文档库 最新最全的文档下载
当前位置:文档库 › 系列卟啉化合物的合成及其光谱和电化学性质研究

系列卟啉化合物的合成及其光谱和电化学性质研究

系列卟啉化合物的合成及其光谱和电化学性质研究
系列卟啉化合物的合成及其光谱和电化学性质研究

石油中卟啉化合物的研究进展_李东胜

收稿日期:2008-03-31 作者简介:李东胜(1965-),男,辽宁抚顺,教授,在读博士,主要从事石油加工方面的研究。 联系人:李东胜,电话:(0413)6861667,E mail:lj138********@163 com 。 文章编号:1004-9533(2009)04-0366-05 石油中卟啉化合物的研究进展 李东胜,崔苗苗,刘 洁 (辽宁石油化工大学石油化工学院,辽宁抚顺113001) 摘要:介绍了原油中卟啉化合物的结构及其物理和化学性质。讨论了镍和矾在原油中的存在形态,以及对石油后续加工造成的危害。阐述了石油中镍和矾的脱除方法。关键词:卟啉;脱金属;石油中图分类号:TE349 文献标识码:A Development of Porphyrin Compound in Petroleum LI Dong sheng,C UI Miao miao,LI U Jie (Sc hool of Pe trochemical Engineeri ng,Liaoning Shihua University,Fus hun 113001,Liaoning Province,China) Abstract :The structure,physical and chemical characters of porphyrins are introduced in this paper.The e xisting forms of Ni and V and its position for the latter process are discussed.The removal methods of Ni and V are recounted in detail.And the methods of separation and purification of nickel and vanadium porphyrins in petroleum are also recited. Key words :porphyrin;removal metal;petroleum 原油中目前已经鉴定出的金属元素有45种,它们含量少且为存在各异形态。大多数金属以无机盐或环烷酸盐形态存在,还有一部分为卟啉配合物。同其它重金属元素相比,镍和钒在石油中的含量相对较高,且多以卟啉和非卟啉配合物的形式存在,在加工过程中,这些化合物多数进入常、减压渣油等重质馏分油中,当进行二次加工时,镍、钒等重金属元素会造成催化裂化的催化剂中毒,从而增加催化剂损耗,影响企业的经济效益。 1 卟啉 1 1 卟啉的结构 从20世纪30年代起人们就开始对石油卟啉进行研究。1934年Treibs 首先从石油沥青中发现了钒卟啉,1948年Glebovskaya 等鉴定出了镍卟啉。研究 表明,石油中的镍和钒主要形成螯合物,其中以卟啉螯合物为主,还含有非卟啉螯合物,两者都是油溶性,但是目前仍未鉴定并分离出一个金属非卟啉化合物 [1] 。 卟啉(porphyrins)是含4个吡咯分子的大环化合物,其结构如图1所示。 图1 卟啉及金属卟啉的结构 它是以卟吩(porphine)为母体,外环带有取代基的同系物和衍生物的总称 [2] ,当其氮上2个质子被 2009年7月Jul.2009 化 学 工 业 与 工 程 C HE MICAL INDUSTRY AN D ENGINEERING 第26卷 第4期 Vol.26 No.4

电化学分析技术.

第五篇电化学分析技术 第一章电分析化学导论 电化学分析是利用物质的电化学性质来测定物质组成的分析方法。电化学性质表现于化学电池中,它包括电解质溶液和放置于此溶液中的两个电极,有时还包括与之相连系的电源装置。化学电池本身能输出电能的,称为原电池;在外电源作用下,把电能转换为化学能的称为电解池。电解池和原电池中发生的一切电现象,如溶液的导电、电极与溶液界面间的电位、电流、电量、以及电流~时间曲线、电流~电位曲线等都与溶液中所存在的电解质的含量有关。研究这些电现象与溶液中电解质浓度之间的关系是电化学分析的主要内容之一。因为电化学分析就是利用这些关系把被测物质的浓度转化为某种电讯息而加以测量的。在不同讯息的转换中,力图准确、灵敏并应具有一定的特效性,才能应用于分析。为此目的,电化学分析还应注意改进所使用的测量仪器以及实验方法和技术,因此本课程应当包括方法原理,仪器测量技术和实际应用等方面。 §1.1 电分析化学的发展 电分析化学的发展具有悠久的历史,它与化学、物理、生物、计算机等学科的发展紧密相关。早在1801年,铜和银的电解定性分析就已问世,经过半个多世纪才将电解分析用于铜的定量测定。1893年、1910年和1913年相继出现了电位分析、电导分析和库仑分析。1920年成功制备了pH 玻璃电极,简捷地测定了溶液pH。这是一个重要的发明,它推动了整个分析化学的发展,并为电位分析中酸碱滴定创造了重要的条件。1922年捷克化学家J Heyrovsky 首创极谱分析,标志着电分析方法的发展进入了新的阶段。此后相继出现了交流示波极谱、交流极谱、方波极谱和脉冲极谱等。1964年日本留学生Kuwana在R N Adams教授指导下,将电化学与光化学结合,提出了光谱电化学。1966年S Frant和J Ross首创固态膜和单晶(LaF3)膜的F-选择性电极。此后在世界范围内出现了研究离子选择性电极的热潮,制成了多种多样的阳离子和阴离子的选择性电极。1972年K B Oldham等和1975年M Goto等先后提出了卷积伏安法和去卷积伏安法。1973年R F Lane和A T Hubbard利用铂电极表面吸附具有不同基团的烯属类化合物,再吸附磺基水杨酸根,制成了第一支吸附型的测定Fe(Ⅲ)的化学修饰电极。这种电极突破了电极上电子授受的单一作用,通过物理的、化学的手段在电极表面接上

卟啉化合物的合成及物理化学性质

卟啉化合物的合成及物理化学性质 周彬 ,张文 ,曾琪 ,张智 (武汉大学 化学与分子科学学院 ,武汉 430072) 【摘要】利用中位-四[对羟基苯基]卟啉和四水合乙酸钴在DMF 中搅拌加热至100℃回流30min 合成了金属钴卟啉。然后再用柱层析分离得到纯净的金属卟啉产物。利用电导率仪研究了金属卟啉金属钴卟啉的电迁移性质。通过金属钴卟啉配合物与咪唑配位动力学的研究证实了其轴向上存在配位作用。 【关键词】 卟啉、金属(钴)卟啉配合物、咪唑、动力学性质、电迁移性质 【前言】 卟啉化合物是一类含氮杂环的共轭化合物,其中环上的各原子处于同一平面内(如图1所示) : NH N HN N NH N HN N X X X X 图1 X=COOH;OH;NH 2 如图2

卟啉环中含有四个吡咯环,每两个吡咯环在2位与5位之间由一个次甲基桥连,在5,10,15,20,位上也可键合四个取代苯基(如图2),形成四取代苯基卟啉。卟啉环中有交替的单键和双键,有18个π电子组成的共轭体系,具有芳香性。 当两个氮原子上的质子电离后,其形成的空腔中可以容纳Fe,Co,Mg,Cu,Zn,等金属离子而形成金属配合物,并且这些金属配合物都具有一些生理上的作用。 卟啉化合物具有对光,热的良好稳定性。它的这种稳定性,大的可见光消光系数和它在电荷转移过程中的特殊作用,使得它在光电领域中的应用受到高度重视,它被用于气体传感器,太阳能的贮存,生物模拟氧化反应的催化剂,生物大分子探针,还可以作为模拟天然产物的母体,金属卟啉配合物被广泛的应用于微量分析等领域。本实验合成并提纯了卟啉配合物,采用电导仪测定金属配合物在溶液中的电迁移性质,还就其与有机碱的轴向配位反应进行动力学的测定。 【实验部分】 ⒈试剂与仪器: 1.1试剂 卟啉,醋酸钴,DMF(二甲基甲酰胺),无水乙醇,无水乙醚,二氯甲烷,丙酮,环己烷,薄层层析硅胶,柱层析硅胶,氢氧化钠,咪唑, 1.2仪器 紫外-可见分光光度仪,傅立叶变换红外光谱仪,DD3001电导率仪,分析天平,电磁搅拌器,减压蒸馏装置,旋转蒸发仪,抽滤装置,真空干燥器. ⒉实验步骤:

卟啉化合物的合成、理化性质及其应用

2012.11.13-2012.11.22 卟啉化合物的合成、理化性质及其应用 姓名(学号) 苏州大学材料与化学化工学部09级化学专业 摘要:本实验采用在DMF溶液中缓慢滴加等摩尔比的吡咯和苯甲醛混合液,油浴加热反应,在经结晶过柱旋转蒸发得到纯产品四苯基卟啉(TPPH2)。 关键词:卟啉、制备、金属卟啉 Abstract:This experiment in the DMF solution such as slow drop and mole ratio of pyrrole and benzaldehyde mixture, oil bath heating reaction, the crystallization in a column rotary evaporation get pure product four phenyl porphyrin (TPPH2). Keyword:porphyrin、preparation、metalloporphyrin 1.前言 卟啉化合物是一类含氮杂环的共轭化合物,其中环上各原子处于同一平面内。在植物中的叶绿素、红血球中的血红蛋白、肌肉中的肌红蛋白、动物的肝脏、血液细胞、植物中的过氧化氢酶、牛奶等一系列具有重要生理功能的物质中,都含有卟啉或类卟啉的骨架。它们都是起着重要的生理作用的活性中心。除了生物活性外,卟啉及类卟啉化合物具有大共轭平面的特殊结构,使得其广泛应用于催化、新材料的开发、微量分析等领域。 本实验采用在DMF溶液中缓慢滴加等摩尔比的吡咯和苯甲醛混合液,油浴加热反应,在经结晶过柱旋转蒸发得到纯产品四苯基卟啉(TPPH2)。 2.实验部分 2.1、仪器与药品 仪器:烧杯(50mL×2、100mL×1)、量筒(50mL)、三颈烧瓶(250mL,19#×1、14#×2)、双颈烧瓶(50mL,19#×2)、茄形烧瓶(250mL,24#)、滴液漏斗(14#)、球形冷凝管(19#)干燥管(19#)、空心塞(19#×2、14#×2)、布氏漏斗及抽滤瓶、调压变压器、旋转蒸发仪、温度计(300℃)、氩气钢瓶、干燥器、油浴、磁力搅拌器、回流装置。 药品:DMF、无水氯化铝、吡咯、苯甲醛、乙醇、中性氧化铝、二氯甲烷、

卟啉化合物的合成、理化性质及其应用

2012.11.27-2010.12.10卟啉化合物的合成、理化性质及其应用 (苏州大学材料与化学化工学部09级化学类) 摘要:为了了解卟啉化合物,用郭灿城等人提出新方法合成TPPH2和CoTPP,并利用红外、紫外与荧光光谱分析其结构。 关键词:TPPH2、CoTPP、合成 Abstract:To understand the synthesis and token of Porphyrins,we synthetise TPPH2and CoTPP with new method proposed by Cancheng Guo et al,and characterized by FT-IR,UV and fluorescence spectrum. Keywords:TPPH2、CoTPP、synthetize 1.前言 卟啉(porphyrins)是卟吩(porphine)外环带有取代基的同系物和衍生物的总称,当其氮上2个质子被金属离子取代后即成金属卟啉配合物(metalloporphyrins)。自然界中存在许多天然卟啉及其金属配合物,如血红素、叶绿素、维生素B12、细胞色素P-450、过氧化氢酶等。天然卟啉化合物具有特殊的生理活性。人工合成卟啉来模拟天然卟啉化合物的各种性能一直是人们感兴趣和研究的重要课题。由于卟啉化合物独特的结构、优越的物理、化学及光学特征,使得卟啉化合物在仿生学、材料化学、药物化学、电化学、光物理与化学、分析化学、有机化学等领域都具有十分广阔的应用前景,正吸引着人们对卟啉化学不断深入地研究。 本实验采用郭灿城等人提出的合成四苯基卟啉的新方法,合成TPPH2和CoTPP,并利用红外、紫外与荧光光谱分析其结构。 2.实验部分 2.1、仪器与药品 仪器:烧杯(50mL×2、100mL×1)、量筒(50mL)、三颈烧瓶(250mL,19#×1/14#×2)、双颈烧瓶(50mL,19#×2)、茄形瓶(250mL,24#)、恒压滴液漏斗(14#)、球形冷凝管(19#)、干燥管(19#)、空心塞(19#×2、14#×2)、布氏漏斗及抽滤瓶、色谱柱(24#)、调压变压器、旋转蒸发仪、温度计(300℃)、油浴、磁力搅拌器、回流装置。

电化学分析法(最全)汇总

电化学分析法 [日期:2011-06-24] 来源:作者:[字体:大中小] 电化学分析法(electroanalytical chemistry)是根据电化学原理和物质在溶液中的电化学性质及其变化而建立起来的一类分析方法。这类方法都是将试样溶液以适当的形式作为化学电池的一部分,根据被测组分的电化学性质,通过测量某种电参量来求得分析结果的。 电化学分析法可分为三种类型。第一种类型是最为主要的一种类型,是利用试样溶液的浓度在某一特定的实验条件下与化学电池中某种电参量的关系来进行定量分析的,这些电参量包括电极电势、电流、电阻、电导、电容以及电量等;第二种类型是通过测定化学电池中某种电参量的突变作为滴定分析的终点指示,所以又称为电容量分析法,如电位滴定法、电导滴定法等;第三种类型是将试样溶液中某个待测组分转入第二相,然后用重量法测定其质量,称为电重量分析法,实际上也就是电解分析法。 电化学分析法与其他分析方法相比,所需仪器简单,有很高的灵敏度和准确度,分析速度快,特别是测定过程的电信号,易与计算机联用,可实现自动化或连续分析。目前,电化学分析方法已成为生产和科研中广泛应用的一种分析手段。 第一节电势分析法 电势分析法是一种电化学分析方法,它是利用测定原电池的电动势(即用电势计测定两电极间的电势差),以求得物质含量的分析方法。电势分析法又可分为直接电势法(potentiometric analysis)和电势滴定法(potentiometric titration)。 直接电势法是根据测量原电池的电动势,直接求出被测物质的浓度。应用最多的是测定溶液的pH。近些年来,由于离子选择性电极的迅速发展,各种类型的离子选择性电极相继出现,应用它作为指示电极进行电势分析,具有简便、快速和灵敏的特点,特别是它能适用于其它方法难以测定的离子。因此,直接电势法在土壤、食品、水质、环保等方面均得到广泛的应用。 电势滴定法是利用电极电势的变化来指示滴定终点的分析方法。电势滴定法确定的滴定终点比指示剂确定的滴定终点更为准确,但操作相对麻烦,并且需要仪器,所以电势滴定法一般适用于缺乏合适的指示剂,或者待测液混浊、有色,不能用指示剂指示滴定终点的滴定分析。 基本原理 在电势分析法中,构成原电池的两个电极,其中一个电极的电极电势能够指示被测离子活度(或浓度)的变化,称为指示电极;而另一个电极的电极电势不受试液组成变化的影响,具有恒定的数值,称为参比电极。将指示电极和参比电极共同浸入试液中构成一个原电池,通过测量原电池的电动势,即可求得被测离子的活度(或浓度)。 例如某种金属M与其金属离子Mn+组成的指示电极Mn+/M,根据能斯特公式,其电极电势可表示为:

卟啉化合物的应用及其研究进展

卟啉化合物的应用及其研究进展 1卟啉的结构特点 卟啉是卟吩外环带有取代基的同系物和衍生物的总称。卟吩是由四个吡咯环和四个次甲基桥联的大π共轭体系,其中心氮原子能与金属原子配位生成金属卟啉络合物(如图)。卟啉及其金属络合物种类繁多,分子具有刚性结构,卟吩环周边功能团的位置和方向控制余地较大,其轴向配体周围的空间大小和相互作用方向的控制余地较大。如果在卟啉环上改变取代基、调节四个氮原子的给电子能力、引入不同的中心金属离子或者改变不同亲核性的轴向配体,就会使卟啉和金属卟啉具有不同的性质,因而也具有不同的功能。卟啉化合物在自然界广泛存在,其特殊的刚性π电子离域结构使得卟啉化合物在医学、生物化学、材料化学、能源利用等多方面具有良好应用前景。 2卟啉的应用 2.1在医学上的应用 卟啉及大部分金属配合物都具有卓越的荧光特性。许多卟啉化合物对癌细胞有特殊的亲和能力,可以利用它来识别病体组织,卟啉通常具有的长效激发三重态(寿命一般在μs~ms 范围之间)使其为光动力学诊断中光敏剂的选择提供了理论依据。卟啉及其衍生物制成的光敏剂聚集在癌变部位,能达到定向治疗的效果。目前以其为基础发展出的治疗方法有利用卟啉类光敏药物疗法,对肿瘤的光动力疗法,超声治疗癌症法等。 2.2 在生物化学上的应用 卟啉是血红素、细胞色素和叶绿素等生物大分子的核心部分。金属卟啉应用于核酸定位断裂是近年来发展起来的一个研究方向。金属卟啉配合物作为主体分子有其独特的优点:(1)卟啉环具有刚性结构, 周边官能团的方向和位置可较好地得到控制, 使之与客体分子之间有最佳的相互作用;(2)卟啉分子有较大的表面,对金属卟啉分子轴向配卟啉分子有较大的表面,对金属卟啉分子轴向配大。为达到对核酸的定位断裂,将适当的核酸识别剂组装于金属卟啉上,有望设计出高性能的核酸定位断裂剂。这不仅是对金属卟啉研究领域的扩展、同时对癌症的基因治疗、大片段基因的分子识别、基因免疫印迹分析等都具有重大意义。2.3 在能源利用上的应用 近年来,卟啉类化合物以其优异的特性在有机太阳能电池领域,尤其是染料敏化太阳能电池中得到了广泛的应用研究。人们通过对卟啉分子进行改性来提高相应的太阳能电池效率,比如增加分子的共轭度、在分子上引入长烷基链、引入功能化小分子如三乙胺和噻吩等等。目前效率最高的卟啉敏化DSSC 是Gratazel 小组设计的含有丙二酸基团的β-功能化卟啉2b 为染料的DSSC,它的η值达到7. 1%。台湾的Diau 等设计合成的一系列羧基吸附基团在meso-取代的卟啉染料也获得了很高的电池效率,将带长烷基链的6e 敏化的DSSC 在10μm 厚的TiO2薄膜上加了一个4μm 厚的散射层优化后,它的η值可达6. 8%。卟啉作为电子给体还可以与电子受体富勒烯、碳纳米管、碳纳米角等结合,在本体异质结太阳能电池以及新型的染料敏化本体异质结太阳能电池中得到广泛的研究,并取得了不错的效果。目前卟啉光敏剂面临的最大问题是如何减少分子的聚集从而获得更高的光电转换效率,如何能直接从分子本身出发以降低这种聚集是现今大

电分析化学联用技术

电分析化学联用技术 一光谱电化学 1. 概述 常规的电化学研究方法是以电信号为激励和检测手段,得到的是电化学体系的各种微观信息的总和,难以直观、准确地反映出电极/溶液界面的各种反应过程、物种浓度、形态的变化,这对正确解释和表述电化学反应机理带来很大的问题。近三十年来,通过把谱学方法(紫外可见光、拉曼和红外光谱)和扫描微探针技术应用于电化学原位( in-situ)测试,从分子水平上认识电化学过程,形成了光谱电化学 和扫描显微电化学新的测试体系,比较方便地得到了电极/界面分子的微观结构、吸附物种的取向和键接、参与电化学中间过程的分子物种,表面膜的组成与厚度等信息[ 1~3] ,特别是近年光谱电化学引入了非线性光学方法新技术,开展了时间分辨为毫秒或微秒级的研究,使研究的对象从稳态的电化学界面结构和表面吸附扩展、深入到表面吸附和反应的动态过程[4 ] ;而扫描隧道显微镜及相关技术的应用,提高了空间分辨率,可以观察到电极表面结构和重构现象、金属沉积过程、金属或半导体表面的腐蚀过程,极大地拓宽了电化学原位测试应用范围,已经成为在分子水平上原位表征和研究电化学体系的不可缺少手段。本文主要综述光谱电化学、扫描显微电化学等原位测试技术的原理、方法、最新进展和应用情况。 光谱电化学是一种将光谱技术与电化学方法结合在一个电解池内同时进行测量的方法。通常,以电化学为激发信号,以光谱技术进行监测,各自发挥其特长。用电化学方法容易控制物质的产量和定量产生试剂等,而用光谱法有利于鉴别物质。在传统的电化学反应的研究中,是依靠电极电势或电流的测量,来研究该电化学反应的机理和测量电化学反应的动力学参数。电流是此反应的反应速率的直接量度,但电流仅代表电极上所有反应过程的总速率,却不能提供反应产物和中间体鉴定的直接信息。另外,在研究电极、电解质溶液界面结构中,是利用电容的测量和计算得到理论值,并不能从分子水平上得到信息。而将紫外、红外和核磁共振等光谱技术应用于电化学电池的现场研究,可以从中得到有关反应中间体,电极表面的性质,如吸附取向,排列次序和覆盖度等信息。该领域称为光谱电化学,是当今电化学研究中最活跃的领域之一。40多年来,光谱电化学得

PINE光谱综合系统实验过程简介

PINE光谱电化学综合系统实验过程 实验主题:催化剂的光谱电化学性质变化测试 实验仪器:PINE光谱仪,WaveDriver20双通道电化学工作站或WaveNow电化学工作站,蜂窝电极(Au、Pt),Ag/AgCl参比电极 实验试剂:待测催化剂、电解液、惰性气体 实验步骤: 1、预处理:往电解液中持续通入惰性气体至饱和(根据具体实验选择与处理方 式选择气体种类); 2、将光谱仪、电化学工作站和电脑依次连接,打开光谱仪的电源,调至“DH” 档(紫外可见近红外光波段,D是紫外波段,H是可见近红外波段),预热20min后,打开电化学工作站Aftermath软件,此软件已集成了电化学工作站和光谱仪的功能(将光谱仪的图标移至电化学工作站图标即可); 3、调整采样时间,使最高峰强度刚好处于图谱的2/3高度处,调节光栅宽度, 使信噪比处于最佳状态,设置合适的采样次数,提高曲线的精确度; 4、用移液枪取1mL的电解液,加入光谱仪专配的Y型比色皿槽内,再用移液 枪取20μL电解液将蜂窝电极的蜂窝孔浸润,将蜂窝电极插入比色皿槽中,插入专配的参比电极。蜂窝电极已集成了工作电极和对电极,二者共同镶嵌在功能陶瓷板上,可通过USB接口与电脑连接; 5、选择相应的实验方法(一般为:SPEC、SPECE、CV、LSV、CA、CP和OCP 等,可根据需要自行调节),设定自身实验的光参数和电参数,或梯度设置; 6、参数设定完成后,点击“Audit”审查所设参数是否正确,若显示成功,即可点 击“Perform”运行仪器; 7、谱图采集结束,左侧菜单栏显示已完成实验的结果,含有对应的谱图原始数 据、对照谱图的数据以及具体实验参数等,谱图可导出EXCEL格式的文件。

电化学技术表征能量存储器件的性能

电化学技术表征能量存储器件的性能 一. 循环伏安曲线(CV) 【原理简介】 循环伏安法是以线性扫描伏安法的电位扫描到头后,再回过头来扫描到原来的起始电位值,所得的电流—电压曲线为基础的分析方法。扫描电压呈等腰三角形。如果前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。 在一个典型的循环伏安实验中,工作电极一般为浸在溶液中的固定电极。为了尽可能降低欧姆电阻,最好采用三电极系统。在三电极系统中,电流通过工作电极和对电极。工作电极电位是以一个分开的参比电极(如饱和甘汞电极,SCE)为基准的相对电位。在循环伏安测试实验中,工作电极的电位以10 mV/s 到200 mV/s 的扫描速度随时间线性变化(Fig.1a),在此同时记录在不同电位下的电流(Fig.1b)。 图一 【实验原理】 若电极反应为O+e →R,反应前溶液中只含有反应粒子O且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势φ正得多的起始电势j i处开始势作 0附近时,O 正向电扫描,电流响应曲线则如图所示。当电极电势逐渐负移到φ 平 开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下

降到近于零,电流也增加到最大值I pc,然后电流逐渐下降。当电势达到j r后,又改为反向扫描。随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大, 0时,表面上的电化学平衡应当向着越来越有利于生成R 在电势接近并通过φ 平 的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流I pa,随后又由于R的显著消耗而引起电流衰降。整个曲线称为“循环伏安曲线”。如图2所示: 图二 【应用】 基于CV曲线的电容器容量计算,可以根据公式(1)计算。 (ν为扫速,单位V/s) (1) 从式(1)来看,对于一个电容器来说,在一定的扫速下做CV测试。充电状态下,通过电容器的电流i是一个恒定的正值,而放电状态下的电流则为一个恒定的负值。这样,在CV图上就表现为一个理想的矩形。由于界面可能会发生氧化还原反应,实际电容器的CV图总是会略微偏离矩形。因此,CV曲线的形状可以反映所制备材料的电容性能。对双电层电容器,CV曲线越接近矩形,说明电容性能越理想;而对于赝电容型电容器,从循环伏安图中所表现出的氧化还原峰的位置,我们可以判断体系中发生了哪些氧化还原反应。 二. 恒电流充放电曲线(CCD) 【原理简介】 恒电流充放电法,又称计时电势法。一种研究材料电化学性能中非常重要的方法之一。在恒流条件下对被测电极进行充放电操作,记录其电位随时间的变化规律,研究电位随时间的函数变化的规律。它的基本工作原理是:在恒流条件下对被测电极进行充放电操作,记录其电位随时间的变化规律,进而研究电极的充

卟啉

卟啉荧光素二元化合物体外清除活性氧自由基及抑制氧化损伤的作 作者:陆家政,杜一凡,韦国锋,李振中 【摘要】目的研究卟啉荧光素 二元化合物体外清除活性氧自基及抗氧化的作用。方法利用光照核黄素产生超氧阴离子自基O2-·和Fenton反应产生羟自基·OH,用分光光度法测定卟啉荧光素二元化合物体外清除活性氧自基的作用,用硫代巴比妥酸( TBA)分光光度法研究卟啉荧光素对·OH诱发卵磷脂脂质过氧化和DNA氧化损伤的抑制作用。结果卟啉荧光素二元化合物能有效清除活性氧自基,对卵磷脂脂质过氧化

和DNA氧化损伤有显著抑制作用。结论卟啉荧光素二元化合物是一种良好的 体外抗氧化剂。 【关键词】卟啉荧光素;活性氧 自基;抗氧化;体外 Abstract:Objective Study the scavenging effects of porphyrin fluorescein hybrid on scavenging of reactive oxygen species and inhibition of oxidative damages in vitro. Methods The scavenging effects of porphyrin fluorescein hybrid on reactive oxygen species·OH and O2-· generated by Fenton reaction and riboflavin photosensitization were investigated by the means of spectrophotometry. And the inhibition effects of porphyrin fluorescein hybrid on lipid peroxidation in the presence of lecithin and oxidation damage of DNA

铜—甘氨酸体系的光谱电化学研究

铜—甘氨酸体系的光谱电化学研究 甘氨酸是最简单的氨基酸,研究它与铜的相互作用在生物过程、金属表面的吸附构型、铜的抛光和电镀以及传感器等方面都有重要意义。本文在常规电化学池和薄层电解池中,采用常规循环伏安法、原位薄层紫外可见光谱法和循环伏吸法研究了铜-甘氨酸体系的电化学行为,并用X射线衍射(XRD)和X-射线光电子能谱法(XPS)对实验结果进行了表征。 此外,制备了新型氧化铜修饰电极并将该电极应用于催化葡萄糖的氧化反应。研究结果表明,常规电化学池中铜在甘氨酸溶液中的两个氧化还原过程分别对应CuClads/Cu和Cu2+/CuClads的转化。 在薄层电解池中,测试的pH范围4.2-10内,电极表面沉积的铜可以通过两种方式电氧化生成一价铜-甘氨酸络合物(CuL2-, L为甘氨酸):(a).先后与溶液中的氯离子和甘氨酸反应转化为CuClads和CuL2-; (b)直接与甘氨酸反应转化为CuL2-。当体系中甘氨酸浓度较低时,两种方式的转化都存在,而当甘氨酸的浓度很高时,所有的沉积铜都按第二种途径直接转化。 CuL2在析氯反应发生前都是稳定存在的,当阳极端电势相对较高时,析氯反 应生成的次氯酸(HC10)能将稳定的CuL2-分解并释放出Cu+,Cu+氧化生成自由态的Cu2+,随后与甘氨酸反应直接生成二价铜络合物。通过对XRD和XPS的谱图分析得到各个峰电势下电极表面生成的物质信息。 本文从紫外可见光谱和电化学分析的角度,为铜在甘氨酸溶液中的电化学过程提供了可能的反应机理。新型氧化铜修饰碳糊电极(CuO/sCPE)在催化葡萄糖的氧化过程中最佳的电极修饰条件如下:氢氧化钠的浓度为0.1 mol·L-1,硫酸铜浓度为1.0mmol-L-1,修饰圈数为50圈。

电化学概念

电化学原理思念我的老教授毕业一年整 2010-07-05 20:57:13| 分类:默认分类 | 标签:曾经整理的笔记|举报|字号订阅 di 2 zhang 1:相间电位,两相界面中的电位差:1)离子双电层2)吸附双电层3)偶极子层4)表面电位 2:金属接触电位:金属相之间的电位差。 3:电极电位:金属/溶液之间的相电位。 4:绝对电位:电极电位内的电位差相对电位:将参比电极与被测电极组成一个原电池回路所测出的电池端电压叫做该被测电极的相对电位。 5:液体接界电位:相互接触的两个组成不同或浓度不同的电解质容液相之间的相间电位 6:盐桥的作用:为了减少液界电位要求:高浓度正负离子的迁移速度应尽量接近(越接近液界电位越小) 7: 电化学体系:1原电池,两个电极和外电路负载接通后能自发地将电流送到外电路中做功 8: 电解池,与外电源组成回路,强迫电流在电化学体系中通过并使电化学反应发生 9: 腐蚀电池,电化学反应能自发进行但不能对外做功,只能破坏金属的作用 10: 丹尼尔电池25°,{-}Zn|ZnS04{aZn2+=1}||CuSO4(aCu2+=1)Cu{+} 11:电池可逆:1物质变化可逆2能量转换可逆W=EQ,W=NFE

12:电极可逆:在平衡条件下工作的电荷交换与物质交换都处于平横的电极。可逆电极就是平衡电极。 13:可逆电极必须具备的条件1电极反应是可逆的2电极在平衡条件下工作 14:可逆电极类型1第一类可逆{阳离子可逆电极},金属侵在含有该离子的可溶性盐溶液中所组成的电极(特征:进行电极反应时靠金属阳离子从极板上溶解到溶液中从溶液中沉积到极板上)2第二类可逆 电极{阴离子电极}金属插进其难溶盐和与该盐具有相同阴离子的可溶性盐中所组成的电极(特征如果难溶盐是氯化物溶液中就应有可溶性氯化物。。。)3第三类可逆电极{Pt或其他堕性金属插入同一元素的两种不同价态离子的溶液所组成的电极(可逆电极电位大小主要取决于两种价态离子活度之比)4,气体电极因为气体电极在常温常压下不导电故需借助其他惰性金属起导电作用使气体吸附在其表面上与溶液中相应的离子氧化还原反应并达到平衡状态 15:电毛细现象:界面张力随电极电位变化的现象关系曲线最高点是零电荷电位 16:理想极化电极:不发生任何电极反应的电极体系 17:电极/溶液界面作用1)静电作用--紧密层两相间剩余电荷所引起的2)短程作用--电极和溶液中各种离子所形成 18:电极反映和化学反应主要区别在于:除了物质变化外还有电荷转移所以在电极反应平衡的能量条件中还应考虑电能的变化电极反应平衡条件是反映物质电化学位的代数和为零 19:平衡电位的数值反映了物质的氧化还原能力可以判断电化学反应进行的可能性 20:影响电极电位的因数1)金属性质(有物理化学状态,种类,结构,表面状态,机械变形与内应力;金属表面成膜或吸附物的存在与否2)外围介质性质(离子性质和浓度溶剂的性质溶解在溶剂中的气体,分子和聚合物等性质与浓度;以及温度压力光照高能辐射等)

对系列卟啉化合物合成的研究

54 卟啉是由四个吡咯与四个甲基交替连接形成的基本骨架[1]。由于卟啉具有特殊的化学结构与性能,因此它在催化剂、能源利用及太阳能电池等领域具有良好的应用前景[2] 。 1935年,Rothemud将吡咯与苯甲醛在密闭容器中加热反应,得到四苯基卟啉[3]。之后大量的卟啉化合物被合成出来,它的合成和性质成为了科研者的研究热点[4] 。目前合成方法有Rothemund法、Adler法、Lindsey法、2+2法和3+1法。 H N O R + N N H N H N R R R R=NO 2,F,Cl, H,OCH 3,OH 1?四苯基卟啉(TPP)的合成 在250mL三口瓶中,加入0.1mol苯甲醛与100mL丙酸的混合溶液搅拌,氮气保护下,120℃回流,滴入0.11mol 吡咯与15mL丙酸的混合溶液,15min内完成,继续反应30min后停止反应,冷却到室温后加入80mL的无水乙醇过夜放置。抽滤,得到紫色粗产物,产率为54%,1H-NMR(400MHz,CDCl 3)δ8.84(s,8H),8.22(d,J =7.1Hz,8H),7.82-7.71(m,12H),-2.77(s,2H)。 2?四(4-氟苯基)卟啉(TpFPP)的合成 合成方法与TPP的相同,产率为56.4%,1H-NMR (400MHz,CDCl 3)δ8.57(d,J=5.3Hz,8H),8.55(d,J=5.3Hz,8H),7.8(s,8H),-2.865(s,2H) 3?四(4-氯苯基)卟啉(TpClPP)的合成 合成方法与T P P 的相同,产率为49%,1H -N M R (400MHz,CDCl 3)δ8.83(s,8H),7.95(d,J=8.2Hz,8H),7.32(d,J=8.2Hz,8H),-2.879(s,2H)。 4?四(4-硝基苯基)卟啉(TNPP)的合成 将20.44mmol对硝基苯甲醛加入100mL丙酸中,加热至回流。加入3.3mL溶有20.44mmol吡咯的丙酸,反应30min,常温保存24h。抽滤,用100mL水洗涤3次,过夜 干燥。在所得紫黑色固体中加入80mL的吡啶。回流反应1h,冷却后过夜放置。过滤干燥,产率为26%,1H-NMR(400MHz,CDCl 3)δ8.85(s,8H),8.09(d,J=7.9Hz,8H),7.55(d,J=7.7Hz,8H),2.71(s,12H),-2.77(s,2H) 5?四(4-甲氧基苯基)卟啉(TMOPP)的合成 合成方法与T P P 的相同,产率为29%,1H -N M R (400MHz,CDCl 3)δ8.85(s,8H),8.09(d,J=7.3Hz,8H),7.55(d,J=7.5Hz,8H),2.70(s,12H),-2.77(s,2H)。 6?四(4-羟基苯基)卟啉(THPP)的合成 在100mL反应瓶中加入0.5mmolTMOPP和20mL二氯甲烷溶解,在氩气保护下,用注射器加入三溴化硼11.83mmol,常温搅拌4h,反应结束后加入20mL水搅拌 20min,用饱和NaCO 3中和反应,用乙酸乙酯萃取,用硅胶装住CH 2Cl 2和CH 3OH(10∶1化积比为淋洗剂,收集第二色带,产率为85%,1H-NMR(400MHz,DMSO)δ9.97(s,4H),8.88(s,8H),8.01(d,J=7.7Hz,8H),7.22(d,J=7.7 Hz,8H),-2.86(s,2H) 7?结束语 本文共列举了六种不同取代基团卟啉化合物的合成,其中THPP通过Lindsey法合成得到,其他卟啉化合物由Adler法合成得到。 主要因为卟啉在酸性介质中合成时,供电子基团或吸电子基团的引入会对碳正离子(C +)形成产生影响,而C +是整个反应形成卟啉的重要影响因素。对于弱的供(吸)电子基团苯甲醛来说,可以直接合成卟啉,且产率较高,因为弱的供(吸)电子基团对C +影响较小。但是随着苯甲醛上取代基的增强,产率逐渐下降,这是因为随着苯甲醛上取代基的增强,使得C +活性降低,不利于反应进行。而强的基团使得C +变得更加活泼,副产物增加,产物难以分离。 卟啉类化合物的合成吸引了无数研究者的兴趣,相信会有越来越多的合成方法应用于它的合成,不久也许就会出现与天然卟啉相媲美的卟啉。 参考文献 [1]樊美公.光化学基本原理与光子学材料科学[M].北京:科学出版社,2001:93-94. 对系列卟啉化合物合成的研究 雷云付?王月影 云南师范大学化学化工学院 云南 昆明 650500 摘要:文章总结了系列卟啉类化合物的合成进展,为设计新颖、具有高产率卟啉化合物的合成提供了实验依据。关键词:卟啉化合物?苯甲醛?合成 Synthesis?of?a?series?of?porphyrin?compounds Lei?Yunfu,Wang?Yuying Yunnan Normal University ,Kunming 650500,China Abstract:This?article?reviews?the?synthesis?of?a?series?of?porphyrin?compounds,which?offers?guidance?for?synthesis?of?porphyrin?in?high?yield. Keywords:porphyrin?compound;benzaldehyde;synthesis

改性正极材料的合成及其电化学性能

第 24 卷第 4 期中国有色金属学报 2014 年 4 月 V olume 24 Number 4 The Chinese Journal of Nonferrous Metals April 2014 文章编号:1004-0609(2014)04-0974-07 改性 LiNi1/3Co l/3Mn l/3O2 正极材料的合成及其 电化学性能 朱继平,张 胜,辛智强,许全保,苏 徽 (合肥工业大学 材料科学与工程学院,合肥 230009) 摘 要:采用固相反应法制备Mg 2+ 掺杂的锂离子电池正极材料LiNi l/3Co l/3Mn l/3O2, 并将Mg 2+ 最佳掺杂量为0.03(摩 尔分数)的样品进行 CuO 复合。通过 X 射线衍射(XRD)、扫描电镜(SEM)和电池测试系统等手段对制备的 LiNi l/3Co l/3Mn l/3O2 样品的结构、形貌及电化学性能进行表征。结果表明:Mg 2+ 掺杂没有改变LiNi l/3Co l/3Mn l/3O2 的 层状结构,Mg 2+ 掺杂量为0.03的LiNi l/3Co l/3Mn l/3?0.03Mg0.03O2 材料具有最好的电化学性能和循环性能,在0.2C倍 率下, 首次放电比容量达158.5 mA?h/g, 10次循环后容量保持率为91.2%。 添加CuO的LiNi l/3Co l/3Mn l/3?0.03Mg0.03O2 的首次放电容量为167.4 mA?h/g,高电压下达到181.0 mA?h/g;循环10次后,放电比容量为159.4 mA?h/g,容量 保持率为95.3%,改性后的放电比容量、循环性能及在高倍率和高电压下的性能均得到改善。 关键词:LiNi l/3Co l/3Mn l/3O2;正极材料;Mg 2+ 掺杂;电化学性能;合成 中图分类号:TM912.9 文献标志码:A Synthesis and electrochemical properties of modified LiNi1/3Co1/3Mn1/3O2 cathode materials ZHU Ji-ping, ZHANG Sheng,XIN Zhi-qiang,XU Quan-bao,SU Hui (School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China) Abstract: The electrode materials LiNi1/3Co l/3Mn l/3O2 doped Mg 2+ were synthesized by solid state reaction, the optimum sample LiNi l/3Co l/3Mn l/3?0.03Mg0.03O2 was mixed with CuO. The structure, morphology and electrochemical properties of the as-prepared materials were characterized by XRD, SEM and battery testing system. The results show that Mg 2+ doping does not change the material layer structure, and the optimum sample is LiNi l/3Co l/3Mn l/3?0.03Mg0.03O2, which has the best electrochemical properties and cycle performance. The first discharge specific capacity of LiNi l/3Co l/3Mn l/3?0.03- Mg0.03O2 is 158.5 mA?h/g at 0.2C, and the conservation ratio of capacity is about 91.2% after 10 cycles. The first discharge capacity and cycle performance of the sample mixed with CuO improve obviously, which are 167.4 mA?h/g at 0.2C and maintain 95.3% after 10 cycles.The materials have good performances at high rate and high voltage. Key words: LiNi1/3Co1/3Mn1/3O2?cathode material?Mg 2+ doping?electrochemical properties? synthesis 能源问题已经成为全球关注的焦点,许多国家目 前都在开发新能源。锂离子电池具有无记忆效应、能 量密度高、循环寿命长的优势,是新一代绿色环保的 化学能源 [1] 。目前,商业化锂离子电池正极材料主要 有LiCoO2、 LiNi1/3Co1/3Mn1/3O2、 LiMn2O4 和LiFePO4, 其中 LiNi1/3Co1/3Mn1/3O2 材料具有原材料丰富、价格 便宜、安全性好等优点,被认为是最具有发展潜力的 锂离子动力电池正极材料之一 [2] 。LIANG等 [3] 研究认 基金项目:国家自然科学基金资助项目(21373074);安徽省科技攻关计划项目(11010202133);安徽高校省级自然科学研究重点项目(KJ2010A261); 合肥工业大学大学生创新训练计划项目(2013CXSY140) 收稿日期:2013-07-30;修订日期:2013-10-26 通信作者:朱继平,副教授,博士;电话:0551-62901362;E-mail: jpzh@https://www.wendangku.net/doc/1d8174600.html,

相关文档