用勾股定理列方程解几何题

用勾股定理列方程解几何题

例1已知直角三角形的周长为36cm,斜边的中线长为7.5cm,求三边长。

解由题意可得斜边长15cm,设一直角边长为xcm,则另一边长为

(36-x-15)cm,即(21-x)cm,由勾股定理得

x2+(21-x)2=152

解得 x

1=9 x

2

=12

∴三角形的三边长分别为9cm,12cm,15cm。

用勾股定理列方程解几何题

例2四边形ABCD是一个梯形,AB‖CD,∠ABC=90°,AB=9cm,BC=8cm,CD=7cm, M是AD的中点,从M作AD的垂线交BC于N,则BN的长等于 [ ]

A.1cm

B.1.5cm

C.2cm

D.2.5cm

解:如图1,连结AN、DN,由题意得

AN=DN,∠DCN=90°

在Rt△ABN和Rt△DCN中,AB=9cm,BC=8cm,CD=7cm,设BN=xcm,则

CN=(8-x)cm,由勾股定理得:

92+x2=72+(8-x)2

解得 x=2(cm)

∴ (C)正确

例3如图2,正方形ABCD的边长为10cm,△APM是正三角形,P、M在正方形的边BC、CD上,求AP的长。

解先证出△ABP≌△ADM

∴ BP=DM,CP=CM。

在Rt△ABP和Rt△CPM中,AB=10cm,高CP=xcm,则BP=(10-x)cm,由勾股定理得:

2x2=102+(10-x)2

用勾股定理列方程解几何题

用勾股定理列方程解几何题

相关推荐
相关主题
热门推荐