) 盘式制动器是由盘形闸(7)、支架(10)、油管(3)、(4)制动器信号装置(8)、螺栓(9)、配油接头(11)等组成。盘形闸(7)由螺栓(9)成对地把紧在支架(10)上,每个支架上可以同时安装1、2、3、4对甚至更多对盘形闸,盘形闸的规格和对数根据提升机对制动力矩的大小需求来 确定。 2、盘形闸结构(图2) 盘形闸由制动块(1)、压板(2)、螺钉(3)、弹簧垫圈(4)、滑套(5)、碟形弹簧(6)、接头(7)、组合密封垫(8)、支架(9)、调节套(10)、油缸(11)、油缸盖(12)、盖(13)、放气螺栓(17)、放 气螺钉(19)、O形密封圈(20)、Yx密封圈(21)、螺塞(22)、Yx密封圈(23)、压环(24)、活塞(25)、套筒(26)、联接螺钉(27)、键(28)及其它副件、标件等组成。 3、制动器限位开关结构(图3) 制动器限位开关由弹簧座(1)、弹簧(2)、滑动轴(3)、压板(6)、开关盒(7)、螺栓M4x45(9)、轴套(11)、盒盖(14)、螺钉M4X10(17)、微动开关JW-11(20)、支座板(23)、导线 BVR(24)、装配板(29)及其它副件、标件等组成。 4、盘式制动器的工作原理(图4) 盘式制动器是靠碟形弹簧预压力制动,油压解除制动,制动力沿轴向作用的制动器。提升机制动时,图2中碟形弹簧(6)的预压力迫使活塞(25)向制动盘移动,通过联接螺钉(27),将滑套(5)连同其上的制动块(又名闸瓦)推出,使制动块(1)与卷筒的制动盘接触,并产生正压力,形成摩擦力而产生制动。提升机松闸运行时,油缸(11)A腔中充入压力油,活塞(25)再次压缩碟形弹簧(6),并通过联接螺钉(27)带动滑套(5)向后移动(离开制动盘),从而使制动 块(1)离开制动盘,解除制动力(即松闸)。 滑套(5)是由钢套和拉杆组成的装配件,其拉杆承受制动时的切向力。制动块(1)嵌合在滑套(5)的燕尾槽中,并用压板(2)、螺钉(3)将其固定。键(28)防止滑套(5)转动。转动放气螺钉(19),可排出油缸中的存留气体,以保证盘形闸能灵活地工作。盘形闸在密封件允许泄漏范围内,可能有微量的内泄,虽内泄油可起润滑滑套(5)与支架(9)的作用,但时间较长时,内泄油可能存留过多,因此应定期从螺塞(22)处排放内泄油液。 如上所述,盘式制动器的工作原理是油压松闸,弹簧力制动。如(图4)所示:当油腔Y 通入压力油时,碟形弹簧组(3)被压缩,随着油压P的升高,碟形弹簧组(3)被压缩并贮存弹簧力F,且弹簧力F越来越大,制动块离开闸盘的间隙随之增大,此时盘形制动器处于松闸状态,调整闸瓦间隙△为1mm (注:调整方法见后);当油压P降低时,弹簧力释放,推动活塞、滑套连同其上的制动块(又名闸瓦),使制动块向制动盘方向移动,当闸瓦间隙△为零后,弹簧力F作用在闸盘上并产生正压力,随着油压P的降低正压力加大,当油压P=0时,正压力N=Nmax,在N力的作用下闸瓦与闸盘间产生摩擦力即制动力最大(全制动状态);当P=Pmax时,N=0,△=△max,即全松闸。 由上可以看出盘形制动器的摩擦力决定于弹簧力F和油压力F1,当闸瓦间隙为零后:

盘式制动器设计

目录 绪论 (1) 一、设计任务书 (1) 二、盘式制动器结构形式简介 .................... 错误!未定义书签。 2.1、盘式制动器的分类....................... 错误!未定义书签。 2.2、盘式制动器的优缺点..................... 错误!未定义书签。 2.3、该车制动器结构的最终选择............... 错误!未定义书签。 三、制动器的参数和设计 ........................ 错误!未定义书签。 3.1、制动盘直径 ............................ 错误!未定义书签。 3.2、制动盘厚度 ............................ 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径............... 错误!未定义书签。 3.4、摩擦衬块面积 .......................... 错误!未定义书签。 3.5、制动轮缸压强 .......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算........... 错误!未定义书签。 3.7、制动力矩的计算和验算................... 错误!未定义书签。 3.8、驻车制动计算 .......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 .............. 错误!未定义书签。 4.1、制动盘 ................................ 错误!未定义书签。 4.2、制动钳 ................................ 错误!未定义书签。 4.3、制动块 ................................ 错误!未定义书签。 4.4、摩擦材料 .............................. 错误!未定义书签。

SP2型盘形制动单元的作用原理

SP2型盘形制动单元的作用原理 SP2型盘形制动单元的工作状态分为:正常间隙制动位,正常间隙缓解位,过大间隙制动位,过大间隙缓解位。其中过大间隙缓解位又有第一阶段状况和第二阶段状况。 (一)合成闸片与制动盘正常间隙时的作用 制动时压力空气进入制动缸膜板的右侧,推动膜板及活塞向左移,压缩复原弹簧,同时也带动引导挡铁、引导螺母,调整螺母合丝杠一起向左移动,此时,调整挡铁也在调整弹簧的推动下移动了一个距离,[见下图(a)]这时闸片正好与制动盘接触,即完成了制动作用。在此过程中,闸片间隙调整器不发生调整作用。 当制动机缓解时,压力空气由制动缸膜板的右侧排出[见下图(b)],活塞在复原弹簧的伸张作用下,恢复到缓解位置。引导挡铁随着活塞退回到原位。这样,调整挡铁也退回原位,移动的距离正好是标准间隙A值。 (二)合成闸片与制动盘间隙过大时的作用 制动时压力空气进入制动缸膜板的右侧,推动膜板及活塞向左移动的同时,带动引导挡铁,引导螺母,调整螺母和丝杠一起向左移动,所移动的距离超过了标准间隙A值,见下图(c)过大间隙制动位。设闸片与制动盘磨耗后活塞等增加的移动距离为f,即丝杠向左移动了A+f的距离,而此过程中调整挡铁去被导向螺栓挡住,仅移动了标准距离A值,不断继续移动,调整螺母与调整挡铁啮合部分脱开,在调整弹簧的作用下,推动轴承向右旋转的同时,带动了调整螺母在非自锁螺纹丝杠上放置很快与调整挡铁重新啮合,此时,在调整螺母与护管之间形成了间隙f。 缓解时分为两个阶段,第一阶段,膜板右侧的压力空气排除,活塞在复原弹簧伸长的作用下向右移动,在此过程中引导挡铁和调整挡铁等跟随活塞一起向右移动,所移动的距离为标准间隙A值,见下图(d)过大间隙缓解位的第一阶段。 缓解第二阶段过程中,膜板右侧的压力空气继续排除。活塞在复原弹簧的伸长作用下继续移动。引导螺母与引导挡铁脱开,在引导弹簧的作用下,推动轴承向右旋转的同时,带动了引导螺母在非自锁螺纹丝杠上旋转,很快与引导挡铁重新啮合。在这一阶段丝杠没有移动,消除了闸片和制动盘磨耗后增加的间隙,见下图(e)过大间隙缓解位的第二阶段。 通过这两个阶段的缓解过程,闸片间隙调整器对超出标准间隙值A的f值进行了调整,也就是消除了合成闸片和制动盘的磨耗增大的间隙,使闸片间隙又恢复到了标准值。

盘式制动器结构和原理

盘式制动器结构和原理 2、定钳盘式制动器 如下图所示:制动钳体通过导向销与车桥相连,可以相对于制动盘轴向移动,制动钳只在制动盘的内侧设置油缸,而外侧的制动块附装在钳体上,制动时,来自制动主缸的液压油通过进油口进入制动油缸,推动活塞及其上的制动块向右移动,并压到制动盘,于是制动盘给活塞一个向左的反作用力,使得活塞连同制动钳体整体沿导销向左移动,直到制动盘右侧的制动块也压紧在制动盘上,此时两侧的制动块都压在制动盘上,夹住制动盘使其制动。 定钳盘式制动器 转播到腾讯微博 定钳盘式制动器

3、典型浮钳盘式制动器 浮钳盘式制动器 如下图所示为桑塔纳轿车前轮制动器。 转播到腾讯微博 桑塔纳轿车前轮制动器 制动钳体用螺栓与支架相连,螺栓同时兼作导向销,支架固定在前悬架总成轮毂轴承座凸缘上。壳体可沿导各销与支架作轴向相对移动,两制动块装在支架上,用保持弹簧卡住,使两制

动块可以在支架上作轴向移动,但不会上下窜动。制动盘装在两制动块之间,并通过轮胎螺栓固定在前轮毂上,制动块由无石棉的活塞在制动液压力作用下,推动内制动块压向制动盘内侧,制动钳上的反力使制动钳壳体向内侧移动,从而带动外制动块压向制动盘外侧面。于是内、外摩擦块将制动盘的两端面紧紧夹住,实现了制动。 4、制动间隙自调结构 利用活塞矩形密封圈的弹性变形实现制动间隙的自动调整。 转播到腾讯微博 制动间隙自调结构 矩形密封圈嵌在制动钳油缸的矩形槽内,密封圈刃边与活塞外圆配合较紧,制动时刃边在摩擦作用下随活塞移动,使密封圈发生弹性变形,相应于极限摩擦力的密封圈极限变形量应等于制动器间隙为设定值时完全制动所需的活塞行程,解除制动时,密封圈恢复变形,活塞在密封圈弹力作用下退回原位,当制动盘与摩擦衬块磨损后引起的制动间隙超过设定值时,则制动时活塞密封圈变形量达到极限值后,活塞仍可在液压作用下,克服密封圈的摩擦力而继续移动,直到实现完全制动为止。解除制动后,制动器间隙即恢复到设定值δ,因活塞密封将活塞拉回的距离仍然等于原设定值δ,活塞密封圈兼起活塞复位弹簧和一次调准式间隙自调装置的作用。 5、制动块磨损报警装置 许多盘式制动器上装有制动块摩擦片磨损报警装置,用来提配驾驶员制动块上的摩擦片需要更换。下图为应用较广泛的声音式制动块磨损损装置。 转播到腾讯微博

浮动钳盘式制动器结构及其制动性能

浮动钳盘式制动器结构及其制动性能 学院名称: 专 业: 班 级: 姓 名: 指导教师姓名: 指导教师职称: 2011年12月 JIANGSU TEACHERS UNIVERSITY OF TECHNOLOGY 专业课程设计(论文)

摘要:盘式制动器是制动系统中用以产生阻碍车辆运动或运动趋势的力的部件。一般盘式制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与路面的附着作用,产生路面对车轮的制动力,以使汽车减速。 本文介绍了浮钳盘式制动器结构组成、其组成元件的连接固定,分析了浮动钳盘式制动器的优缺点及应用。 关键词:制动器;制动力矩;结构;性能 The structure and characteristics of floating caliper disc brake Abstract: Disc brake is the parts of force used to hinder the movement of vehicles or the trend of movement in the brake system. Disc brakes are generally through that the fixed component exerts the braking torque to the fixed component, used to decrease the latter angular velocity, while relying on the attachment between the wheels and the pavement, the pavement get the braking force to the wheels, to make the car slow down. The article describes the structure of floating caliper disc brake and the installation of its component, analyzes the floating caliper disc brake, get its advantages, disadvantages and application. Key words: Brake; Braking torque;Structure ;Characteristics 序言

钳盘式制动器

2.钳盘式制动器 (1)组成 旋转元件:制动盘,它和车轮固定安装在一起旋转,以其端面为摩擦工作表面。 固定元件:制动块、导向支承销和轮缸活塞,它们都装在跨于制动盘两侧的钳体上,总称制动钳。制动钳用螺栓与转向节或桥壳上的凸沿固装,并用调整垫片来调节钳与盘之间的相对位置。另外,还有防尘罩。 (2)工作原理 1)制动时,油液被压入内、外两轮缸中,其活塞在液压作用下将两制动块压紧制动盘,产生摩擦力矩而制动。此时,轮缸槽中的矩形橡胶密封圈的刃边在活塞摩擦力的作用下产生微量的弹性变形。 2)放松制动时,活塞和制动块依靠密封圈的弹力和弹簧的弹力回位。由于矩形密封圈刃边变形量很微小,在不制动时,摩擦片与盘之间的间隙每边只有0.1mm左右,它足以保证制动的解除。又因制动盘受热膨胀时,厚度方面只有微量的变化,故不会发生“拖滞”现象。

观看动画 矩形橡胶密封圈除起密封作用外,同时还起到活塞回位和自动调整间隙的作用。如果制动块的摩擦片与盘的间隙磨损加大,制动时密封圈变形达到极限后,活塞仍可继续移动,直到摩擦片压紧制动盘为止。解除制动后,矩形橡胶密封圈所能将活塞推回的距离同磨损之前相同,仍保持标准值。 观看视频 (3)分类 钳盘式车轮制动器按其结构形式不同,可分为固定钳盘式和浮动钳盘式两种。 1)固定钳盘式 制动钳轴向位置是固定的,其轮缸分别布置在制动钳的两侧,为双向轮缸,可单轮缸对置或双缸对置,除活塞和摩擦块外无滑动元件。这种结构轮缸间需要用油道或油管连通。钳体尺寸较大,外侧的轮缸散热差,热负荷大,油液容易汽化膨胀,制动热稳定性差。

2)浮动钳盘式 滑销式浮动钳盘图。它的特点是制动钳体在轴向处于浮动状态,轮缸布置在制动钳的内侧,且数目只有固定式的一半,为单轮缸。

1.6米TP1型盘形制动器结构与原理

TP1型盘形制动器结构与原理(一)结构 盘形制动器装置是把两个相同的制动器用螺栓成对地把在支架上组成。每个支架上都可以同时安装1、2、3、4、5、6、付,甚至更多,其规格和付数,根据提升机所需要的制动力矩选定 制动器装置由制动器<2>、支架<1>、管路<3>、闸瓦间隙指示器<4>、螺栓<5>等组成 单个制动器由闸瓦<29>、带筒体的衬板<28>、碟簧组合<2>和液压组件活塞内套<15>、链接螺栓<14>、后盖<11>、密封圈<12、13>制动器体<1>等组成 液压组件由挡圈<5>油封<24>油缸<21>调节螺母<20>密封圈<23、8>活塞<10>密封圈<16、19>油缸盖<9>固定螺钉<31>垫圈<30>等组成 在制动其中可以单独整体写下和换液压组件。 液压组件,对一宗规格的制动器来说是同用互换件用户可想制造厂单独定购以作备用。 制动器也是单独部件,用户可单独订购必要的备件。 (一)原理: 在液压盘形制动器的基本原理是液压松闸,弹簧力制动。 调正时向Y腔给入油压P,碟簧组被压缩,闸瓦离开闸盘贮存与弹簧力F,在弹簧压缩状态,调整间隙△,此时,制动器处于松闸状态,当P值降低时,弹簧力F推衬板及闸瓦向制动盘移动,当△

=0后,若P继续下降,弹簧力F便作用于闸盘上,该力即为正压力N。当P=0,N=Nmax,即全制动,在N力的作用下产生摩擦力,即制动力,当P=Pm时,N=0,△=△max。 2、制动力调节,P下降, △=0后,若忽略制动器内阻力和各构件的变形。则,N=F-F1=F-PA 闸瓦帖闸盘后F为常数,A亦为常数,则:N=f(P) 上式说明改变P可以获得各种不同的N值,N值的变化,改变了制动力的大小。P值的改变借助于液压站的电液调压装置,调压的电讯号,当手动控制时,由制动手柄操纵,当自动控制时,由外反馈电控系统供给给予调节。 P=F(I) (I—电流值) (三)制动器的选型

定钳盘式制动器的拆装教案

拆装定钳盘式制动器教案 一、教学目标 在学习本模块后,应当能够做到: 1.描述盘式制动器的工作过程。 2.识别盘式制动器的结构形式。 3.列出盘式制动器的主要零件。 二、教学重点 1、掌握盘式制动器的分类 2、掌握定钳盘式制动器的构造 三、教学难点 定钳盘式制动器的工作原理 四、教学过程 (一)导入新课 对汽车制动系统的概述知识复习引入新课。 (二)新课讲解 1. 自学(相关知识) 完成一下任务: 1)、什么叫制动盘? 2)、钳盘式制动器按制动钳固定安装在支架上的结构形式不同分为哪两类? 2.定钳盘式制动器的构造 图9-1所示是定钳盘式制动器的构造示意图。跨置在制

动盘上的制动钳用螺栓固定安装在车桥上,它既不能旋转也不能沿制动盘轴线方向移动,其内的两个活塞分别位于制动盘的两侧。 3.定钳盘式制动器工作原理 制动时,制动液被压入两侧油缸中,在液压作用下,活塞朝制动盘方向移动,推动制动块压紧制动产生摩擦力矩而制动。在此过程中,活塞上的矩形橡胶密封圈的刃边在摩擦力的作用下随活塞移动而产生微量的弹性变形,如图9-2a所示。 解除制动时,液压系统压力消除,密封圈恢复到其初始位置,活塞和制动块依靠密封圈的弹力回位,如图9-2b所示。由于矩形密封圈刃边的变形量很微小,在不制动时,制动块摩擦片与制动

盘之间的单边间隙只有0.1mm左右,以保证解除制动。 由于定钳盘式制动器的油缸较多,使制动卡钳结构复杂,而且制动卡钳的尺寸过大,难以安装在现代轿车的轮辋内。在热负荷大时,油缸和跨越制动盘的油管或油道中的制动液容易受热汽化。另外,定钳盘式制动器对橡胶圈的弹性、耐热性和耐磨性要求较高,而彻底解除制动的能力不十分可靠,故现代汽车上基本不采用定钳盘式制动器。 ?五、总结本节内容回顾 六、作业练习 1、定钳盘式制动器的组成? 2、定钳盘式制动器的工作原理? 七、教学小结 这节课学生通过对汽车定钳盘式制动器的学习,掌握了定钳盘式制动器的结构、工作原理。

毕业设计浮钳盘式制动器

毕业设计浮钳盘式制动器

原始数据: 整车质量:空载:1550kg ;满载:2000kg 质心位置:a=L 1=1.35m ;b=L 2=1.25m 质心高度:空载:hg=0.95m ;满载:hg=0.85m 轴 距:L=2.6m 轮 距: L 0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮 胎:195/60R14 85H 1.同步附着系数的分析 (1)当0φφ<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当0φφ>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当0φφ=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为0φ的路面上制动(前、后车轮同时抱死)时,其制动减速度为g qg dt du 0φ==,即0φ=q ,q 为制动强度。而在其他附着系数φ的路面上制动时,达到前轮或后轮即将抱死的制动强度φ

G :汽车满载质量; L :汽车轴距; 其中q=g h a a ?-+)(0???=85 .0)6.07.0(35.17.035.1?-+?=0.66 故后轴max 2μM = 3707.0)85.066.035.1(6.220000???-=1.57610?Nmm 后轮的制动力矩为2/1057.16?=0.785610?Nmm 前轴max 1μM = T max 1f =max 21f T ββ -=0.67/(1-0.67)?1.57610?=3.2610?Nmm 前轮的制动力矩为3.2610?/2=1.6610?Nmm 2.浮钳盘式制动器主要结构参数的确定 2.1制动盘直径D 制动盘直径D 希望尽量大些,这时制动盘的有效半径得以增大,就可以降低制动钳的夹紧力,降低摩擦衬块的单位压力和工作温度。但制动盘直径D 受轮毅直径的限制通常,制动盘的直径D 选择为轮毅直径的70%~90%,总质量大于2t 的车辆应取其上限。通常,制造商在保持有效的制动性能的情况下,尽可能将零件做的小些,轻些。轮辋直径为14英寸(1英寸=2.54cm),又因为M=2000kg ,取其上限。 在本设计中:032.2564.2514%72%72=??==Dr D ,取D=256mm 。 2.2制动盘厚度h 制动盘厚度h 直接影响着制动盘质量和工作时的温升。为使质量不致太大,制动盘厚度应取得适当小些;为了降低制动工作时的温升,制动盘厚度又不宜过小。制动盘可以制成实心的,而为了通风散热,可以在制动盘的两工作面之间铸出通风孔道。通风的制动盘在两个制动表面之间铸有冷却叶片。这种结构使制动盘铸件显著的增加了冷却面积。车轮转动时,盘内扇形叶片的选择了空气

图解盘式制动器

图解盘式制动器 1.盘式制动器概述 盘式制动器摩擦副中的旋转元件是以端面工作的金属圆盘,被称为制动盘。 其固定元件则有着多种结构型式,大体上可分为两类。一类是工作面积不大的摩擦块与其金属背板组成的制动块,每个制动器中有2~4个。这些制动块及其促动装置都装在横跨制动盘两侧的夹钳形支架中,总称为制动钳。这种由制动盘和制动钳组成的制动器称为钳盘式制动器。另一类固定元件的金属背板和摩擦片也呈圆盘形,制动盘的全部工作面可同时与摩擦片接触,这种制动器称为全盘式制动器。 钳盘式制动器过去只用作中央制动器,但目前则愈来愈多地被各级轿车和货车用作车轮制动器。全盘式制动器只有少数汽车(主要是重型汽车)采用为车轮制动器。这里只介绍钳盘式制动器。钳盘式制动器又可分为定钳盘式和浮钳盘式两类。 盘式制动器结构图如下图所示

2.定钳盘式制动器 跨置在制动盘1上的制动钳体5固定安装在车桥6上,它不能旋转也不能沿制动盘轴线方向移动,其内的两个活塞2分别位于制动盘1的两侧。 制动时,制动油液由制动总泵(制动主缸)经进油口4进入钳体中两个相通的液压腔中,将两侧的制动块3压向与车轮固定连接的制动盘1,从而产生制动。 这种制动器存在着以下缺点:油缸较多,使制动钳结构复杂;油缸分置于制动盘两侧,必须用跨越制动盘的钳内油道或外部油管来连通,这使得制动钳的尺寸过大,难以安装在现代化轿车的轮辋内;热负荷大时,油缸和跨越制动盘的油管或油道中的制动液容易受热汽化;若要兼用于驻车制动,则必须加装一个机械促动

的驻车制动钳。 定钳盘式制动器示意图 1.制动盘 2.活塞 3.摩擦块 4.进油口 5.制动钳体 6.车桥部3.浮钳盘式制动器 制动钳体2通过导向销6与车桥7相连,可以相对于制动盘1轴向移动。制动钳体只在制动盘的内侧设置油缸,而外侧的制动块则附装在钳体上。 制动时,液压油通过进油口5进入制动油缸,推动活塞4及其上的摩擦块向右移动,并压到制动盘上,并使得油缸连同制动钳体整体沿销钉向左移动,直到制动盘右侧的摩擦块也压到制动盘上夹住制动盘并使其制动。 与定钳盘式制动器相反,浮钳盘式制动器轴向和径向尺寸较小,而且制动液受热汽化的机会较少。此外,浮钳盘式制动器在兼充

相关文档