文档库 最新最全的文档下载
当前位置:文档库 › 以太网概念

以太网概念

以太网概念
以太网概念

以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的

一个。人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(Robert Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。

1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。3com对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日出台。当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。

梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltz er曾经在麻省理工学院MAC项目(Project MAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。

它不是一种具体的网络,是一种技术规范。

该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。

[编辑本段]

以太网的分类和发展

一、标准以太网

开始以太网只有10Mbps的吞吐量,使用的是带有冲突检测的载波侦听多路访问(CSMA/CD,Carrier Sense Multiple Access/Collision Detection)的访问控制方法,这种早期的10Mbps以太网称之为标准以太网。以太网可以使用粗同轴电缆、细同轴电缆、非屏蔽双绞线、屏蔽双绞线和光纤等多种传输介质进行连接,并且在I EEE 802.3标准中,为不同的传输介质制定了不同的物理层标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“带宽”。

·10Base-5 使用直径为0.4英寸、阻抗为50Ω粗同轴电缆,也称粗缆以太网,最大网段长度为500m,基带传输方法,拓扑结构为总线型;10Base-5组网主要硬件设备有:粗同轴电缆、带有AUI插口的以太网卡、中继器、收发器、收发器电缆、终结器等。

·10Base-2 使用直径为0.2英寸、阻抗为50Ω细同轴电缆,也称细缆以太网,最大网段长度为185m,基带传输方法,拓扑结构为总线型;10Base-2组网主要硬件设备有:细同轴电缆、带有BNC插口的以太网卡、中继器、T型连接器、终结器等。

·10Base-T 使用双绞线电缆,最大网段长度为100m,拓扑结构为星型;10Ba se-T组网主要硬件设备有:3类或5类非屏蔽双绞线、带有RJ-45插口的以太网卡、集线器、交换机、RJ-45插头等。

·1Base-5 使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps;

·10Broad-36 使用同轴电缆(RG-59/U CATV),网络的最大跨度为3600 m,网段长度最大为1800m,是一种宽带传输方式;

·10Base-F 使用光纤传输介质,传输速率为10Mbps;

二、快速以太网

随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。在1993年10月以前,对于要求10Mbps以上数据流量的LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mp bs光缆的LAN。1993年10月,Grand Junction公司推出了世界上第一台快速以太网集线器Fastch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。随后Intel、SynOptics、3COM、BayNetworks等公司亦相继推出自己的快速以太网装置。与此同时,IEEE802工程组亦对100Mbps以太网的各种标准,如100BASE -TX、100BASE-T4、MII、中继器、全双工等标准进行了研究。1995年3月IEE E宣布了IEEE802.3u 100BASE-T快速以太网标准(Fast Ethernet),就这样开始了快速以太网的时代。

快速以太网与原来在100Mbps带宽下工作的FDDI相比它具有许多的优点,最主要体现在快速以太网技术可以有效的保障用户在布线基础实施上的投资,它支持3、4、5类双绞线以及光纤的连接,能有效的利用现有的设施。快速以太网的不足其实也是以太网技术的不足,那就是快速以太网仍是基于CSMA/CD技术,当网络负载较重时,会造成效率的降低,当然这可以使用交换技术来弥补。100Mbps快速以太网标准又分为:100BASE-TX 、100BASE-FX、100BASE-T4三个子类。

·100BASE-TX:是一种使用5类数据级无屏蔽双绞线或屏蔽双绞线的快速以太网技术。它使用两对双绞线,一对用于发送,一对用于接收数据。在传输中使用4 B/5B编码方式,信号频率为125MHz。符合EIA586的5类布线标准和IBM的SP

T 1类布线标准。使用同10BASE-T相同的RJ-45连接器。它的最大网段长度为100米。它支持全双工的数据传输。

·100BASE-FX:是一种使用光缆的快速以太网技术,可使用单模和多模光纤(62.5和125um)多模光纤连接的最大距离为550米。单模光纤连接的最大距离为3000米。在传输中使用4B/5B编码方式,信号频率为125MHz。它使用MIC/FD DI连接器、ST连接器或SC连接器。它的最大网段长度为150m、412m、2000m或更长至10公里,这与所使用的光纤类型和工作模式有关,它支持全双工的数据传输。100BASE-FX特别适合于有电气干扰的环境、较大距离连接、或高保密环境等情况下的适用。

·100BASE-T4:是一种可使用3、4、5类无屏蔽双绞线或屏蔽双绞线的快速以太网技术。100Base-T4使用4对双绞线,其中的三对用于在33MHz的频率上传输数据,每一对均工作于半双工模式。第四对用于CSMA/CD冲突检测。在传输中使用8B/6T编码方式,信号频率为25MHz,符合EIA586结构化布线标准。它使用与10BASE-T相同的RJ-45连接器,最大网段长度为100米。

三、千兆以太网

千兆以太网技术作为最新的高速以太网技术,给用户带来了提高核心网络的有效解决方案,这种解决方案的最大优点是继承了传统以太技术价格便宜的优点。千兆技术仍然是以太技术,它采用了与10M以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于该技术不改变传统以太网的桌面应用、操作系统,因此可与10M或100M的以太网很好地配合工作。升级到千兆以太网不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地投资保护。为了能够侦测到64Bytes资料框的碰撞,Gigabit Ethernet所支持的距离更短。Gi gabit Ethernet 支持的网络类型,如下表所示:

传输介质距离

1000Base-CX Copper STP 25m

1000Base-T Copper Cat 5 UTP 100m

1000Base-SX Multi-mode Fiber 500m

1000Base-LX Single-mode Fiber 3000m

千兆以太网技术有两个标准:IEEE802.3z和IEEE802.3ab。IEEE802.3z制定了光纤和短程铜线连接方案的标准。IEEE802.3ab制定了五类双绞线上较长距离连接方案的标准。

1. IEEE80

2.3z

IEEE802.3z工作组负责制定光纤(单模或多模)和同轴电缆的全双工链路标准。IEEE802.3z定义了基于光纤和短距离铜缆的1000Base-X,采用8B/10B编码技术,

信道传输速度为1.25Gbit/s,去耦后实现1000Mbit/s传输速度。IEEE802.3z具有下列千兆以太网标准:

·1000Base-SX 只支持多模光纤,可以采用直径为62.5um或50um的多模光纤,工作波长为770-860nm,传输距离为220-550m。

·1000Base-LX 多模光纤:可以采用直径为62.5um或50um的多模光纤,工作波长范围为1270-1355nm,传输距离为550m。

单模光纤:可以支持直径为9um或10um的单模光纤,工作波长范围为1270-1 355nm,传输距离为5km左右。

·1000Base-CX 采用150欧屏蔽双绞线(STP),传输距离为25m。

2. IEEE802.3ab

IEEE802.3ab工作组负责制定基于UTP的半双工链路的千兆以太网标准,产生IEEE802.3ab标准及协议。IEEE802.3ab定义基于5类UTP的1000Base-T标准,其目的是在5类UTP上以1000Mbit/s速率传输100m。IEEE802.3ab标准的意义主要有两点:

(1) 保护用户在5类UTP布线系统上的投资。

(2) 1000Base-T是100Base-T自然扩展,与10Base-T、100Base-T完全兼容。不过,在5类UTP上达到1000Mbit/s的传输速率需要解决5类UTP的串扰和衰减问题,因此,使IEEE802.3ab工作组的开发任务要比IEEE802.3z复杂些

四、万兆以太网

万兆以太网规范包含在IEEE 802.3 标准的补充标准IEEE 802.3ae 中,它扩展了IEEE 802.3 协议和MAC 规范使其支持10Gb/s 的传输速率。除此之外,通过WAN 界面子层(WIS:WAN interface sublayer),10千兆位以太网也能被调整为较低的传输速率,如9.584640 Gb/s (OC-192),这就允许10千兆位以太网设备与同步光纤网络(SONET)STS -192c 传输格式相兼容。

·10GBASE-SR 和10GBASE-SW 主要支持短波(850 nm)多模光纤(MMF),光纤距离为2m 到300 m 。

10GBASE-SR 主要支持“暗光纤”(dark fiber),暗光纤是指没有光传播并且不与任何设备连接的光纤。

10GBASE-SW 主要用于连接SONET 设备,它应用于远程数据通信。

·10GBASE-LR 和10GBASE-LW 主要支持长波(1310nm)单模光纤(SMF),光纤距离为2m 到10km (约32808英尺)。

10GBASE-LW 主要用来连接SONET 设备时,

10GBASE-LR 则用来支持“暗光纤”(dark fiber)。

·10GBASE-ER 和10GBASE-EW 主要支持超长波(1550nm)单模光纤(SM F),光纤距离为2m 到40km (约131233英尺)。

10GBASE-EW 主要用来连接SONET 设备,

10GBASE-ER 则用来支持“暗光纤”(dark fiber)。

·10GBASE-LX4 采用波分复用技术,在单对光缆上以四倍光波长发送信号。系统运行在1310nm 的多模或单模暗光纤方式下。该系统的设计目标是针对于2m

到300 m 的多模光纤模式或2m 到10km 的单模光纤模式。

△以太网的连接

[编辑本段]

拓扑结构

总线型:所需的电缆较少、价格便宜、管理成本高,不易隔离故障点、采用共享的访问机制,易造成网络拥塞。早期以太网多使用总线型的拓扑结构,采用同轴缆作为传输介质,连接简单,通常在小规模的网络中不需要专用的网络设备,但由于它存在的固有缺陷,已经逐渐被以集线器和交换机为核心的星型网络所代替。

星型:管理方便、容易扩展、需要专用的网络设备作为网络的核心节点、需要更多的网线、对核心设备的可靠性要求高。采用专用的网络设备(如集线器或交换机)作为核心节点,通过双绞线将局域网中的各台主机连接到核心节点上,这就形成了星型结构。星型网络虽然需要的线缆比总线型多,但布线和连接器比总线型的要便宜。此外,星型拓扑可以通过级联的方式很方便的将网络扩展到很大的规模,因此得到了广泛的应用,被绝大部分的以太网所采用。

[编辑本段]

传输介质

以太网可以采用多种连接介质,包括同轴缆、双绞线和光纤等。其中双绞线多用于从主机到集线器或交换机的连接,而光纤则主要用于交换机间的级联和交换机到路由器间的点到点链路上。同轴缆作为早期的主要连接介质已经逐渐趋于淘汰。

注意区分双绞线中的直通线和交叉线两种连线方法.

以下连接应使用直通电缆:

交换机到路由器以太网端口

计算机到交换机

计算机到集线器

交叉电缆用于直接连接LAN 中的下列设备:

交换机到交换机

交换机到集线器

集线器到集线器

路由器到路由器的以太网端口连接

计算机到计算机

计算机到路由器的以太网端口

CSMA/CD共享介质以太网

带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网要简单。当某台电脑要发送信息时,必须遵守以下规则:

开始- 如果线路空闲,则启动传输,否则转到第4步发送- 如果检测到冲突,继续发送数据直到达到最小报文时间(保证所有其他转发器和终端检测到冲突),再转到第4步. 成功传输- 向更高层的网络协议报告发送成功,退出传输模式。线路忙- 等待,直到线路空闲线路进入空闲状态- 等待一个随机的时间,转到第1步,除非超过最大尝试次数超过最大尝试传输次数- 向更高层的网络协议报告发送失败,退出传输模式就像在没有主持人的座谈会中,所有的参加者都通过一个共同的媒介(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将采用退避指数增长时间的方法(退避的时间通过截断二进制指数退避算法(truncated binary exponential backoff)来实现)。

最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一根简单网线对于一个小型网络来说还是很可靠的,对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。

因为所有的通信信号都在共用线路上传输,即使信息只是发给其中的一个终端(d estination),某台电脑发送的消息都将被所有其他电脑接收。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。

[1][2][3]接口的工作模式

以太网卡可以工作在两种模式下:半双工和全双工。

半双工:半双工传输模式实现以太网载波监听多路访问冲突检测。传统的共享L AN是在半双工下工作的,在同一时间只能传输单一方向的数据。当两个方向的数据同时传输时,就会产生冲突,这会降低以太网的效率。

全双工:全双工传输是采用点对点连接,这种安排没有冲突,因为它们使用双绞线中两个独立的线路,这等于没有安装新的介质就提高了带宽。例如在上例的车站间又加了一条并行的铁轨,同时可有两列火车双向通行。在双全工模式下,冲突检测电路不可用,因此每个双全工连接只用一个端口,用于点对点连接。标准以太网的传输效率可达到50%~60%的带宽,双全工在两个方向上都提供100%的效率。

△以太网的工作原理

以太网采用带冲突检测的载波帧听多路访问(CSMA/CD)机制。以太网中节点都可以看到在网络中发送的所有信息,因此,我们说以太网是一种广播网络。

以太网的工作过程如下:

当以太网中的一台主机要传输数据时,它将按如下步骤进行:

1、监听信道上收否有信号在传输。如果有的话,表明信道处于忙状态,就继续监听,直到信道空闲为止。

2、若没有监听到任何信号,就传输数据

3、传输的时候继续监听,如发现冲突则执行退避算法,随机等待一段时间后,重新执行步骤1(当冲突发生时,涉及冲突的计算机会发送会返回到监听信道状态。

注意:每台计算机一次只允许发送一个包,一个拥塞序列,以警告所有的节点)

4、若未发现冲突则发送成功,所有计算机在试图再一次发送数据之前,必须在最近一次发送后等待9.6微秒(以10Mbps运行)。

△帧结构

以太网帧的概述:

以太网的帧是数据链路层的封装,网络层的数据包被加上帧头和帧尾成为可以被数据链路层识别的数据帧(成帧)。虽然帧头和帧尾所用的字节数是固定不变的,但依被封装的数据包大小的不同,以太网的长度也在变化,其范围是64~1518字节(不算8字节的前导字)。

△冲突/冲突域

冲突(Collision):在以太网中,当两个数据帧同时被发到物理传输介质上,并完全或部分重叠时,就发生了数据冲突。当冲突发生时,物理网段上的数据都不再有效。

冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧。

影响冲突产生的因素:冲突是影响以太网性能的重要因素,由于冲突的存在使得传统的以太网在负载超过40%时,效率将明显下降。产生冲突的原因有很多,如同一冲突域中节点的数量越多,产生冲突的可能性就越大。此外,诸如数据分组的长度(以太网的最大帧长度为1518字节)、网络的直径等因素也会影响冲突的产生。因此,当以太网的规模增大时,就必须采取措施来控制冲突的扩散。通常的办法是使用网桥和交换机将网络分段,将一个大的冲突域划分为若干小冲突域。

△广播/广播域

广播:在网络传输中,向所有连通的节点发送消息称为广播。

广播域:网络中能接收任何一设备发出的广播帧的所有设备的集合。

广播和广播域的区别:广播网络指网络中所有的节点都可以收到传输的数据帧,不管该帧是否是发给这些节点。非目的节点的主机虽然收到该数据帧但不做处理。

广播是指由广播帧构成的数据流量,这些广播帧以广播地址(地址的每一位都为“1”)为目的地址,告之网络中所有的计算机接收此帧并处理它。

△共享式以太网

共享式以太网的典型代表是使用10Base2/10Base5的总线型网络和以集线器(集线器)为核心的星型网络。在使用集线器的以太网中,集线器将很多以太网设备集中到一台中心设备上,这些设备都连接到集线器中的同一物理总线结构中。从本质上讲,以集线器为核心的以太网同原先的总线型以太网无根本区别。

集线器的工作原理:

集线器并不处理或检查其上的通信量,仅通过将一个端口接收的信号重复分发给其他端口来扩展物理介质。所有连接到集线器的设备共享同一介质,其结果是它们也共享同一冲突域、广播和带宽。因此集线器和它所连接的设备组成了一个单一的冲突域。如果一个节点发出一个广播信息,集线器会将这个广播传播给所有同它相连的节点,因此它也是一个单一的广播域。

集线器的工作特点:

集线器多用于小规模的以太网,由于集线器一般使用外接电源(有源),对其接收的信号有放大处理。在某些场合,集线器也被称为“多端口中继器”。

集线器同中继器一样都是工作在物理层的网络设备。

共享式以太网存在的弊端:由于所有的节点都接在同一冲突域中,不管一个帧从哪里来或到哪里去,所有的节点都能接受到这个帧。随着节点的增加,大量的冲突将导致网络性能急剧下降。而且集线器同时只能传输一个数据帧,这意味着集线器所有端口都要共享同一带宽。

△交换式以太网

交换式结构:

在交换式以太网中,交换机根据收到的数据帧中的MAC地址决定数据帧应发向交换机的哪个端口。因为端口间的帧传输彼此屏蔽,因此节点就不担心自己发送的帧在通过交换机时是否会与其他节点发送的帧产生冲突。

为什么要用交换式网络替代共享式网络:

·减少冲突:交换机将冲突隔绝在每一个端口(每个端口都是一个冲突域),避免了冲突的扩散。

·提升带宽:接入交换机的每个节点都可以使用全部的带宽,而不是各个节点共享带宽。

△以太网交换机

交换机的工作原理:

·交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。

·交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。

·如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。这一过程称之为泛洪(flood)。

·广播帧和组播帧向所有的端口转发。

交换机的三个主要功能:

·学习:以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。

·转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。

·消除回路:当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。

交换机的工作特性:

·交换机的每一个端口所连接的网段都是一个独立的冲突域。

·交换机所连接的设备仍然在同一个广播域内,也就是说,交换机不隔绝广播(唯一的例外是在配有VLAN的环境中)。

·交换机依据帧头的信息进行转发,因此说交换机是工作在数据链路层的网络设备

△交换机的分类:

依照交换机处理帧的不同的操作模式,主要可分为两类。

存储转发:交换机在转发之前必须接收整个帧,并进行检错,如无错误再将这一帧发向目的地址。帧通过交换机的转发时延随帧长度的不同而变化。

直通式:交换机只要检查到帧头中所包含的目的地址就立即转发该帧,而无需等待帧全部的被接收,也不进行错误校验。由于以太网帧头的长度总是固定的,因此帧通过交换机的转发时延也保持不变。

注意:

直通式的转发速度大大快于存储转发模式,但可靠性要差一些,因为可能转发冲突帧或带CRC错误的帧。

△生成树协议

消除回路:

在由交换机构成的交换网络中通常设计有冗余链路和设备。这种设计的目的是防止一个点的失败导致整个网络功能的丢失。虽然冗余设计可能消除的单点失败问题,但也导致了交换回路的产生,它会导致以下问题。

·广播风暴

·同一帧的多份拷贝

·不稳定的MAC地址表

因此,在交换网络中必须有一个机制来阻止回路,而生成树协议(Spanning Tr ee Protocol)的作用正在于此。

生成树的工作原理:

生成树协议的国际标准是IEEE802.1b。运行生成树算法的网桥/交换机在规定的间隔(默认2秒)内通过网桥协议数据单元(BPDU)的组播帧与其他交换机交换配置信息,其工作的过程如下:

·通过比较网桥优先级选取根网桥(给定广播域内只有一个根网桥)。

·其余的非根网桥只有一个通向根交换机的端口称为根端口。

·每个网段只有一个转发端口。

·根交换机所有的连接端口均为转发端口。

注意:生成树协议在交换机上一般是默认开启的,不经人工干预即可正常工作。但这种自动生成的方案可能导致数据传输的路径并非最优化。因此,可以通过人工设置网桥优先级的方法影响生成树的生成结果。

生成树的状态:

运行生成树协议的交换机上的端口,总是处于下面四个状态中的一个。在正常操作期间,端口处于转发或阻塞状态。当设备识别网络拓扑结构变化时,交换机自动进行状态转换,在这期间端口暂时处于监听和学习状态。

阻塞:所有端口以阻塞状态启动以防止回路。由生成树确定哪个端口转换到转发状态,处于阻塞状态的端口不转发数据但可接受BPDU。

监听:不转发,检测BPDU,(临时状态)。

学习:不转发,学习MAC地址表(临时状态)。

转发:端口能转送和接受数据。

小知识:实际上,在真正使用交换机时还可能出现一种特殊的端口状态-Disabl e状态。这是由于端口故障或由于错误的交换机配置而导致数据冲突造成的死锁状态。如果并非是端口故障的原因,我们可以通过交换机重启来解决这一问题。

生成树的重计算:

当网络的拓扑结构发生改变时,生成树协议重新计算,以生成新的生成树结构。当所有交换机的端口状态变为转发或阻塞时,意味着重新计算完毕。这种状态称为会聚(Convergence)。

注意:在网络拓扑结构改变期间,设备直到生成树会聚才能进行通信,这可能会对某些应用产生影响,因此一般认为可以使生成树运行良好的交换网络,不应该超过七层。此外可以通过一些特殊的交换机技术加快会聚的时间。

△网桥

网桥概述:

依据帧地址进行转发的二层网络设备,可将数个局域网网段连接在一起。网桥可连接相同介质的网段也可访问不同介质的网段。网桥的主要作用是分割和减少冲突。它的工作原理同交换机类似,也是通过MAC地址表进行转发。因此,网桥同交换机没有本质的区别。在某些情况下,我们可以认为网桥就是交换机。

△路由器的简单介绍

什么是路由器:

路由器是使用一种或者更多度量因素的网络设备,它决定网络通信能够通过的最佳路径。路由器依据网络层信息将数据包从一个网络前向转发到另一个网络。

路由器的功能:

·隔绝广播,划分广播域

·通过路由选择算法决定最优路径

·转发基于三层目的地址的数据包

·其他功能

△虚拟局域网VLAN

网桥/交换机的本质和功能是通过将网络分割成多个冲突域提供增强的网络服务,然而网桥/交换机仍是一个广播域,一个广播数据包可被网桥/交换机转发至全网。虽然OSI模型的第三层的路由器提供了广播域分段,但交换机也提供了一种称为VL AN的广播域分段方法。

什么是VLAN:

一个VLAN是跨越多个物理LAN网段的逻辑广播域,人们设计VLAN来为工作站提供独立的广播域,这些工作站是依据其功能、项目组或应用而不顾其用户的物理位置而逻辑分段的。

一个VLAN=一个广播域=逻辑网段

VLAN的优点和安装特性:

VLAN的优点:

·安全性。一个VLAN里的广播帧不会扩散到其他VLAN中。

·网络分段。将物理网段按需要划分成几个逻辑网段

·灵活性。可将交换端口和连接用户逻辑的分成利益团体,例如以同一部门的工作人员,项目小组等多种用户组来分段。

典型VLAN的安装特性:

·每一个逻辑网段像一个独立物理网段

·VLAN能跨越多个交换机

·由主干(Trunk)为多个VLAN运载通信量

VLAN如何操作:

·配置在交换机上的每一个VLAN都能执行地址学习、转发/过滤和消除回路机制,就像一个独立的物理网桥一样。VLAN可能包括几个端口

·交换机通过将数据转发到与发起端口同一VLAN的目的端口实现VLAN。

·通常一个端口只运载它所属VLAN的通信量。

VLAN的成员模式:

静态:分配给VLAN的端口由管理员静态(人工)配置。

动态:动态VLAN可基于MAC地址、IP地址等识别其成员资格。当使用MAC 地址时,通常的方式是用VLAN成员资格策略服务器(VMPS)支持动态VLAN。V MPS包括一个映射MAC地址到VLAN分配的数据库。当一个帧到达动态端口时,交换机根据帧的源地址查询VMPS,获取相应的VLAN分配。

注意:虽然VLAN是在交换机上划分的,但交换机是二层网络设备,单一的有交换机构成的网络无法进行VLAN间通信的,解决这一问题的方法是使用三层的网络设备-路由器。路由器可以转发不同VLAN间的数据包,就像它连接了几个真实的物理网段一样。这时我们称之为VLAN间路由。

△高速以太网

快速以太网:

快速以太网(Fast Ethernet)也就是我们常说的百兆以太网,它在保持帧格式、MAC(介质存取控制)机制和MTU(最大传送单元)质量的前提下,其速率比10B ase-T的以太网增加了10倍。二者之间的相似性使得10Base-T以太网现有的应用程序和网络管理工具能够在快速以太网上使用。快速以太网是基于扩充的IEEE80 2.3标准。

千兆以太网:

千兆位以太网是一种新型高速局域网,它可以提供1Gbps的通信带宽,采用和传统10M、100M以太网同样的CSMA/CD协议、帧格式和帧长,因此可以实现在原有低速以太网基础上平滑、连续性的网络升级。只用于Point to Point,连接介质以光纤为主,最大传输距离已达到70km,可用于MAN的建设。

由于千兆以太网采用了与传统以太网、快速以太网完全兼容的技术规范,因此千兆以太网除了继承传统以太局域网的优点外,还具有升级平滑、实施容易、性价比高和易管理等优点。

千兆以太网技术适用于大中规模(几百至上千台电脑的网络)的园区网主干,从而实现千兆主干、百兆交换(或共享)到桌面的主流网络应用模式。

小知识:

千兆以太网的优势是同旧系统的兼容性好,价格相对便宜。在这也是千兆以太网在同ATM的竞争中获胜的主要原因。

△小结:

当今居于主导地位的局域网技术-以太网。以太网是建立在CSMA/CD机制上的广播型网络。冲突的产生是限制以太网性能的重要因素,早期的以太网设备如集线器是物理层设备,不能隔绝冲突扩散,限制了网络性能的提高。而交换机(网桥)做为一种能隔绝冲突的二层网络设备,极大的提高了以太网的性能。正逐渐替代集线器成为主流的以太网设备。然而交换机(网桥)对网络中的广播数据流量则不做任何限制,这也影响了网络的性能。通过在交换机上划分VLAN和采用三层的网络设备-路由器解决了这一问题。以太网做为一种原理简单,便于实现同时又价格低廉的局域网技术已经成为业界的主流。而更高性能的快速以太网和千兆以太网的出现更使其成为最有前途的网络技术。

为什么叫以太网?

以太网这个名字,起源于一个科学假设:声音是通过空气传播的,那么光呢?在外太空没有空气光也可以传播。于是,有人说光是通过一种叫以太的物质传播。后来,爱因斯坦证明以太根本就不存在。

大家知道,声音是通过空气传播的,那么光是通过什么传播的呢?

在牛顿运动定律中,物体的运动是相对的。比如,地铁车厢里面的人看见您在车厢里原地踏步走,而位于车厢外面的人却看见你以120公里每小时的速度前进。

但光的运动并不是这样,您无论以什么物体作为参照物,它的运动速度始终都是299 792 458 米/ 秒。这个问题困惑了很多科学家,难道牛顿定律失灵了?一个来自瑞士专利局的职员,名叫爱因斯坦的人在1905年发表了篇论文,文中提到,无论观察者以何种速度运动,相对于他们而言,光的速度是恒久不变的,相对论便由此诞生了。

这简单的理念有一些非凡的结论。可能最著名者莫过于质量和能量的等价,用爱因斯坦的方程来表达就是E=mc^2(E是能量,m是质量,c是光速),以及没有任何东西能运动得比光还快的定律。由于能量和质量的等价,物体由于它的运动所具的能量应该加到它的质量上面去。换言之,要加速它将变得更为困难。这个效应只有当物体以接近于光速的速度运动时才有实际的意义。例如,以10%光速运动的物体的质量只比原先增加了0.5%,而以90%光速运动的物体,其质量变得比正常质量的2倍还多。当一个物体接近光速时,它的质量上升得越来越快,它需要越来越多的能量才能进一步加速上去。实际上它永远不可能达到光速,因为那时质量会变成无限大,而由质量能量等价原理,这就需要无限大的能量才能做到。

由此我们可以看出,世界上根本就不存在以太这种物质,因为光速是永远恒定不变的,为其找个运动参照物是个笑话。有鉴于此,以太网的命名也就是一个笑话。但以太网并不会消失,它正随着人们追求高速度而不断的进行蜕变。以前,只要数据链路层遵从CSMA/CD协议通信,那么它就可以被称为以太网,但随着接入共享网络设备的增加,冲突会使网络的传输效率越来越低。后来,交换机的出现使全双工以太网得到了更好的实现。未来,以太网会披上光的外衣,飞的更快。

概念结构设计和逻辑结构设计

概念结构设计和逻辑结构设计 一.系统概述 本系统通过调查从事医药产品的零售,批发等工作的企业,根据其具体情况设计医药销售管理系统。医药管理系统的设计和制作需要建立在调查的数据基础上,系统完成后预期希望实现药品基本信息的处理,辅助个部门工作人员工作并记录一些信息,一便于药品的销售和管理。通过此系统的功能,从事药品零售和批发等部门可以实现一些功能,如:基础信息管理,进货管理,库房管理,销售管理,财务统计,系统维护等。 二.概念结构设计 1.员工属性 2.药品属性 3.客户属性 4.供应商属性 5.医药销售管理系统E--R 图 三.逻辑结构设计 该设计概念以概念结构设计中的E--R 图为主要依据,设计出相关的整体逻辑结构,具体关系模型如下:(加下划线的表示为主码) 药品信息(药品编号,药品名称,药品类别,规格,售价,进价,有效期,生产日期,产地,备注) 供应商信息(供应商编号,供应商名称,负责人,) 员工 姓名 家庭地址 E-maill 电话 员工 编号 年龄 帐号

四.系统各功能模块如何现(数据流实图);1.基本信息管理子系统 基本信息管理子系统 药品信息员工信息客户信息供应商信息2.库存管理子系统 库存管理子系 统 库存查询库存信息出入库登记库存报表3.销售管理子系统 销售管理 销售登记销售退货销售查询 4.信息预警子系统 信息预警 报废预警库存预警 5.财务统计子系统 财务统计 统计销售额打印报表 6.系统管理子系统

系统管理 权限管理修改密码系统帮助 五.数据库设计(E-R图,数据库表结构) 1.药品基本信息表 列名字段数据类型可否为空说明药品编号 药品名称 药品类别 规格 进价 有效期 生产日期 售价 产地 备注 2.员工基本信息表 列名字段数据类型可否为空说明员工编号 性别 身份证号 员工年龄

西门子PLC的以太网通讯及OPC通讯介绍

西門子PLC的以太網通訊及OPC通訊介紹 1.以太網通訊 CAL有很多地方用到以太網通訊,L2,焊機與PLC間通訊等,表檢的成像原理為:在金屬板帶表面沒有缺陷時,反射的光在明視場下很強,而在暗視場的散射光很弱;如有缺陷,則明視場的光強減弱,而暗視場的光強增加。根據這個原理,通過檢測攝像頭裡光強的變化,可檢測出材料表面上的一些物理缺陷。CAL 僅僅用到了它的檢測破孔這一個功能。 下面再來看西門子的以太網通訊,使用以太網通訊處理器可能的連接方式: 我們可以看到不同的通訊方式在PLC裏面需要調用不同的功能塊。 像S7-Connection方式連接的,需要調用SFB12/FB12等來讀取發送數據息,而TCP等連接的,需要FC5等來讀取發送數據。 下面簡單介紹下每種連接特點: Send/receive: iso 連接:ISO傳輸服務通過組態連接提供SEND/REVEICE interface服務在以太網上傳輸數據,此時服務使用的是ISO協議。此通訊速度較快,可是不能實現網絡路由,只能用於局域網通訊。 Send/receive: iso-On-TCP 連接:突破了局域網的限制,可以路由到公網上去;數據重發功能和基於第2層的CRC校驗保證了數據傳輸的完整性和可靠性。 Send/receive: TCP 連接:TCP/IP提供面向連接的數據通訊,數據並不會被打包因而並沒有數據包確認位,在這TCP服務提供了統一的sccket接口到每一個終

端,因而數據塊可以整體發送,這裡區別於iso-On-TCP 連接。 Send/receive: UDP連接:UDP提供簡單數據傳輸,無需確認,與TCP同屬第4層協議。與TCP相比,UDP屬於無連接的協議,數據報文無需確認。 S7通信:S7協議是西門子S7家族的標準通信協議,使用S7應用接口的通信不依賴特定的總線系統(Ethernet,PROFIBUS,MPI)。接口位於ISO-OSI參考模型的第7層,下面圖模型各層的通信方式。 那麼根據表檢的通訊協議規定: Transmission mode:TCP protocol (not S7), PLC will always be the client , Gauge will always be the server. Byte order: use PLC Byte Order ( not x86 byte order ). 我們建立通訊就需選擇send/receive中的TCP連接。 因此,在PLC中做如下配置: 1.打開硬件配置->點擊網絡組態:

西门子以太网通讯设置

西门子以太网通讯 一、功能: S7-200做客户机(主站), S7-300做服务器(服务器) 二、硬件配置: 1.CP243-1 2.CPU224 3.CPU314 4.CP343-1 三、设置步骤: 第一步打开S7-200编程软件MicroWIN,在工具栏中选择以太网向导

第二步读取CP243-1【以太网模块】。注意:PC与S7-200连接正常才能读取到 第三步选择以太网模块

第四步输入【 CP243-1 】的IP地址 192.168.0.50 注意 IP设置与S7-300侧要在同一个网段 第五步配置连接数【最多连接8路】以太网模块要占用地址,建议放在最后插槽连接数:根据实际的连接数配置

第六步 1.选择客户机连接【s7-200为客户机】 2.【03.02】----03:单边通信 02: S7-300CPU模块的插槽号 【10:00】 ----1:固定 0:连接号 00:s7-200CPU模块的位置 3. 输入CP343-1的IP地址【在S7-300的硬件组态中设置】 4. 单击“数据传输”,进入配置窗口。 注意:连接号一定要记住,在编程的时候会应用到

第七步 1.选择向服务器读取数据 2.选择读取数据的大小【最大212个字节】 3.数据的对应关系。【把S7-300“DB10.DBB0开始的10个字节”的数据读取到本地“VB0开始的10个字节”中】 4.配置完后点击【新转输】 注意:传输号要记住,在编程中要应用到

第八步 1. 选择向服务器写入数据 2. 选择写入数据的大小【最大212个字节】 3. 数据的对应关系。【把本地“VB10开始的10个字节”的数据写入到S7-300“DB10.DBB10开始的10个字节”中】 4.配置完后点击确认 注意:传输号要记住,在编程中要应用到

Siemens S CP 以太网模块通讯设置

S7 200 CP243-1以太网模块通讯设置 一、条件与准备 1.带有STEP 7 Micro/WIN32(版本SP1以上)软件的编程设备;本例编程软件版本 为STEP 7 Micro/WIN SP3; 2.一根PC/PPI 电缆、一根以太网直连电缆或交叉电缆; 3.一个CPU22X,符合以下类型要求: CPU 222 REL. 或以上; CPU 224 REL. 或以上; CPU 226 REL. 或以上; CPU 226XM REL. 或以上; 本例为CPU224 REL ; 4.一个CP243-1以太网通讯模块,订货号为6GK7 243-1EX01-0XE0,为新型以太 网通讯模块(相当于之前的CP 243-1 IT :6GK7 243-1GX00-0XE0)。 二、通讯设置 1.启动STEP 7 Micro/WIN SP3编程组态软件 方法一:开始-所有程序-Simatic-STEP 7-MicroWIN STEP 7-MicroWIN,如下图所示: 方法二:双击桌面快捷方式“STEP 7-MicroWIN”图标,如下图所示: STEP 7-MicroWIN 程序启动后,如下图所示: 2.设置通讯方式 用PC/PPI 电缆连接编程设备的USB口及CPU224的COM串口,点击左侧View 视图框内的Set PG/PC Interface图标,如下图所示:

选择PC/PPI cable(PPI),点击Properties,进入属性设置窗口,如下两图所示: 注意Local Connection选项卡里的编程设备接口的设置选择(USB或COM),本例为USB。点击OK按钮确定,回到图5Set PG/PC Interface窗口,点击OK按钮确定,弹出Warning窗口,点击“确定”按钮,完成通讯方式设置。 3.配置CP243-1通讯模块 由于所用的CP243-1以太网通讯模块,订货号为6GK7 243-1EX01-0XE0,是Internet 通讯模块,因此,必须用Internet wizard向导对CP243-1进行配置。 点击左侧Tools图框内的Internet wizard图标,启动Internet wizard配置向导,如下图所示: 或者在项目树视图里选择Wizard-Internet,双击Internet图标,进入Internet wizard配置向导。 Internet wizard配置向导启动后,如下图所示: 点击Next按钮,进入CP243-1以太网模块槽位设置窗口,如下图所示: 可以手动设置,也可以在与CPU建立在线通讯链接的状态下,点击Read Modules 按钮,Internet wizard配置向导能够自动读取联机的CP243-1以太网模块槽位信息,点击Next按钮,进入IP设置窗口,如下图所示: 点击Next按钮进入模块命令字节和通讯链接数量设置窗口,如下图所示: Internet wizard配置向导会自动分配输出地址QB字节给CP243-1模块的命令字节,建议使用默认值,即可无需手动设置,但注意Internet wizard配置向导完成CP243-1模块的配置,同时将CP243-1模块的组态信息下载至CP243-1模块,重新上电生效后,该已分配给CP243-1模块的命令字节QB字节将被占用,即CP243-1模块以后的DO

概念结构理论

概念结构理论 刘壮虎 北京大学哲学系,liuzhh@https://www.wendangku.net/doc/107690394.html, 摘要 本文不从概念的外延和内涵出发,而是将概念作为初始出发点,按照概念结构整体论的观点,在思想—概念—语言三者统一的基础上,建立概念结构的形式理论,讨论其基本性质及其意义,并在此基础上研究若干相关的问题。 实际中使用的推理,比我们通常说的逻辑推理要更广泛,本文建立依赖于语言的相对于主体的推理,并根据这种相对的推理建立相对的一致的概念。通过这种一致的概念,讨论不一致信念集的特征。这种推理也可以部分地用于概念的分类上,本文通过两个简单的实例来说明这种方法的应用。 词项的同义是语言学中的重要问题,按整体论的观点,比同义更一般的不可分辨性更为重要,本文给出了概念的不可分辨性的定义,并讨论其在语言中的表现。不同语言间的翻译也是语言学中的重要问题,本文在概念结构的形式理论基础上的对不同语言间的翻译进行了一些初步的讨论。 本文只是在对最简单的语言进行讨论,通过这样的讨论体现概念结构形式理论的思想、方法和研究框架。 §1前言 一、外延和内涵 概念有外延和内涵,是概念研究中的一个教条。我认为,这个教条是错误的,至少是不准确的。 概念有不同类型的,如亚里士多德就提出了十大范畴,而在三段论中使用的只是实体范畴和性质范畴。在讨论概念的外延和内涵时,也往往集中在个体、类和性质的范围内(与实体范畴和性质范畴相当),就算有所推广,也不是所有的概念。就是在个体、类和性质的范围内,概念有外延和内涵也是存在质疑的,如不可数名词的外延、性质化归为类等问题。 对外延和内涵的形式化的研究中,大多数说的是语句的外延和内涵,如各种内涵逻辑,它们与概念的外延和内涵是完全不同。 将内涵看作可能世界到外延的函数(或者在此基础上的修改),对于处理语句的内涵确实是一种比较好的方法,但将这种方法用于处理概念的内涵和外延,却带

7.3 概念结构设计(S)

7.3 概念结构设计 将需求分析得到的用户需求抽象为信息结构即概念模型的过程就是概念结构设计。它是整个数据库设计的关键。(概念结构是对用户需求的客观反映,不涉及到软硬件环境,也不能直接在数据库管理系统DBMS上实现,是现实世界与机器世界的中介。这一阶段所产生的工作结果一般表现为E-R图的形式,它不仅能够充分反映客观世界,而且易于非计算机人员理解,易于向关系、网状、层次等各种数据模型转换。) 7.3.1 概念结构 在需求分析阶段所得到的应用需求应该首先抽象为信息世界的结构,才能更好地、更准确地用某一DBMS实现这些需求。 概念结构的主要特点是: (1) 能真实、充分地反映现实世界,包括事物和事物之间的联系,能满足用户对数据的处理要求。是对现实世界的一个真实模型。 (2) 易于理解,从而可以用它和不熟悉计算机的用户交换意见,用户的积极参与是数据库的设计成功的关键。 (3) 易于更改,当应用环境和应用要求改变时,容易对概念模型修改和扩充。 (4) 易于向关系、网状、层次等各种数据模型转换。 概念结构是各种数据模型的共同基础,它比数据模型更独立于机器、更抽象,从而更加稳定。 描述概念模型的有力工具是E-R模型。有关E-R模型的基本概念已在第一章介绍。下面将用E-R模型来描述概念结构。 7.3.2 概念结构设计的方法与步骤 设计概念结构通常有四类方法: ·自顶向下。即首先定义全局概念结构的框架,然后逐步细化,如图7.7(a)所示。 ·自底向上。即首先定义各局部应用的概念结构,然后将它们集成起来,得到全局概念结构,如图7.7(b)所示。 ·逐步扩张。首先定义最重要的核心概念结构,然后向外扩充,以滚雪球的方式逐步生成其他概念结构,直至总体概念结构,如图7.7(c)所示。 ·混合策略。即将自顶向下和自底向上相结合,用自顶向下策略设计一个全局概念结构的框架,以它为骨架集成由自底向上策略中设计的各局部概念结构。 其中最经常采用的策略是自底向上方法。即自顶向下地进行需求分析,然后再自底向上地设计概念结构。如图7.8所示。这里只介绍自底向上设计概念结构的方法。它通常分为两步:第1步是抽象数据并设计局部视图,第2步是集成局部视图,得到全局的概念结构,如图7.9所示。

概念结构和逻辑结构

中北大学 数据库课程设计 概念结构和逻辑结构设计 2012 年 6月 3 日

一、概念结构设计 建立系统数据模型的主要工具是实体-联系图,即E-R图。E-R图的图形符号约定如表1-1所示: 表 1-1 E—R图的图形符号 系统的E-R图,如图1-1所示,每个实体及属性如下: 家庭成员:姓名、称呼、密码、出生日期 收入记录:收入项目编号、收入项目名称、收入人员、收入金额、收入日期 支出记录:支出项目编号、支出项目名称、支出人员、支出金额、支出日期 银行信息:银行账号、银行名称、开户人、存款金额、开户日期 1.家庭成员关系E-R图 2.收入记录E-R图

3.支出记录E-R图 4.银行信息E-R图 5.系统E-R图

二、逻辑结构设计 1.概述 数据库逻辑设计将概念结构转换为某个DBMS所支持的数据模型对其进行优化。 在对该家庭理财管理系统的实体关系图进行了分析之后,分别对其实体、联系作了属性的分析,得出这些实体与联系的主键与码值,为以后对该家庭理财管理系统的数据库的物理设计提供了方便与基础。 2.数据模型 2.1基本的数据模型有: 家庭成员(姓名、称呼、密码、出生日期); 收入记录(收入项目编号、收入项目名称、收入人员、收入金额、收入日期); 支出记录(支出项目编号、支出项目名称、支出人员、支出金额、支出日期); 银行信息(银行账号、银行名称、开户人、存款金额、开户日期) ; 2.2经过优化后的数据模型有: 家庭成员(ID,姓名、称呼、密码、出生日期); 银行信息(银行账号、银行名称、开户人、存款金额、开户日期); 使用者(ID,帐号,密码); 收入记录(ID,名称,收入人员,金额,日期); 支出记录(ID,名称,支出人员,金额,日期); 管理收入(家庭成员ID,收入记录ID); 管理支出(家庭成员ID,支出记录ID); 查看收入(家庭成员ID,收入记录ID); 查看支出(家庭成员ID,支出记录ID);

S7400-TCPIP概述本驱动支持西门子的S7系列PLC的以太网TCP协议

S7400-TCP/IP 概述 本驱动支持西门子的S7系列PLC的以太网TCP协议,可以与S7-400PLC 通讯,而且上位机中不需要安装和设置西门子的网络软件包SIMATIC NET和STEP7等软件,不需要Set PG/PC Interface 的支持。 硬件连接与配置 S7-400PLC与组态王通过以太网的方式通讯,通讯之前需要进行如下设置: ?确认计算机中安装有以太网卡,并与PLC 连接到同一网络中。 ?通过Step7编程软件为通讯模块(CP443-1)设定IP地址和子网掩码,并下传到PLC中,如IP地址(172.16.2.72)、子网掩码(255.255.255.0)。 ?为计算机设定IP地址和子网掩码,如IP地址(172.16.2.1)、子网掩码(255.255.255.0)。 ?使用ping 命令,保证能ping 到PLC 站。 组态王设置 1、定义组态王设备 组态王定义设备时请选择:PLC\西门子\S7-400系列\TCP/IP 或者: PLC\西门子\S7-300系列(Profibus)\TCP/IP 2、设备地址 设备地址格式:PLC的IP地址:CPU槽号,如:172.16.2.72:3 说明: PLC的IP地址:即为通过Step7 编程软件为通讯模块(CP443-1)设定的IP地址,详细请查看如何设置PLC的IP地址和子网掩码 CPU槽号:即PLC的CPU模块在机架中的槽号,如下图CPU 414-2DP 的槽号为3。

3、组态王数据词典-IO变量定义1)、组态王中寄存器列表 2)、寄存器特殊说明:

?组态王中定义的寄存器的通道范围是指该寄存器支持的最大范围,实际范围由PLC中的程序确定,如果组态王中定义的寄存器通道范围超出了PLC的实际范围,则在运行时组态王信息窗口会提示(超出范围的)寄存器读失败。 ?组态王中定义的DB寄存器序号、数据类型必须与PLC中定义的保持一致,否则运行系统读上来的数据有可能是错误的。比如,PLC中DB块的定义为: DB1.0(INT),DB1.2(UINT), DB1.4(REAL),DB1.8(BYTE),则在组态王中定义变量时寄存器序号和数据类型对应为DB1.0(SHORT),DB1.2(USHORT), DB1.4(FLOAT),DB1.8(BYTE)。 ?对于BIT数据类型,I Q M寄存器的定义方式为xx.yy, xx为对应字节的通道,yy为其中位的通道,范围0-7;DB寄存器的定义方式为xx.yy.zz,xx为DB 块号,yy为对应块中地址序号, zz为其中位的通道号,范围0-7。 3)、寄存器使用举例:

结构设计中的概念设计与结构措施一

1.概念设计的重要性 概念设计是展现先进设计思想的关键,一个结构工程师的主要任务就是在特定的建筑空间中用整体的概念来完成结构总体方案的设计,并能有意识地处理构件与结构、结构与结构的关系。一般认为,概念设计做得好的结构工程师,随着他的不懈追求,其结构概念将随他的年龄与实践的增长而越来越丰富,设计成果也越来越创新、完善。遗憾的是,随着社会分工的细化,大部分结构工程师只会依赖规范、设计手册、计算机程序做习惯性传统设计,缺乏创新,更不愿(不敢)创新,有的甚至拒绝对新技术、新工艺的采纳(害怕承担创新的责任)。大部分工程师在一体化计算机结构程序设计全面应用的今天,对计算机结果明显不合理、甚至错误而不能及时发现。随着年龄的增长,导致他们在大学学的那些孤立的概念都被逐渐忘却,更谈不上设计成果的不断创新。 强调概念设计的重要,主要还因为现行的结构设计理论与计算理论存在许多缺陷或不可计算性,比如对混凝土结构设计,内力计算是基于弹性理论的计算方法,而截面设计却是基于塑性理论的极限状态设计方法,这一矛盾使计算结果与结构的实际受力状态差之甚远,为了弥补这类计算理论的缺陷,或者实现对实际存在的大量无法计算的结构构件的设计,都需要优秀的概念设计与结构措施来满足结构设计的目的。同时计算机结果的高精度特点,往往给结构设计人员带来对结构工作性能的误解,结构工程师只有加强结构概念的培养,才能比较客观、真实地理解结构的工作性能。 概念设计之所以重要,还在于在方案设计阶段,初步设计过程是不能借助于计算机来实现的。这就需要结构工程师综合运用其掌握的结构概念,选择效果最好、造价最低的结构方案,为此,需要工程师不断地丰富自己的结构概念,深入、深刻了解各类结构的性能,并能有意识地、灵活地运用它们。 2.协同工作与结构体系 协同工作的概念广泛存在于工业产品的设计和制造中,对于任一个工业产品,我们均不希望其在远未达到其设计寿命(负荷、功能)时,它的某些部件(或零件)即出现破坏。对于建筑结构,协同工作的概念即是要求结构内部的各个构件相互配合,共同工作。这不仅要求结构构件在承载能力极限状态能共同受力,协同工作,同时达到极限状态,还要求他们能有共同的耐久寿命。结构的协同工作表现在基础与上部结构的关系上,必须视基础与上部结构为一个有机的整体,不能把两者割裂开来处理。举例而言,对砖混结构,必须依靠圈梁和构造柱将上部结构与基础连接成一个整体,而不能单纯依靠基础自身的刚度来抵御不均匀沉降,所有圈梁和构造柱的设置,都必须围绕这个中心。 对协同工作的理解,还在于当结构受力时,结构中的各个构件能同时达到较高的应力水平。在多高层结构设计时,应尽可能避免短柱,其主要的目的是使同层各柱在相同的水平位移时,能同时达到最大承载能力,但随着建筑物的高度与层数的加大,巨大的竖向和水平荷载使底层柱截面越来越大,从而造成高层建筑的底部数层出现大量短柱,为了避免这种现象的出现,对于大截面柱,可以通过对柱截面开竖槽,使矩形柱成为田形柱,从而增大长细比,避免短柱的出现,这样就能使同层的抗侧力结构在相近的水平位移下,达到最大的水平承载力;而对于梁的跨高比的限制,一般还没有充分认识到。实际上与长短柱混杂的效果一样,长、短梁在同一榀框架中并存,也是极为不利的,短跨梁在水平力的作用下,剪力很

西门子以太网(S7协议)通讯

西门子以太网(S7协议)通讯 一、概述 西门子支持多种协议,包括DP协议,FMS协议,S7协议,当使用力控通过以太网S7协议访问设 备时,需要安装西门子SIMATIC NET5.0的相应软件。 二、硬件配置 安装网卡 1、硬件安装:请参照西门子说明书,注意地址设置。 2、板卡软件设置:打开PG/PC界面,(“开始”菜单或“控制面板”中),点击INSTALL按钮,弹 出Install/Remove Interface对话框,在Selection的选项中,选择相应的板卡,点击Install 安装。安装完成后,可在控制面板的系统项中检查是否有冲突。 三、通讯配置 运行SIMATIC NET PB soft s7中的COML S7,生成新的.TXT文件 1、在network type中选择TCP/IP 2、在name栏中,键入一个S7 连接名,此名代表一个PLC站点,比如testtcp。 3、在VFD栏中,键入REQ(或VFD)

4、在Remote Addr键入需要访问的PLC的IP地址,比如202.168.0.1。 5、Local TSAP键入1.00(缺省) 6、Remote TSAP为四位16进制数字,中间以“.”隔开。第二位数字表示远程站点的类型:2-OS, 1-PG,0-PS;第三位数字表示PLC的CPU的RACK号,第四位数字表示CPU的SLOT号,一般为:02.02。如下图: 7、在File菜单中,选择 Generate Binary DB As 生成二进制数据库。见下图:

四、网卡的配置 重新进入PG/PC界面。选择相应的网卡为S7ONLINE (STEP 7) -→TCP/IP-→******方式。如下图: 点击Properties弹出Propeities界面: 在SAPI S7 (Protocol)页中,点击Search,查找并选择在COML S7中生成的相应的 *.ldb文件。 图形如下:

结构概念体系

结构概念体系现今发展的优点与不足 ——以中银大厦和悉尼歌剧院为例 建筑与土木一班王凯林141604010033 摘要:结构是建筑物的基本受力骨架。无论工业建筑、居住建筑、公共建筑或某些特种构筑物,都必须承受自重、外部荷载作用、变形作用以及环境作用。对结构的基本功能要求是:可靠、适用、耐久,以及在偶然事故中,当局部结构遭到破坏后,仍能保持结构的整体稳定性。随着科学技术的迅速发展,各类学科的分工越来越细,在土木工程专业范围内建筑力学、材料力学、建筑学、城市规划、结构、地基基础、施工组织、施工技术、房屋设备等许多学科发展都很快。对于结构工程师,也应具备必要的建筑设计知识,在建筑设计的方案阶段,主动考虑并建议最适宜的结构体系方案,使之与建筑功能和造型有机结合,才能使建筑结构达到完美地统一。所以,各专业相互渗透、密切配合,懂得各种组合结构对工程带来的结构稳定性,经济利益等等是是十分重要的。 关键词:结构概念体系;缺点;优点 一、不足之处——以悉尼歌剧院为例

1.1悉尼歌剧院简介 凡是去澳大利亚旅游的人,没有不去悉尼的;去悉尼,必然会去参观悉尼歌剧院。可以这样说,悉尼歌剧院现在是悉尼甚至是澳大利亚的一个标志。悉尼歌剧院位于悉尼湾一侧的班尼朗半岛上,距港湾大桥很近,位置十分显要,是各国船只进出港时必经之地。它不同于一般方盒子式房屋组成的建筑群,而是在坚实平整的基座上建造了几组活跃起伏的壳体屋盖组成的、造型奇特的建筑群,像群帆泊港,又似白鹤飞翔,格外引人注目。 应该说,从建筑的角度看,它是很有特色的。8个壳体分成两组,每组4个,分别覆盖2个大厅;另外有2个小壳体置于餐厅之上。两组壳体对称互靠,外贴乳白色面砖,给人以丰富的联想:好像白帆,又如贝壳,姿同海浪,貌了以莲花。这个杰作出自38岁的丹麦建筑师伍重之手,它是从30个国家参加竞赛的二百多个建筑方案中脱颖而出的,一举夺标,不可不称之出类拔萃。尽管有人批评它是功能迁就形式,但它能突破传统的建筑形式,标新立异,刻意创新,大家从建筑设计的角度上大力赞美它,应该说还是不过分的。 悉尼歌剧院共耗时14年,斥资1200万澳币,于1973年10月20日正式竣工开幕。歌剧院内部有许多地方是用法国进口的玻璃所镶嵌,配上澳洲独有的建材材料,其内部建筑结构则是仿效玛雅文化和阿兹特克神庙。外面的玻璃是由法国制造的双层玻璃──素色及黄玉色,共有700种尺寸、2000片。悉尼歌剧院是世界著名艺术表演场地,每年举办约2400次活动,曾邀请纽约爱乐、德国碧娜.鲍许乌帕塔舞蹈剧场(Tanztheatre Wuppertal Pina Bausch)、菲利浦.葛拉斯乐团(The Philip Glass Ensemble)等国际团体,并获得伊丽莎白女王、美国总统福特、柯林顿、南非总统曼德拉、联合国前安理会总理安南等众多国际名人造访,为歌剧院增添许多光采。2007年被联合国教科文组织评为世界文化遗产。[1] 1.2 结构上存在的不足 不过,这位杰出的建筑师对悉尼歌剧院的结构方案却考虑的太少了。这个建筑方案中选后,邀请世界著名的结构工程师帮助作结构设计,结果经过近三年的研究,得出的结论是:只能放弃它的壳体方案。为什么呢?因为悉尼歌剧院的建筑方案虽然好得无以复加,但其结构方案有一个致命的缺点:选错了结构型式。大家知道如果壳体屋盖都是凸面向上平放,当受重力作 用时,可通过壳体的薄膜压应力来抵抗外荷载;当受风力作用时,所受的向上风吸力,只要小于

西门子以太网通讯模块调用

西门子S7300/400以太网连接程序数据交换方法 一、对于343-1的专门以太网连接模块做通讯的项目由于模块支持较多通讯协议,故推荐使 用使用通讯功能块FC5/FC50 和FC6/FC60 编程 ? TCP 连接 ? ISO-on-TCP 连接 (RFC 1006) ? ISO 连接 ? UDP 连接 ? FDL 连接 通讯功能块FC5 “AG_SEND”和FC6 “AG_RECV”的特点 ? FC5 和 FC6 是异步通讯功能块。 ? FC5 和 FC6 的运行需要几个 OB1 周期。 ? FC5 由输入参数 "ACT" 使能。 ?通讯任务结束由“DONE”或“ERROR”指示。 ? AG_LSEND 和 AG_LRECV 可以通过一个连接同时通讯。 ?可以在 SIMATIC_NET_CP 库"CP 300 > Blocks" 里找到通讯功能块 FC5 "AG_SEND" 和 FC6 "AG_RECV"。 首先在STEP7中的NETCONFIG中进行网络配置,设置好IP后,点需要配置连接的PLC,按 添加一个新的网络连接:在选择好伙伴PLC后添加IS0-on-TCP connection协议 然后再对选择好后的协议进行配置,注意下图中标注的地方按默认就可以

再在程序中调用FC5/FC6块,注意在引脚ID和LADDR处填入上面标识处的参数 如果FC5和FC6的块在原程序中已经被占用,新调入的AG_SEND和AG_RECEIVE需重新命名,其中需填入的参数为: ACT—激活该块工作直到ACT信号消失,BOOL变量 ID—网络配置后主机与伙伴机之间的网络地址,特别注意发射、接收块的ID,主机与伙伴机的ID需相同 LADDR—网络配置后生成的特殊标识,WORD变量 SEND/RECV—指针型位变量,表示从该位开始以后的数据数量,以BYTE为单位 LEN—所传送数据长度,10进制数,以BYTE为单位 DONE/NDR—数据发送/接收成功标志位 ERROR—块运行错误标识,显示的是16进制数,根据代码可以查询故障原因 STATUS—状态标识字,表示块运行状态

西门子以太网通讯设置

西门子以太网通讯一、功能: S7-200做客户机(主站),S7-300做服务器(服务器) 二、硬件配置: 1.CP243-1 2.CPU224 3.CPU314 4.CP343-1 三、设置步骤: 第一步打开S7-200编程软件MicroWIN,在工具栏中选择以太网向导

第二步读取CP243-1【以太网模块】。注意:PC与S7-200连接正常才能读取到

第三步选择以太网模块 第四步输入【CP243-1 】的IP地址192.168.0.50 注意IP设置与S7-300侧要在同一个网段

第五步配置连接数【最多连接8路】以太网模块要占用地址,建议放在最后插槽连接数:根据实际的连接数配置 第六步

1.选择客户机连接【s7-200为客户机】 2.【03.02】----03:单边通信02: S7-300CPU模块的插槽号【10:00】----1:固定0:连接号00:s7-200CPU模块的位置 3. 输入CP343-1的IP地址【在S7-300的硬件组态中设置】 4. 单击“数据传输”,进入配置窗口。 注意:连接号一定要记住,在编程的时候会应用到

第七步 1.选择向服务器读取数据 2.选择读取数据的大小【最大212个字节】 3.数据的对应关系。【把S7-300“DB10.DBB0开始的10个字节”的数据读取到本地“VB0开始的10个字节”中】 4.配置完后点击【新转输】 注意:传输号要记住,在编程中要应用到 第八步 1. 选择向服务器写入数据 2. 选择写入数据的大小【最大212个字节】 3. 数据的对应关系。【把本地“VB10开始的10个字节”的数据写入到S7-300“DB10.DBB10开始的10个字节”中】 4.配置完后点击确认 注意:传输号要记住,在编程中要应用到

概念结构设计

二、概念结构设计(周三上午交) 要求: 给出各个分E-R图,并加以文字描述 给出全局E-R图,并加以文字描述 各分E-R图合并成全局E-R图过程中所作的处理,加以文字描述 1.实体E-R图 图1 员工实体E-R图 员工实体的属性包括员工姓名、性别、编号、所属部名、身份证、地址、联系方式7个属性。

图2 商品实体E-R图 商品实体的属性包括条形码、单价、规格、型号、生产厂家、名称、库存量7个属性。 图3 仓库实体E-R图 仓库实体属性包括总面积、地点、仓库号、名称4个属性。

图4 消费者实体E-R图 消费者实体的属性包括编号、姓名、联系方式、会员等级、会员积分4个属性。 图5 供应商实体E-R图 供应商实体属性包括供应商地址、供应商名称、供应商联系方式、供应商报价4个属性。

2.联系E-R图 图6售卖关系E-R图 售卖关系是发生在商品实体与消费者实体之间的。一个商品可以卖给任何一位消费者,每位消费者可以购买超市中的任何一个商品。它们之间的关系是m:n。 图7取货关系E-R图 取货关系发生在商品与仓库之间。一个仓库可以存放任何一件商品,每一件商品可以存放在任何一个仓库。它们之间的关系是m:n。

图8 供货关系E-R 图 供货关系发生在商品与供货商之间。每个商品可以有不同的供应商供应,每个供应商可以供应商不同的商品。它们之间的关系是m:n 。 图9超市管理系统综合E-R 图 超市管理系统综合E-R 图中存在发生关系的实体有商品、消费者、仓库、供应商4个实体。商品与消费者之间存在着售卖关系。一件商品可以售卖给任何一位消费者。每位消费者可以购买任何一件商品。商品与仓库之间存在着存放和取货关系。一件商品可以存放在任何一个仓库,每个仓库可以存放任何一件商品。商品与供应商之间存在着供货关系。每个商品可以有不同的供应商供应,每个供应商可以供应商不同的商品。

结构力学概念题

1.自由度:确立体系几何位置所需的独立坐标数; 稳定:结构保持原有的平衡形式; 稳定自由度:确定结构失稳时所有可能所变形状态所需独立参数数目; 结构动力自由度:为了确定运动过程中任意时候全部质量的位置所需的独立几何参数的数目;结构静力自由度:指结构独立运动方式的个数; 2.几何组成分析的目的和意义: 3.梁、刚架、桁架、拱、索这些结构的目的、特点、联系和区别?(主要从他们的内力、受力特点出发) 4.虚功原理和能量原理的联系与区别? 5.图乘法与积分法联系与区别? 6.影响线的概念:单位位移荷载作用下某一位置变化规律的图形; 性质:起点至终点,荷载不经过处不绘制弯矩图; 静定结构的内力(反力)影响线是直线或折线,位移影响线是曲线;超静定结构的内力和位移影响线都是曲线; 影响线应用(最值内力和位移)(静力法和机动法) 7.[K]物理意义:K ij表示Δj=1单独作用下引起的沿Δi方向的结点力(考法:求总刚) 8.动力计算:①单自由度:W=(1/mδ)1/2=(k/m)1/2 ②2个自由度:刚:︳k-w2M︳=0 柔度:|uδ-I/w2|=0 9.强迫振动的概念: 10.极限荷载(考点塑性变形,最终破坏是由于结构由几何不变—>几何可变)极限分析方法,塑性铰,破坏结构,三个定理

在结构极限荷载的分析中,上限定理指:平衡条件所求得的荷载≥极限荷载(破坏)下限定理:所求荷载≤极限荷载 结构处于极限状态下应满足平衡、屈服、单向机构三条件。 11.超静定结构的特点:①内力不能由平衡条件唯一确定,需考虑变形条件②非荷载因素只有引起结构变形时才能产生内力③荷载下内力与EI的相对值有关,非荷载下内力与EI的绝对值有关; 12.静定结构的特性:静定结构只有在荷载作用下产生内力,其他作用时只引起位移和变形。静定结构有弹性支座和弹性结点时,内力与刚性支座和刚性结点一样,但位移不同; 13.W≤0 ﹤=﹥无多余约束的几何不变 14.M=EIy″ M=P(δ-y) 15.位移法可以静定也可以超静定; 16.单刚中K ij的物理意义 等效结点荷载的等效原则:结构在等效荷载作用下,结构的结点位移与实际荷载作用下的结点位移相等; (几何不变体系:结构;几何可变体系:机构) 17.静定结构在小变形G=Eε条件下适用 静定结构位移计算:Δ=Δp﹢Δt﹢Δc Δp= Δt= Δc= 18.力矩分配法的概念:

常用建筑结构设计计算软件和结构概念设计

常用结构计算软件与结构概念设计 1、结构计算软件的局限性、适用性和近似性。 随着计算机结构分析软件的广泛应用和普及,它使人们摆脱了过去必须进行的大量的手工计算,使人们的工作效率得以大幅度的提高。与此同时,人们对结构计算软件的依赖性也越来越大,有时甚至过分地相信计算软件,而忽略了结构概念设计的重要性。由于种种原因,目前的结构计算软件总是存在着一定的局限性、适用性和近似性,并非万能。如:结构的模型化误差;非结构构件对结构刚度的影响;楼板对结构刚度的影响;温度变化在结构构件中产生的应力;结构的实际阻尼(比);回填土对地下室约束相对刚度比;地基基础和上部结构的相互作用等等。有些影响因素目前还无法给出准确的模型描述,也只能给出简化的表达或简单的处理,受人为影响较大。加之,建筑体型越来越复杂,这就对结构计算软件提出了更高的要求,而软件本身往往又存在一定的滞后性。正是因为如此,结构工程师应对所用计算软件的基本假定、力学模型及其适用范围有所了解,并应对计算结果进行分析判断确认其正确合理、有效后方可用于工程设计。 2、现阶段常用的结构分析模型 实际结构是空间的受力体系,但不论是静力分析还是动力分析,往往必须采取一定的简化处理,以建立相应的计算简图或分析模型。目前,常用的结构分析模型可分为两大类:第一类为平面结构空间协同分析模型;另一类为三维空间有限元分析模型。 1) 平面结构空间协同分析模型。将结构划分若干片正交或斜交的平面抗侧力结构,但对任意方向的水平荷载和水平地震作用,所有正交或斜交的抗侧力结构均参与工作,并按空间位移协调条件进行水平力的分配。楼板假定在其自身平面内刚度无限大。这一分析模型目前已经很少采用。其主要适用于平面布置较为规则的框架结构、框-剪结构、剪力墙结构等。 2) 三维空间有限元分析模型。将建筑结构作为空间体系,梁、柱、支撑均采用空间杆单元,剪力墙单元模型目前国内有薄壁杆件模型、空间膜元模型、板壳单元模型以及墙组元模型。楼板可假定为弹性,也可假定在其自身平面内刚度无限大,还可假定楼板分块无限刚。该模型以节点位移为未知量,由矩阵位移法形成线性方程组求解。

kepserver与西门子plc通信配置方法

KepServer软件与西门子PLC通信配置方法 (串口或以太网) 一、PLC采用自由口通讯配置方法 1. KepServer配置 (a). 在KepServerEx中新建一个空白工程,添加1个通道,在“Device driver”中选择 【Siemens S7-200】; 说明:如下图,【Siemens S7 MPI:指PLC300】、【Siemens S7-200:指PLC200】、【Siemens TCP/IP Ethernet:PLC200和PLC300均可】。 然后设置与PLC通讯的电脑串口,其它基本采用默认即可,根据需要可调整设置;

(b) 添加一个设备,在“Device Model”选择【S7-200】; 在设置“Device ID”时一定要注意,这个值对应于PLC程序里“通讯”->“远程ID”;如果不对应,将无法通讯;

(c). 添加tsg标签,注意IO地址的格式与以太网方式有点区别,其数据类型必须要在“Data type”中设置才行,同样在上位机配置OPC驱动时也要注意IO点的数据类型;

(d). 配置好后,可以用KepServerEx自带的quick client来调试与PLC通讯是否正常,配置是否正确; 2. iFix组态上位机OPC驱动配置 (a). 打开OPC Tool配置工具,新建空白工程文件,添加opc server、group、Item,注意 所有的Enable均要打勾; 注意:可以用添加多个IO项的方式快速设置;

(b). 配置完成后,点击1:Start按钮,然后点击2:Statistics来进行状态监视,检查通 讯配置是否正常。

结构设计概念设计的区别

结构设计概念设计 概念设计与结构设计有区别吗?答案是肯定的,搞过多年设计的人们大概都记得:刚毕业从事设计的时候,往往一个简单的工程设计我们都无从下手,而让计算某个构件或设计一个单根构件却是轻而易举的事情,为什么呢?原因是我们刚毕业时没有经验、没有结构的整体概念,也就是说我们不会概念设计。 那么概念设计是什么呢?我认为概念设计是依据个人经验,结合建筑功能要求、结构安全等级、抗震设防等级、地质资料、当地材料、当地自然环境等进行的定性设计过程,其概念设计的主要内容包括:确定三缝设置、结构体系、基础形式和埋深、主要构件的几何尺寸等。 结构设计则是概念设计的逆向过程,其设计是依据概念设计的总体要求、力学和数学的原理由定量(内力、配筋、稳定和变形)过度到定性(规范规定的构造要求)的一个过程。 我们可以对两者的设计过程和要求进行对比见下表: ------------------------------------------------------------------ 内容:概念设计:结构设计 ------------------------------------------------------------------ 个人经验:需要丰富的实践经验:需要扎实的理论基础 ------------------------------------------------------------------ 设计过程:先粗后细(确定方案先先细后粗(计算后按构造要:何尺 求估算后设计)寸、估算经济指标) ------------------------------------------------------------------ 知识要求:政策、法规、施工技术、建应用专业成果:规范应用 筑:力学、数学、专业知识、规:经济 ------------------------------------------------------------------ 设计成果:定性:定量 ------------------------------------------------------------------ 主要工作内容:收集分析资料和建筑方案:计算和绘制施工图 ------------------------------------------------------------------ 影响造价的方法:结构体系优选:优化理论的应用 ------------------------------------------------------------------ 影响造价幅度:非常大:一般 ------------------------------------------------------------------ 决定施工的难度:概念设计决定:影响很小 ------------------------------------------------------------------ 设计低质的危害:致命性的整体危害:局部性的不安全 ------------------------------------------------------------------ 从对比表中我们可以看出概念设计的重要性,然而现在我们许多设计人员过于理论化,任何情况下首先讲的是计算结果,而忽视结构构造。甚至于一些单位的总工不参与设计的前期概念设计阶段,而只对着计算书审核设计图纸。我们有些新参加工作的同志有时那着书本和计算书与审核人员较劲。特别是现在在我们这个行业神话了计算机的应用,一切按计算结果设计,这是一种不正常的现象。例如:现在三维结构软件分析的次梁支座负弯距很小,是因为理论计算的支座位移大,而实测的支座位移却比理论计算的结果小的多。 当然不能强调了概念设计的重要性,就轻视设计过程的计算,没有单根构件的安全就没有整体结构的安全,我说的目的是,在我们的设计工作中概念设计和结构设计同等重要。

相关文档