文档库 最新最全的文档下载
当前位置:文档库 › 船舶水动力集成设计系统设计与实现

船舶水动力集成设计系统设计与实现

船舶水动力集成设计系统设计与实现
船舶水动力集成设计系统设计与实现

船舶水动力集成设计系统设计与实现

newmaker

SHIDS(SHIP HYDRODYNAMICS INTEGRATED DESIGN SYSTEM)是中国船舶科学研究中心开发的船舶水动力性能集成设计系统。以大方形系数低速船(以大型、超大型油轮为主)和中等方形系数中高速船(以大中型集装箱船为主)为研究对象,以船型和性能数据库为依托,对航行性能进行预报、评估和优化计算,由快速性、耐波性和操纵性综合观点确定满足用户要求的最合适的船型尺度和形状细节,从而能快速地设计出综合性能优良的船型。

如何将SHIDS系统集成于ANSYS Workbench平台中,充分利用Workbench平台易用、数据交换方便、扩展性强等特点,使SHIDS系统更加实用是设计实现的关键问题。

1. SHIDS系统框架及模块

整个系统包含概念设计模块,船型生成、静水力、阻力预报、自航因子预报、操纵性预报、耐波性预报6个计算模块,线性预览、结果图形查看、文档查看、报表生成、项目管理等辅助功能模块及一个CFD计算接口。

图1 SHIDS系统框架

2. ANSYS Workbench框架及二次开发方法

Workbench框架提供了一个集成环境,允许用户同时运行多个应用程序,并且能实现工程数据和参数在各应用程序间的共享。Workbench框架本身并不包含任何工程应用程序。

框架支持用户化开发,用户可以将自己或第三方的独立的应用程序整合到Workbench中,且与Workbench的版本无关。

图2 Workbench框架的基本构造

解决方案

Workbench用户开发工具允许用户针对某一产品或流程要求而建立起一套独特的工作流程或控制。SDK是Workbench架构下集成其它外部程序的主要接口,脚本和XML提供了在Workbench环境下创建流程控制(Workbench仿真向导)的主要工具。

主界面

Workbench界面中的菜单、工具栏都是以XML的形式组织的。窗口设计的方法是首先将视图按照需要分割成不同的部分,然后在分割的视图区域中加载不同的内容,比如3D图形控件、树形结构、网页、文本文件等。

图1 SHIDS主界面实现

线型生成及预览

线型生成模块提供了几种系列船型的生成算法,模块的输出结果为SHIDS定义的船体型值表。将船体型值表,按照group_id node_id x y z的格式重新组织成ANSYS Workbench 的DM模块所能接受的Coordinate File,利用DM的3D Curve造型功能就可将船体线型图绘出。

水动力性能预报

系统中水动力性能的预报依赖于一组C++编写的动态链接库。用户输入计算程序所需的参数后,首先将参数保存到临时文件中,然后通过相应的计算程序计算并返回结果,最终对结果进行图形化显示。图2为水动力性能计算程序的调用过程。图3为耐波性预报的结果示意图(包括垂荡、纵摇、横摇、阻力增加)。

图2 水动力性能计算过程

图3 耐波性预报的结果示意图

CFD计算接口

系统采用Gambit作为船体CFD分析的前处理器,利用Gambit脚本文件实现计算域网格划分、边界设置等的自动化。利用Fluent进行CFD计算。图4为Gambit计算域网格自动划分后的网格示意图。图5为Fluent计算后的几种CFD结果。

图4 Gambit计算域网格划分

图5 Fluent结果后处理(船体表面压力分布、桨盘面伴流、阻力、波高分布)

用户价值

将SHIDS系统集成于ANSYS Workbench平台中,充分利用了Workbench平台易用、数据交换方便、扩展性强等特点,使SHIDS系统更加实用。性能计算模块采用的计算方法大多是近期一流的成熟成果,特别是大方形系数低速船和中等方形系数中高速船的性能计算基于两大船模系列试验数据,结果可靠实用、先进性强。CFD计算接口可以对生成船型快速进行CFD分析。系统的实现为Workbench平台提供了船舶初步设计的解决方案。

客户评价

ANSYS Workbench Environment(AWE)是ANSYS公司开发的新一代前后处理环境,并且定为于一个CAE协同平台,该环境提供了与CAD软件及设计流程高度的集成性,并且新版本增加了ANSYS很多软件模块并实现了很多常用功能,使产品开发中能快速应用CAE技术进行分析,从而减少产品设计周期、提高产品附加价值。

将SHIDS集成与ANSYS Workbench环境中,一方面可以为ANSYS Workbench提供船舶初步设计的解决方案;另一方面也增强了SHIDS系统的实用性,并且在Workbench的

框架中,SHIDS与ANSYS很多软件模块之间很容易实现数据传递及共享。(end)

船舶动力装置课程设计

船舶动力装置课程设计 一、设计目的 1、进一步掌握舰船动力装置的基本概念和基本理论; 2、掌握船机浆设计工况选择的理论和方法; 3、掌握工况船舶采用双速比齿轮箱速比优先选计算方法; 4、掌握主机选型的基本步骤方法; 5、初步掌握船机浆工况配合特性的综合分析方法。 二、基本要求 1、独立思考,独立完成本设计; 2、方法合适,步骤清晰,计算正确; 3、书写端正,图线清晰。 三、已知条件 1、船型及主要尺寸 (1) 船型:单机单桨拖网渔船 (2) 主尺度 序号尺度单位数值 1 水线长M 41.0 2 型宽M 7.8 3 型深M 3.6 4 平均吃水M 3.0 5 排水量T 400.0 6 浆心至水面距离M 2.5 (3) 系数 名称方形系数Cb 菱形系数Cp 舯刻面系数数值0.51 0.60 0.895 (4) 海水密度ρ =1.024T/M3 2、设计航速 状态单位数值 自航KN 10.4 拖航KN 3.8 3、柴油机型号及主要参数 序号型号标定功 率(KW) 标定转速 (r/min) 柴油消耗率 (g/kw·h) 重量(kg) 外形尺寸(L× A×H)mm 1 6E150C-1 163 750 238 2500 2012×998× 1325 2 6E150C-1 220 750 238 3290 2553×856× 1440 3 8E150C-A 217 1000 228 2700 2065×1069× 1405 4 8E150C-A 289 1000 228 3500 2591×957× 1405

5 6160A-13 164 1000 238 3900 3380×880× 1555 6 X6160ZC 220 1000 218 3700 3069×960× 1512 7 6160A-1 160 750 238 3700 3380×880× 1555 8 N-855-M 195 1000 175 1176 9 NT-855-M 267 1000 179 1258 1989×930× 1511 10 TBD234V8 320 1000 212 4、齿轮箱主要技术参数 序号型号 额定传递能 力kw/(r/min) 额定输入 转速 (r/min) 额定扭 矩N*m 额定推 力KN 速比 1 300 0.184--0.257 750--1500 1756.2-- 2459.8 49.0 2.04,2.5,3 ,3.53,4.1 2 D300 0.184--0.257 1000-2500 1193.64- -2459.8 49.0 4,4.48,5.0 5,5.5,5.9, 7.63 3 240B 0.18 4 1500 1756 30--50 1.5,2.3 4 SCG3001 0.16--0.22 750--2300 30--50 1.5,2.3,2. 5,3.5 5 SCG3501 0.257 750--2300 1.3,2.3,2. 5,3.5,4 6 SCG3503 0.25 7 1000-2300 4.5,5,5.5, 6,6.5,7 7 SCG2503 0.184 1000-2300 4,4.5,5,6, 6.5,7 8 GWC3235 0.45--1.35 --1800 4283--12 858 112.7 2.06,2.54, 3.02,3.57, 4.05,4.95 5、双速比齿轮箱主要技术参数 序号型号额定传递能 力 kw/(r/min) 额定输入转 速(r/min) 额定推力 KN 速比 1 GWT36.39 0.42--1.23 400--1000 98.07 2--6 2 GWT32.35 0.52--1.32 --1800 112.78 2--6 3 MCG410 0.74--1.8 4 400--1200 147.0 1--4.5 4 S300 0.18--0.26 750--2500 49.03 2.23,2.36,2.52,2.56

船舶综合电力系统

浅析船舶综合电力系统 1.引言 船舶综合电力系统是船舶动力的发展方向,是造船技术发展史上的又一个革命性的跨越,其主要特点是将推进动力与电站动力合二为一。该项技术正在逐步成熟、完善。以美、英、法为代表的发达国家率先引入综合电力系统这一概念,并积极开展研究、试验和应用到船艇。 2.综合电力系统概述 综合电力系统的思想基础是降低未来船舶的总成本,优化船舶总体、系统和设备的组成。其设计理念是突出系统化、集成化和模块化。在船舶平台上的具体实现途径是将全船所需的能源以电力的形式集中提供,统一调度、分配和管理。 美国海军提出的综合电力系统主要包括发电、配电、电力变换、电力控制、平台负载、推进电机、能量储存等七个模块。其中,发电模块将其它形式的能量转化为电能,经全船环形电网向各区域配电系统供电;电力控制模块对配电模块实行电能分配和监控;配电模块将电力输送到电力负荷中心,再分配到各用电设备;电力变换模块将一种形式的配电模块转化为另一种形式的配电模块;推进电机模块用于船舶推进;平台负载模块是一个或多个配电模块的用户;能量储存模块用于储存电能,维持整个供电系统的稳定。 采用综合电力系统的船舶与传统船舶比较,具有的主要优势为: 便于采用分段和模块化建造,使用维护费用低,经济性好;噪音低,可提高船舶的安静性和舒适性,提高舰艇的战斗力和生命力;调速性能好,控制方便,倒车简便、迅速,提高船舶的机动性;布置灵活、设计方便、可靠性高,可维修性好、生命力强;便于实现自动化,减少船员;适用性强,可广泛采用各种电子设备和先进的推进技术,对于舰艇而言,可以使用诸如激光武器、电磁炮等高能武器。 3.综合电力系统的发展现状 近十来年,船舶的电力推进技术已进入应用阶段。目前,不同类型的船舶,如一些科考船、破冰船以及邮轮采用了电力推进系统。推进电机采用直流、交流同步电动机或交流感应电动机。研究报告显示,虽然商船的综合电力推进系统提高了船的建造费用,但其运行和支持费用,及其生命周期里的整个费用却降低了。上世纪九十年代,一些商船业公司,如ALSTOM、ABB、SIEMENS等,已形成了企业内部的商船业电力推进标准。有人统计,八十年代后期建造的1000吨以上的商船中采用柴-电推进的约占25%,到九十年代中期,此类船舶中有35%以上采用电力推进,且该比例正在呈逐年上升的趋势。据统计,到2000年,全世界商船电力推进的装机总容量约为4200MW。 美国海军于1980年建立了综合电力驱动计划,希望通过将船舶日用电力系统和推进电力系统合而为一,进一步提高战船的性能。1990年后,美国海军将注意力转到提高船舶的能购性上,研究计划转为综合电力系统(IPS:Integrated Power System)项目。针对当时水面战斗舰艇(SC-21,现转型为DD(X))的概念设计,美海军完成了费用和效能评估。2002年4月29日,美国海军宣布英格尔斯造船公司、诺斯罗普格鲁曼船舶系统公司为DD(X)的设计主承包商,设计承包合同总价款为28亿多美元,执行期至2005财政年度。DD(X)设计合同的签署意味着美国海军水面舰艇革命性变革的开始。综合电力系统强调的主要技术目标为增加可操作性和支持柔性设计。美海军计划2003年开始,用3年多时间完成11个工程开发模块的建造和试验,并通过充分的陆试和海试去降低技术风险,争取2005年技术定型,2012

船舶冷却水系统设计指导

编制大纲: 需要补充的内容:1,水泵(定速离心泵,变频泵);2,温控阀;3,节流孔板;4,热平衡计算的理论公式,温升热量水量公式;5,特殊案例的区分(温控阀,板冷,变频泵对整个冷却系统形式选定的影响;分离封闭式,高低温混流式,配置变频海水泵没有温控阀的中央式。)6,利用目前的实船进行计算公式的验证,还有一些经验系数的反推导(特别是一些厂家自己的经验系数)7,膨胀水箱;8,补充开发设计需要的部分,参考《船舶管舾装设计工艺实用手册》 前言(目的) 以《船舶设计实用手册---轮机分册》---国防工业出版社为蓝本,将其中的冷却水系统做了进一步内容扩展和深化描述,提供给详细设计人员参考。 参考《船舶管舾装设计工艺实用手册》,补充一部分工程计算公式; 系统发展核心: 1,稳定调节; 2,节省能源,余热循环利用; 3,节省成本,替代方案的方式; 关键词: 将冷却水稳定可靠的输送到需要冷却的设备中:这个可靠和稳定来源于几个参数:稳定的压力,稳定的流量,稳定的温度,稳定的水质(这个水质包含化学成分稳定不结垢,物理成分稳定,极少气泡,气泡会影响热交换器的效率)

冷却水系统 目录 1,范围 2,冷却水系统的基本形式 3,系统形式的选择 4,冷却水系统实例 5,中央冷却系统热平衡计算 6,冷却水系统的主要设备配置要点 7,制淡装置(造水机) 8,具有冰区航行船级符号船舶的冷却水系统特殊要求9,海水进水阀操纵位置的要求 10,冷却水系统的温控阀 11,冷却水系统的节流孔板 12,冷却水系统的泵 13,冷却水系统的膨胀水箱

冷却水系统 1,冷却水系统的基本形式 冷却水系统的基本形式见表1, 注解: (1),所谓开式和闭式冷却水系统是指柴油机本身冷却水系统而言。开式系统是指柴油机本身直接用舷外海水或者江水冷却。如今除江河小船之外,基本不采用开式系统。海拖(海洋港口拖轮)还在使用海水直接冷却柴油机。(潜在问题:船内海水泄露,在及柴油机连接的弹性管配置不正确时容易出现,已有其他公司的海拖因为这个弹性管破裂造成沉船) (2),在闭式系统中,柴油机是用淡水冷却,而淡水在经过热交换器用舷

船舶动力装置课程设计苏星

、设计目的 1、进一步掌握舰船动力装置的基本概念和基本理论; 2、掌握船机浆设计工况选择的理论和方法; 3、掌握工况船舶采用双速比齿轮箱速比优先选计算方法; 4、掌握主机选型的基本步骤方法; 5、初步掌握船机浆工况配合特性的综合分析方法。 、基本要求 1、独立思考,独立完成本设计; 2、方法合适,步骤清晰,计算正确; 3、书写端正,图线清晰。 三、已知条件 1、船型及主要尺寸 (1)船型:单机单桨拖网渔船 (2)主尺度 (3)系数 ⑷海水密度P =M3

2、设计航速 3、柴油机型号及主要参数

4、齿轮箱主要技术参数 5、双速比齿轮箱主要技术参数 1、船体有效功率,并绘制曲线

2、确定推进系数 3、主机选型论证 4、单速比齿轮箱速比优选,桨工况特性分析 5、双速比齿轮箱速比 6、综合评判分析 五、参考书目 1、渔船设计》 2、船舶推进》 3、船舶概论》 4、船舶设计实用手册》(设计分册) 六、设计计算过程与分析 1、计算船体有效功率 ⑴ 经验公式:EHP=(EOA E)AV L 式中:EHP ---- 船体有效马力, A 排水量(T),L 船长(M)。在式①中船长为时,A E的修正量极微,可忽略不计。所以式①可简化为EHP=EA V L。 根据查《渔船设计》 5、可知EO 计算如下:船速v= X 十=S, L=,C p=;V/(L/10)3= - /(41 - 10)3=;v/ Vgl=VX 41)=; 通过查《渔船设计》可得E0=。 (2)结果:EHP=E(O AXV L = 2、不确定推进系数 (1)公式PX C=P/ P s=n c Xn sXn pXn r 式中P E:有效马力;P s:主机发出功率;n C:传动功率;n S:船射效率;n P: 散水效率;n r :相对旋转效率。 2)参数估算 伴流分数:w=-= 推力减额分数:由《渔船设计》得t= -=

论述船舶动力装置设计的主要要求

论述船舶动力装置设计的主要要求: 一.总体设计要求 动力装置是一套很复杂的机电设备,各个机械设备和系统之间互相联系又互相制约。对设计的要求也是多方面的,总的要求主要可以简介为如下几个方面。1.技术性与经济性 谓技术性是指船舶能满足预定的使用要求。对运输船舶而言,主要是从动力装置设计方面考虑如何保证运输能力,如装载能力、航速、装卸效率等;对于专用的作业船舶和海洋平台,要能具备完成特定的施工或作业的能力,并能保证作业质量。保证新船的适用性是设计中处理各种矛盾时首先要考虑的因素。 提高船舶的经济性是设计工作的重要目标。船舶的经济性涉及三个基本要素,即建造成本、营运开支和营运收入。设计中的技术措施是否恰当,决策是否正确,对船舶的经济性会产生很大的影响。设计工作中必须把经济性放在十分重要的地位来考虑。有时,一项好的技术措施可能会节约大笔的投资,因此对不同用途的船舶,对于动力装置的选型就非常重要。但是,一般来说,动力装置的各项要求,往往是相互联系、相互影响的。把一个要求的指标提高,往往会使另一个要求的指标被迫降低。设计中经常遇到的是技术性能和经济性相互矛盾的情况,这就需要进行技术与经济的综合评估或论证,使之得到合理的统一。经济是技术发展的基础和动力,技术是实现经济目的的手段和工具,两者相互渗透、相互推动。 2.安全与可靠性 船舶的安全是关系到人命和财产以及环境污染的重大问题。因此,安全性是船舶的一项基本质量指标。为保证船舶的安全,政府主管机关制定了船舶设计和建造的法规,国际组织(例如IMO——国际海事组织)通过政府间的协定,制定各种国际公约和规则。这些法规公约和规则对船舶的安全措施提出了全面的要求。政府法规是强制执行的,凡是船籍国政府接受、承认或加入的国际公约和规则都纳入在法规之中,船舶设计必须满足这些法规的要求。 此外,入级船舶还要满足船级社制定的入级与建造规范,规范的规定主要也是基于船舶安全方面的考虑。总之.动力装置设计中必须严格遵守法规和规范的规定,满足法规和规范的要求,这是保证船舶安全的最基本的措施。 所以在具体的船舶动力装置选型设计当中,必须要有一个全局和综合的观念,相关和协调的思路去考虑问题,充分论证,才能做出一个合理的船舶设计。 二.船舶设计阶段的划分和工作内容 船舶总体设计的任务是针对设计任务规定的要求,制定一个既切实可行又效果良好的的工程设计。 总体设计,技任务的性伍,可分为两大类,一种叫发展性设计,一种叫生产件设计。 根据用船部门的发展计划提出,用船部门需要一种新船型,这种新船具有更复杂和更高级的要求,设计工作不能以某船为仿效典型而必须针对任务的要求进行大量的分析工作,运用不同的技术和措施,提出可能的方案,以便进行对比,然后选取其中性能优良的设计方案,这种设计称为发展性设计。对于发展性设计,其特点是要求严格,但技术上的具体约束比较小,例如机器设备的选择有较大自由度,有些特殊性的没备在建造前或建造间可能还要经过试验或试制等,它往往是性能先进的产品,常常要采用新技术和措施,因而常有一定程度的试验性.按此设计建成的第一艘新船称为原型船。原型船建成后要经过试用考验,从实践中检查新技术的使用是否成功,各种技术措施的实际性能是否与预计相符等。对试用中出现的问题和缺点,必须加以改进和再试研。如试用结果是良好的,说明设计是成功的,可以正式投入生产。如暴露出较大问题,则设计必须作较大的修改。如问题很严重,例如性能不稳定或离设汁指际较远,

电子信息系统机房项目冷却水系统设计

在现代科学技术高度发展的社会里,计算机越来越广泛地应用于各个领域。计算机系统只有可靠的运行,才能发挥其效益,而计算机的可靠运行,需要一个比较严格的物理环境。如供电、配电、温度、湿度、洁净度等,这样就需要有一个现代化的机房系统满足计算机对环境的要求。各种类型的互联网数据中心(IDC ,Internet Data Center ),企业数据中心,灾备中心(或称灾备恢复中心,BRC,business recovery center )等都属于电子信息系统机房(数据中心),在国民经济及人们的日常生活中,越来越发挥其重大作用。在电子信息系统机房项目中,温度要求恒定,常年需要使用制冷设备,冷却水系统设计和冷却塔设计有一定特点。 1. 电子信息系统机房(数据中心)项目制冷特点及节能需求 1.1 电子信息系统机房项目发热及制冷特点。 电子信息系统机房项目的发热主要来源于机房内的服务器、网络设备等IT 设备在运行过程中散发的热量,以及变电所、配电室、UPS 电池室等电气设备运行过程中散发的 热量。这些设备发热的特点是设备集中,发热量大,连续运行,并且一年四季发热量基本保持恒定。要保持机房内和电气房间内的空气温度在一定的范围内,这就需要大量的冷风将热量带走。数据中心一般采用机房专用空调,这是考虑到IT 设备的特点,在相同制冷量的基础上,风量远大于舒适性空调,能够迅速、有效地带走IT 设备散发的热量。由于IT 设备和电气设备一年四季发热量基本保持恒定,使得数据中心项目对制冷量的需求一年四季也基本保持恒定,制冷系统需要常年稳定运行。 1.2 机房冷通道、热通道的设置与节能。 由于整个制冷系统需要常年运行,如何节能显得尤为重要。在工艺设备布置上,当机柜内的设备为前进风/ 后出风方式冷却时,机柜采用面对面、背对背的布置方式。机柜面对面布置形成冷风通道,背对背布置形成热风通道,配合合理布置送回风口取得合理气流组织,提高空调设备的使用效率,能够降低空调设备的功耗。 冷通道内温度可以设置为18?27 C,相应热通道温度可以设置为29?38 C,此运行工 况完全能够保证机柜正常运行,且提高了回风温度后,可以提高末端空调水-空气侧换热效率。冷、热通道的分隔,使得制冷系统可以采用中温冷冻水供冷,这样便提高冷冻机效率,整个制冷系统实现节能运行。中温冷冻水常采用供水温度12 C ~13 C,回 水温度17 C ~18 C,根据具体项目不同技术参数要求。合理选择中温冷冻水供回水温度,与冷冻机相匹配,可以节能。一般是采用温差为6C的大温差供回水,这样可以 减小循环水量,缩小管道直径。 2. 冷却水系统设计 2.1 冷却塔自由冷却的使用与节能由于数据中心项目的机房可以采用中温冷冻水,这就使得利用冷却塔冬季自由冷却以及过渡季节部分自由冷却有一定的可实施性及方便性。当采用闭式冷却塔时,冬季

船舶动力装置课程设计说明书

《船舶动力装置原理与设计》 说明书 设计题目:民用船舶推进轴系设计 设计者:陈瑞爽 班级:轮机1302班 华中科技大学船舶与海洋工程学院 2015年7月

一.设计目的 主机与传动设备、轴系和推进器以及附属系统,构成船舶推进装置。因此,推进装置是动力装置的主体,其技术性能直接代表动力装置的特点。推进装置的设计包括轴系布置、结构设计、强度校核以及传动附件的设计与选型等,而尾轴管装置的作用是支承尾轴及螺旋浆轴,不使舷外水漏人船内,也不能使尾轴管中的润滑油外泄,因此,尾轴管在推进系统设计中意义重大。本设计是根据指导老师给出的条件,对船舶动力装置进行设计,既是对课程更深入的理解,也是对自身专业能力的锻炼。 二,设计详述 2.1:布置设计 本船为单机单桨。主机经减速齿轮箱减速后将扭矩通过中间短轴传给螺旋桨轴和螺旋桨。本计算是按《钢质海船入级规范》(2006年)(简称《海规》)进行。 因此,我们将轴系布置在船舶纵中剖面上,其中,轴的总长为9000mm,轴系布置草图及相关尺寸,见图1。 图1 2.2:轴系计算

(一):已知条件: 1.主机:型号:8PC2-6 型式:四冲程,直列,不可逆转,涡轮增压,空冷船用柴油机 缸数:8 缸径/行程:400/460mm 最大功率(MCR):4400kW×520rpm 持续服务功率:3960kW×520rpm 燃油消耗率:186g/kW·h+5% 滑油消耗率:1.4g/kW·h 起动方式:压缩空气3~1.2MPa 生产厂:陕西柴油机厂 2.齿轮箱:型号300,减速比3:1。 3.轴:材料35#钢,抗拉强度530MPa,屈服强度315MPa。 4.键:材料45#钢,抗拉强度600MPa,屈服强度355MPa。 5.螺栓:材料35#钢,抗拉强度530MPa,屈服强度315MPa (二):轴直径的确定 根据已知条件和“海规”,我们可以计算出轴的相关数据,计算列表见表3.1: 表3.1轴直径计算 考虑到航行余量,轴径应在计算的基础上增大10%。故最终取297.70 mm 根据计算结果,取螺旋桨轴直径为379.96 mm,中间轴直径为297.70mm。 上表螺旋桨直径计算中,F为推进装置型式系数

船舶动力装置原理与设计复习思考题(思考题部分)

船舶动力装置原理与设计复习思考题(思考题部分)

船舶动力装置原理与设计复习思考题 一、课件思考题部分 第1章 1、如何理解船舶动力装置的含义?它有哪些部分组成? 答: 船舶动力装置的含义:保证船舶正常航行、作业、停泊以及船员、旅客正常工作和生活所必需的机械设备的综合体。 组成部分: 1)推进装置:包括主机、推进器、传动设备。 2)辅助装置:发电机组、辅助锅炉、压缩空气系统。 3)机舱自动化设备。 4)全船系统。 5)船舶设备,主要指甲板机械。 2、简述船舶动力装置设计的特点。 答: 1)须符合船舶的特殊使用条件——船用条件,包括环境条件、空间条件; 2)须设计成具有必要的目标任务条件和合适的保障条件,包括营运条件、作业条件、研究 条件及工作条件、生活条件和生存条件。 3)须全面地综合地进行设计、进行通盘考虑,包括动力装置与总体性能、动力装置与其他 专业、动力装置内部各子系统之间的综合平衡和匹配,以实现预定的技术经济指标. 4)须全面掌握动力装置所覆盖的各技术领域,如船舶推进技术、热能转换技术、电气技术、 安全技术、消防技术、防污染技术、冷藏技术、通风和空调技术、仿真技术以及人员生活、生存技术等。 5)受控于国际公约、规则、船级社规范、船旗国法规等要求和约束。 6)须根据市场经济的特点,对设备的选用和配套应在目标成本的控制下进行。 3、简述船舶动力装置的设计的主要内容。 答: 1)主推进系统设计。包括主机选型、主机及齿轮箱配套、主机及齿轮箱和调距桨的配套等; 2)轴系设计; 3)电站设计(主电站及应急电站); 4)热源系统设计(蒸汽、热媒油等); 5)动力系统设计(燃油、滑油、冷却水、压缩空气、进排气、加热蒸汽或热媒油等系统)和 辅助设备选择; 6)船舶系统设计(疏排水系统,注入、测量、空气系统,供水系统,舱底水系统,压载水系 统,消防系统等,以及油船、液化气船和化学品船的专用系统); 7)自动控制、监测、报警系统设计; 8)防污染系统设计(机舱防油污系统、油船防油污系统、生活污水防污染系统及防止有毒液 体物质污染系统等);

船舶动力装置教学内容

船舶动力装置

1.船舶动力装置的含义及组成 含义:船舶动力装置保证船舶正常航行、作业、停泊以及船员、旅客正常工作和生活所必需的机械设备的综合体。 组成:①推进装置(主发动机、推进器、传动设备);②辅助装置(船舶电站、辅助锅炉装置);③机舱自动化;④船舶系统(动力管系、船舶管 系);⑤甲板机械(锚泊机械、操舵机械、起重机械) 2.动力装置类型 类型:柴油机推进动力装置、汽轮机推进动力装置、燃气轮机推进动力装置、核动力推进动力装置、联合动力推进动力装置 ①柴油机:优点:A. 有较高的经济性,耗油率比蒸汽、燃气动力装置低得多;B. 重量轻(单位重量的指标小);C. 具有良好的机动性,操作简单, 启动方便,正倒车迅速;D. 功率范围广。缺点:A. 柴油机尺寸和重量按 功率比例增长快;B. 柴油机工作中的噪声、振动较大;C. 中、高速柴油 机的运动部件磨损较厉害; D. 柴油机低速稳定性差;E. 柴油机的过载能力相当差。 ②蒸汽轮机:优点:a. 单机功率大,可达7.5×104kW以上; b. 转速稳定, 无周期性扰动力,机组振动噪声小;c. 工作可靠性高;d. 可使用劣质燃 料油。缺点:a. 总重量大,尺寸大;b. 燃油消耗率高;c. 机动性差,启 动前准备时间约为30~35min,紧急须15~20min 。 ②燃气轮机:优点:a. 单位功率的重量尺寸小;b. 启动加速性能好;c. 振动小,噪声小。缺点:a. 主机没有反转性;b. 必须借助启动机械启

动;c. 叶片材料昂贵,工作可靠性较差,寿命短;d. 进排气管道尺寸大,舱内布置困难。 ④电力推进:交流电力推进装置具有极限功率大,效率高和可靠性好的优点(结合电力传动分析挖泥船,破冰船) 8.中间轴承 中间轴承:是为减少轴系挠度设置的支承点,用来承受中间轴本身的重量,以及因其变形或运动而产生的径向负荷(非重点) 中间轴承的设置:尾管无前轴承者,则中间轴承尽量靠近尾管前密封;中间轴承应设在轴系上集中质量处附近,如调距桨轴系的配油箱附近;每根中间轴一般只设一个中间轴承(极短中间轴不设)。(非重点) 中间轴承的位置与间距: 位置:靠近一段法兰处,距法兰端面距离0.2l 轴承间距的大小及其数目,对轴的弯曲变形、柔性和应力均有很大的影响。间距适当增加使轴系柔性增加,工作更为可靠,对变形牵制小,使额外负荷反而减小。 3.船舶动力装置性能指标

船舶推进课后练习答案

第一章习题 1. 除螺旋桨之外,船用推进器还有那些类型?简述他们的特点及所适用船舶类型? 螺旋桨,风帆,明轮,直叶推进器,喷水推进器,水力锥形推进器 螺旋桨:构造简单,造价低廉,使用方便,效率较高。 风帆:推力依赖于风向和风力以至于船的速度和操纵性都受到限制。仅在游艇,教练船和小渔船上仍采用 明轮:构件简单,造价低廉,但蹼板入水时易产生拍水现象,而出水时又产生提水现象,因而效率较低。目前用于部分内河船舶。 直叶推进器:可以发出任何方向的推理,操纵性好,推进器的效率高,在汹涛海面下,工作情况也较好,但构造复杂,造价昂贵,叶片保护性差极易损坏。用于港口作业船或对操纵性有特殊要求的船舶 喷水推进器:活动部分在船体内部,具有良好的保护性,操纵性能良好,水泵及喷管中水的重量均在船体内部,减少了船舶的有效载重量,喷管中水力损耗很大,故推进效率较低。多用于内河潜水拖船上,近年来也用于滑行艇,水翼艇等高速船上。 水力锥形推进器:构造简单,设备轻便,船内无喷管效率比一般喷水推进器为高,航行于浅水及阻塞航道中的船只常采用此种推进器。 2. 何谓有效马力(有效功率)? 有效功率:若船以速度v航行时所受到的阻力为R,则阻力R在单位时间内所消耗的功为Rv,而有效推力Te在单位时间内所作的功为Te*v,两者在数值上相等,故Te*v(或者R*v)称为有效功率。 阻力试验R和V都可测。 3. 何谓收到马力?它与主机马力的关系如何? 收到马力:机器功率经过减速装置,推力轴承及主轴等传送至推进器,在主轴尾端与推进器连接处所量得的功率称为推进器的收到功率Pd表示。 Pd=Ps*ηs→传递效率或轴系功率 4. 推进效率。推进系数如何定义?如何衡量船舶推进性能的优劣? 推进效率:由于推进器本身在操作时有一定的能量损耗,且船身与推进器之间有相互影响,故有效功率总是小于推进器所收到的功率,两者之比称为推进效率,以ηd表示。 推进系数:有效功率与机器功率之比称为推进系数以P.C表示 P.C=Pe/Ps P.C=ηdηs 5. 何谓船舶快速性?快速性优劣取决于那些因素? 快速性:指船舶在给定主机功率情况下,在一定装载时于水中航行的快慢问题。 ①船舶于航行时所遭受的阻力要小,所谓优良船型的选择问题 ②选择推力足够,且效率较高的推进器 ③选择合适的主机 ④推进器与船体和主机之间协调一致

船舶中央冷却水系统的常见故障与分析--讲解

前言 虽然航运业的形式很多,船舶运输还是在其中占有很大的比重。随着海运业的不断发展,各式各样的特种船舶广泛的应用。因此,对船舶系统的研究需不断地提高和优化,为船舶动力装置的发展做出努力。船舶的冷却系统是一个具有复杂形式的系统,合理地选择一种冷却系统对整个船舶航运的经济性,维修性是非常重要的,这与造船成本和船 东的使用成本都具有很大的影响。 中央冷却系统作为船舶冷却系统的一种冷却形式在现代船舶上的运用越来越广泛,对其的研究及优化是一个重要的课题。在我国的船舶行业中,对中央冷却系统的介绍和研究还不是很多,然而在现行的船舶中,船东特别是大公司的船东越来越倾向于中央冷 却系统。中央冷却系统对于船厂来说提高了制造成本,对于船东来说提高了设备的可靠性,降低了维修费用,因此,对中央冷却系统的进一步研究有利于船厂降低成本,提高中 央冷却系统的运用深度有很大帮助。 在韩国和日本等造船强国,中央冷却系统的设计有着很详细的设计基准,他们通过 众多的船舶设计人员在实际设计和使用后总结出一整套设计标准,按照这种标准,使得 他们船舶的设计既符合各方面的要求,又降低了设计成本。在我国,大部分船厂都没有中央冷却系统的设计的标准,而韩国日本等造船强国又对我们进行技术封锁,我们以前 很多船舶系统的设计中,只是部分采用了中央冷却系统的原理,并没有达到完整,经常会出现各种问题,引起在实际制造中大量的返工,造成人力物力的浪费,同时在设计过程中,为了保证各种设备能正常工作,对中央冷却系统设置了大量的余量,增加了设计成本。本文通过了对中央冷却系统的各种形式的介绍和以往的中央冷却系统所产生问题的分析,使中央冷却系统的理论系统化,完善化,以供设计人员及其他相关人员参考。

循环冷却水旁滤和加药系统设计方案

目录 第一部分设计前言 (1) 第二部分设计水质水量及设计原则 (2) 2.1、设计水质水量 (2) 2.1.1、原水水质水量 (2) 2.1.2、供水的水质水量 (2) 2.1.3、补水的水质(采用自来水,供参考) (3) 2.2、标准与规范 (3) 2.3、设计原则 (3) 2.4、设计范围 (4) 第三部分工艺的确定及流程说明 (4) 3.1、工艺的确定 (4) 3.2、工艺流程及工艺说明 (5) 3.2.1、工艺流程方框图 (5) 3.3、循环冷却水水量计算平衡表 (6) 3.4、系统工艺流程说明 (7) 第四部分主要设备介绍 (9) 4.1、在线磷酸盐分析仪(阻垢剂) (9) 4.2、次氯酸钠投加装置 (10) 4.3、硫酸投加装置 (10) 4.4、管道混合器 (10) 4.5、絮凝剂加药装置 (10) 4.6、重力式无阀过滤器 (11) 第五部分电气系统控制简要说明 (12) 第六部分主要设备仪表参数 (14) 一、主要设备参数 (14)

二、电气系统及检测仪表参数 (17) (电配箱内配套电器) (19)

第七部分设备材料清单 (20) 第八部分安装接口事项及文件交付 (21) 8.1、安装接口事项 (21) 8.2、文件交付 (21) 8.3、文件的单位及语言 (21) 第九部分质量保证和技术服务 (23) 9.1、质量保证 (23) 9.2、工程技术服务 (23)

3000t/h循环冷却水旁滤系统 设计方案 第一部分设计前言 随着工业的发展和生活的需要,水的用量急剧增加。因此,节约水资源如同节约能源,保护环境一样,成了当务之急。节约用水最大的潜力是节约工业冷却水,采用循环冷却水是节约水资源的一条重要途径,但循环冷却水结垢、腐蚀比较严重,容易滋生菌藻,以致影响设备的传热效率,威胁设备的使用寿命,因此对循环冷却水进行水质稳定处理是必不可少的。 本设计方案就是:通过一系列的过程控制,在达到要求的浓缩倍数(K=4.0)的情况下,满足循环冷却水系统的过程要求。其循环冷却水工程主要有以下过程控制: 1、投加一定量的阻垢剂,减少循环冷却水对冷介质的热交换器的腐蚀,并控制其腐蚀速率达到国家标准; 2、通过对系统自动补充洁净的水源以平衡由于:蒸发、风吹、排污等水量的损失,以维持循环冷却水的水量平衡,进而维持循环水的电导率等相对恒定; 3、通过在线控制,自动投加一定量的杀菌剂,以防止微生物的滋生,减少生物污泥量和减少对系统管路、换热器等的腐蚀; 4、通过旁路净化系统,使循环冷水的悬浮物(SS)浓度处于相对低值,以减少系统的结垢趋势; 通过上述过程的控制,可实现以下目的: 1、达到循环冷却水要求的浓缩倍数,从而节约大量的水源,并且可降低生产成

船舶动力装置原理与设计教学大纲2013-2014

《船舶动力装置原理与设计》课程教学大纲 一、课程名称:船舶动力装置原理与设计 The Principle and Design of Marine Power Engineering 二、课程编号:0802011 三、学时与学分:48h/3+3w/3 四、先修课程:船舶柴油机、船舶原理、轮机工程导论 五、课程教学目标: 1. 掌握船舶动力装置原理、特点及选型方法,学会为给定船舶选择动力装置型式。 2. 掌握船舶柴油机推进装置总体设计步骤,重点学会主要设备选型与设计的方法。 3. 熟悉船舶柴油机动力装置性能,基本具备分析动力装置的工况特性的能力。 4. 掌握船舶管路系统的原理与计算方法,学会为给定船舶配置必须的管路系统。 六、适用学科专业 轮机工程 七、基本教学内容与学时安排 ●船舶动力装置总论(4学时) 船舶动力装置的含义及组成 船舶动力装置的类型及特点 船舶动力装置的基本特性指标 对船舶动力装置的要求 ●推进装置设计(10学时) 推进装置设计的内容 推进装置型式的确定与选型分析 轴系的任务,组成与设计要求 轴系的布置设计 传动轴的组成与设计 支承轴承与轴系附件 轴系零部件的材料 轴系合理校中设计 ●船舶后传动设备(8学时) 概述 船用摩擦离合器 船用减速齿轮箱 船用液力偶合器 船用弹性联轴器

可调螺距螺旋桨装置 ●船舶管路系统(12学时) 燃油管路 滑油管路 冷却管路 压缩空气管路 排气管路 舱底水系统 压载水系统 消防系统 供水系统 机舱通风管路 船舶空调系统 管路附件,管路计算和布置 ●船舶推进装置的特性与配合(10学时) 概述 船、机、桨的基本特性 机桨匹配 典型推进装置的特性与配合 船、机、桨在变工况时的配合 ●船舶动力装置设计(4学时) 船舶动力装置设计的观点、内容与程序 船舶动力装置设计发展概况 总体设计应考虑的几个问题 机舱中机械设备的布置与规划 ●课程设计(3周) (一)题目:船舶艉轴艉管装置的设计与计算 (二)目的: 通过课程设计,熟悉船舶艉轴艉管装置的结构型式;掌握艉轴艉管装置设计与计算的方法;了解艉轴艉管装置与船舶总布置、型线和船体结构的相互关糸; 学习主要零部件材料选取及相关标准应用的方法;学习推进装置主要配套设备的. 选型步骤。 (三)要求: 1、独立完成课程设计的各项任务。

工业循环冷却水处理设计规范2007

工业循环冷却水处理设计规范 中华人民共和国国家标准 GB50050--2007 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment 中华人民共和国建设部 关于发布国家标准《工业循环冷却水处理设计规范》的公告 中华人民共和国建设部公告第742号 现批准《工业循环冷却水处理设计规范》为国家标准,编号为GB50050-2007,自2008年5月1日起实施。其中,第3.1.6(2、4、5、6)、3.1.7、3.2.7、6.1.6、8.1.7、8.2.1、8.2.2、8.5.1(1、2、3、4、5、6、7)、8.5.4条(款)为强制性条文,必须严格执行。原《工业循环冷却水处理设计规范》GB50050-95同时废止。本标准由建设部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国建设部 二〇〇七年十月二十五日 1 总则 1.0.1 为了贯彻国家节约水资源和保护环境的方针政策,促进工业冷却水的循环利用和污水资源化,有效控制和降低循环冷却水所产生的各种危害,保证设备的换热效率和使用年限,减少排污水对环境的污染,使工业循环冷却水处理设计做到技术先进,经济实用,安全可靠,制定本规范。 1.0.2 本规范适用于以地表水、地下水和再生水作为补充水的新建、扩建、改建工程的循环冷却水处理设计。 1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1.0.4 工业循环冷却水处理设计应不断地吸取国内外先进的生产实践经验和科研成果,积极稳妥地采用新技术。 1.0.5 工业循环冷却水处理设计除应按本规范执行外,还应符合国家有关现行标准和规范的规定。 2 术语、符号 2.1 术语 2.1.1 循环冷却水系统Recirculating Cooling Water System 以水作为冷却介质,并循环运行的一种给水系统,由换热设备、冷却设备、处理设施、水泵、管道及其它有关设施组成。 2.1.2 间冷开式循环冷却水系统(间冷开式系统)Indirect Open Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与大气直接接触散热的循环冷却水系统。2.1.3 间冷闭式循环冷却水系统(闭式系统)Indirect Closed Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与冷却介质也是间接传热的循环冷却水系

真空中频感应熔炼炉循环冷却水系统设计探述

真空中频感应熔炼炉循环冷却水系统设计探述 发表时间:2018-04-28T15:00:59.310Z 来源:《建筑学研究前沿》2017年第33期作者:陈松 [导读] 随着近年来科学仪器的不断发展和普及,各种配套产品也得到了突飞猛进的发展。 广东先导稀材股份有限公司 摘要:随着近年来科学仪器的不断发展和普及,各种配套产品也得到了突飞猛进的发展,其中冷却水循环就是其中的一种,它的作用是通过温度相对较低的水来把仪器所产生的热量带走,从而使仪器部分的温度保持在一个较低的水平。基于此,本文就从真空中频感应熔炼炉循环冷却水系统设计展开分析。 关键词:真空炉;循环冷却水系统;设计 1、真空炉循环冷却水系统概述 真空炉的冷水系统包括以下6部分的进、出口冷却系统:各种真空泵,感应线圈,集电系统和铜排,电容器组,炉体(炉盖、炉座),冷阱、捕集器。在真空炉的熔炼过程中,循环冷却水水质的好坏,温度的高低,压力的高低等,都对设备能否正常运行起着至关重要的作用。 某车间有4台真空炉:2台25 kg真空炉,1台50 kg真空炉,1台300kg真空炉。车间生产品种多,产量小,为非连续式生产。4台真空炉均用于正常生产,但4台设备同时运行的机率较小,主要运行300kg真空炉,25kg及50kg真空炉用于生产小规格特种钢锭、电极棒以及实验研究。该文介绍的是该车间真空炉的循环冷却系统设计。 2、循环冷却水系统设计(如图1) 2.1冷却池及冷却塔 4台设备共用一个冷却池。该冷却池约60m3,设置了排水孔及低水位自动补水装置。当水位过高时,水自动从排水孔中排出。水位低于设定的水位值时,自动补水。冷却池分为冷水池和热水池两个区域。热水池的水经过冷却塔冷却后再回到冷水池,供生产使用。冷却池上方检修口上加盖板,防止杂物进入水池中。冷却水通过水塔喷淋冷却后通过回水池进入炉内循环水路,故选用100m3/h无填料喷雾式冷却塔,实际冷却总量可调至120m3/h。冷却水进塔压力在0.08~0.15MPa。冷却塔湿球温度在28℃时,进水温度t1≥45℃,出水温度 t2≤35℃,冷却温差≥10℃。 2.2水泵 循环冷却系统共有4台泵。进水泵两台,一用一备;回水泵一台;应急柴油泵1台。考虑到车间场地及嘈音等因素,在室外修建泵房,所有泵均安装在泵房内,方便管理和维护。在熔炼过程中,如果泵出现故障或是突然断电等原因导致冷却水中断,无法对感应线圈、扩散泵及中频电源等重要部件进行冷却,会对设备造成严重的损害并可能发生安全事故,所以,循环水泵设计为一用两备,两台自吸式水泵和一台柴油泵。两台自吸式水泵可以随时切换,柴油泵则作为应急装置一并纳入循环系统中。根据设备的冷却水需求量,循环水泵流量设计为100m3/h。考虑到管损等因素,泵的扬程选择为32m。冷却水池在地平面以下,循环水泵选择自吸泵,并增加底阀,作为双重保险。 熔炼过程中,如果突然断水,熔炼必须中止,应急水的主要作用是对感应线圈、扩散泵和中频电源等重要部件进行冷却,使其尽快冷却以保护设备,以细水长流为冷却原则。故柴油泵流量设计为30m3/h,扬程30m。在断电后,柴油泵获取断电信号,马上自动启动,进行供水。柴油泵需严格按要求进行日常的维护保养,保证在出现特殊情况时柴油泵能正常工作。从真空炉出来的冷却水为无压力回水,故需要在管路中设置1台泵,用于将回水泵入冷却塔中。 2.3管路设计 布置一根主进水管道DN150,统一分配给4台设置。车间以运行300kg真空炉为主,且300kg真空炉用水量最大。当大、小设备同时运行时,为避免300kg真空炉回水倒流进其他小设备,在室内布置2根回水管道,其中一根DN150的回水管专用于300kg真空炉的回水,另一根DN150的回水管用于另外3台设备的回水,留有足够的坡度,使回水顺畅,并在回冷却塔之前汇总。进、回水管道刷不同颜色的油漆以示区别,方便检修。4台设备同时运行的机率不大,故冷却水实际总需求量<100m3/h。炉内冷却水的流速一般保证在1~1.5m/s:水速过快,会使感应线圈表面温度过低,形成凝露,导致圈内短路;水速过慢,水温过高,会加速水中无机物的沉淀,使铜管内部结垢。所以在泵的出水管及设备的总进水管处均设置了调节阀及压力表,便于调节流量及进水压力,使冷却水保持一个适中的流速。每台设备均设计了单独的水箱,水箱中有多路进水管道和回水管道,将冷却水分送至所需的各个冷却点位,再分不同的管道回到水箱,进入回水管道。由于是重力回水,操作人员可以很直观地通过观察回水流量,触摸回水温度等方法来判断设备内部的冷却水路是否畅通。尤其是真空炉的中频电源柜中有很多小管径的冷却管道,容易堵塞,造成某些部件的烧损,从而影响设备的正常运行,故在中频电源的外部也设置这样的水箱,并入总循环管路中。 图1 2、保证水质的相关措施 冷却水太硬,会加速设备内部冷却管道的结垢,使铜管被腐蚀并短路;冷却水中含有杂质,会使管道堵塞,达不到冷却效果而导致电气元件被烧毁。系统中采用了以下措施来保证冷却水质。 2.1软水器的使用。厂区所用的自来水,除硬度超标,其他指标均能满足冷却水质要求。系统中选择了一台全自动软水器对自来水进行处理。当含有硬度离子的原水通过交换器树脂层时,水中的钙、镁离子与树脂内的钠离子发生置换,树脂吸附了钙、镁离子而钠离子进入

船舶电力推进系统

船舶电力推进系统 Edited by 阳光的cxf 第一章 1. 电力推进系统的优缺点 P10 优点: (1)机动性能好 (2)机舱小,布置灵活可增加船舶的载货载客能力 (3)推进效率高 (4)节能,有利于环保 (5)适合于特种船舶的应用 P47 优点: (1)通过减少燃料消耗和维护费用减少生命周期成本,尤其是在负载变化大的地方 (2)增强了系统对单一故障的抵抗性,使优化原动机负载分配成为可能 (3)中高速柴油机重量轻 (4)占用空间少,甲板空间利用更加灵活 (5)推进器位置布置更加灵活 (6)更好的机动性 (7)更小的推进噪声和震动 缺点: (1)初始投资增加 (2)原动机和推进器之间有额外的器件,增加了满负荷运行时的损耗 (3)新型设备需要不同的操作,维护策略 2. 不同推进方式船舶操纵性能对比 项目机械推进常规电力推进POD推进 回转直径120% 100% 75% 零航速回转180 度所需时间118% 100% 41% 全速回转180 度所需时间145% 100% 42% 全速到停止所需时间280% 100% 42% 零航速至全速所需时间210% 100% 90% 第二章 3. 电力推进系统类型 (1)可控硅整流器+直流电动机。应用:船舶推进所应用的直流推进电机的容量,在2~3MW 之间。 优点: 1)启动电流和启动转矩接近零 2)动态响应快 缺点:

1)转矩控制不精准 2)换向器易发生故障 3)谐波污染较大 4)直流电动机结构复杂,成本高,体积大,维护困难,效率低 (2)交流异步电动机+可调螺距螺旋桨模式。应用:这种推进方式只适合于中、小功率船舶,或1000kW 以下的侧推装置,因为微软起动器目前还只有中、小功率的低压产品。 优点 1)几乎没有谐波污染 2)转矩稳定没有脉动 3)设计点运行效率高 缺点: 1)启动电流大 2)启动瞬间机械轴承受转矩大 3)功率因数低 4)功率及转矩动态响应慢 5)反转慢,制动距离长 6)变矩桨结构复杂,价格贵,可靠性差 7)变距桨液压控制系统复杂 (3)电流型变频器CSI (Current Source Inverter) + 交流同步电动机。应用:10MW 以上容量的电力推进装置 优点: 1)启动电流小 2)价格便宜 3)控制方便,操作灵活 4)能匹配特大功率电机 缺点: 1)时间常数大,动态响应慢 2)电感重量和体积大 3)低速运行时,电流变频器将电流控制在零附近脉动,,输出转矩也脉动,给轴 系带来震动 (4)电压型变频器VSI (Voltage Source Inverter) +交流异步电动机。在中小功率范围,包 括部分大功率的电压型变频器中 优点: 1)功率和转矩动态响应快 2)系统电源输出频率范围宽 3)启动平稳 4)功率因数高 5)低速功率损耗小 6)推进效率高 缺点: 1)价格贵 (5)交交变频器+交流同步电动机。单个电力驱动系统的功率范围在2~30MW 之间。 优点: 1)启动平稳,启动电流逐渐增大

相关文档
相关文档 最新文档