文档库 最新最全的文档下载
当前位置:文档库 › PKPM参数设置和文本分析详解

PKPM参数设置和文本分析详解

PKPM参数设置和文本分析详解
PKPM参数设置和文本分析详解

PKPM参数设置和文本分析详解(一)

前处理注意事项

1、按构件原型输入:按柱、异形柱、梁、墙(含开洞)构件原型输入,没有楼板的房间要开洞,不要把TAT薄壁柱理论对结的简化带入。

2、轴网输入:删除各层无用的网点,利用偏心布置构件功能,消除短梁、短墙、柱内多节点。PMCAD的数据检查要通过。SATWE数据报告提示的问题要消除。

3、柱、梁截面形式及材料:附录A中的15种截面类型,程序可计算自重。范例外的自重需用户输入。

4、板―柱结构输入:柱网需输入截面为100X100的虚梁。

5、厚板转换层输入:柱网需输入截面为100X100的虚梁。层高以板厚的1/2划分。

6、错层结构输入:

A、框架错层:在PM中调整梁端高,含斜梁。

B、剪力墙错层:由于PM以楼板划分层,可在错层中局部布板。

C、多塔层高不同:把形成的塔虚层中楼板去掉。

关于整理SATWE设计参数便览的说明

设计参数的合理确定至关重要,以便览的方式整理其目的是在SATWE的操作中,可据本便览比较快的定下来。SATWE的设计参数,用户手册有一些说明,但分散在多处且过于简单,很不好用。论坛里也有许多帖子,但总觉得系统性、实用性有些不足。

SATWE前处理----接PM生成SATWE数据菜单共13项,重点是1、2两项。

由于水平有限在整理中肯定会出现不足和错误,欢迎斧正。更欢迎参与。

SATWE参数便览之总信息

1、水水平力与整体坐标夹角(度):采用隐含值0,经计算后,当大于15度时,填入计算

值重算。

2、混凝土容重:隐含值25。构件自重计算梁板、梁柱重叠部分都未扣除,框架结构可行,剪力墙、板柱结构偏小。

3、钢材容重:隐含值78。可行。

4、裙房层数:指地上的周边都有的群房。当主体一面或多面无裙房时,风荷载需个案处理。

5、转换层所在层号:按自然层号填输,含地下室的层数。

6、地下室层数:按地下层数填输,当一面或多面临空时,填土侧压力需个案处理。

7、墙元细分控制最大控制长度:墙元长度太大则计算精度无法保证,可采用隐含值。

8、对所有楼层采用刚性楼板假定:位移计算时,不论是否开大洞或不规则,必须是刚性板假定。内力计算时,则在任何情况下均不能设为刚性板。

9、墙元侧向节点信息:一般工程选“出口”,剪力墙数量多的高层结构宜选“内部”。选“内部”时,计算精度会有一点点降低,但速度要快很多。

10、结构材料信息:共5个选项:钢筋砼结构;钢与砼混合结构;有填充墙钢结构;无填充墙钢结构;砌体结构。按含义选取,砌体结构用于底框结构。

11、结构体系:按结构布置的实际状况确定。共分:框架结构、框剪结构、框筒结构、筒中筒结构、板柱剪力墙结构、剪力墙结构、短肢剪力墙结构、复杂高层结构、砖混底框结构、共9种类型。确定结构类型即确定与其对应的有关设计参数。

12、恒、活载计算信息:“不计算恒、活荷载”即计算竖向力。“一次性加载”可用于多层。“模拟施工荷载1” 用于高层结构计算,“模拟2”仅用于高层基础计算。

13、地震作用计算信息:共3个选项:不计算地震作用,很少出现;计算水平地震作用,用于6-8度区;计算水平和竖向地震作用,用于九度区。

SATWE参数便览之风荷载信息

1、地面粗糙度类别:分为A、B、C、D类。C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。见《荷规》7.2.1条。

2、基本风压::风荷载基本值的重现期为50年一遇,《高规》3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应采用100年一遇的风压值。

3、结构基本周期(秒):用《荷规》附录E的经验公计算初始值即:框架结构T=(0.08-1.00)N;框剪结构、框筒结构T=(0.06-0.08)N;剪力墙结构、筒中筒结构T=(0.05-0.06)N。其中N为结构层。经运算后填输计算值重算。

4、体型系数:指的是含高度变化等因素的综合系数,应据《荷规》7节、《高规》3.2条确定。体型系数分段最多为3。

5、设缝多塔背风面体型系数:还没有分段功能。

6、超出上述范围的风荷载,可用程序的自定义功能。

SATWE参数便览之地震信息

1、结构规则性信息:结构平面规则性判断见《抗规》表3.4.2-1、《高规》4.3节。结构竖象规则性判断见《抗规》表3.4.2-

2、《高规》4.4节。

2、设计地震分组:见《抗规》附录A。

3、设防烈度:见《抗规》附录A。按《抗规》3.1.3条调整。

4、场地类别:共分4类。见《抗规》4.1节。

5、框架抗震等级:见《抗规》表6.1.2。

6、剪力墙抗震等级:见《抗规》表6.1.2。

7、考虑偶然偏心:见《高规》3.3.3条。计算单向地震时考虑。

8、考虑双向地震作用:《抗规》5.1.1条。一般情况选用。

9、计算振型个数:一般应大于9,不超过层数X3,以参与质量系数是否达到0.9为准。

10、活载质量折减系数:见《抗规》表5.1.3。

11、周期折减系数:,《高规》第3.3.17条有具体规定:当非承重墙体为填充砖墙时,高层建筑结构的计算自振周期折减系数ΨT可按下列规定取值:框架结构g 0.6~0.7;框架―剪力墙结构0.7~0.8;剪力墙结构g 0.9~1.0;短肢剪力墙结构(补充)0.8~0.9。

12、结构的阻尼比:钢筋混凝土结构:0.05;小于12层纲结构:0.03;大于12层纲结构:0.035。

13、特征周期:见《抗规》5.1.4条。特征周期值见《抗规》表5.1.4-2。附加周期值见《抗规》表5.2.7。

14、多遇地震最大影响系数:见《抗规》表5.1.4-1。《高规》表3.3.7-1。

15、罕遇地震最大影响系数:见《抗规》表5.1.4-1。《高规》表3.3.7-1。

16、斜交抗侧力构件方向附加地震数及相应角度:见《抗规》5.1.1-

建议PKPM应明确此处的填的抗震等级是”计算地震作用“用的抗震等级,而非要采用的“抗震构造措施”的抗震等级。

SATWE参数便览之活载i信息

1、柱、墙设计活荷载:民用建筑勾选折减。非民用建筑另议。

2、传给基础的活荷载:民用建筑勾选折减。非民用建筑另议。

3、梁活载不利布置最高层号:按自然层号填入。

4、柱、墙、基础活荷载折减系数:《荷规》表4.1.2。

SATWE参数便览之调整信息

1、梁端负弯矩调整系数:隐含值0.85。可采用,也可修改。

2、梁设计弯矩放大系数:不与活载不利布置同时定义。

3、梁扭矩折减系数:隐含值0.4。可采用,也可修改。

4、连梁刚度折减系数:隐含值0.7。可采用,也可修改。

5、中梁刚度放大系数:一般取2。

6、剪力墙加强区起算层号:无地下室填1,有地下室向地下延伸一层。

7、调整与框支柱相连的梁内力:有时勾选。《高规》10.2.7条。

8、按抗震规范(5.2.5)调整各楼层的地震内力:指楼层最小地震剪力,应勾选。《抗规》5.2.5条。,

9、九度结构及一级框架结构梁柱配筋超配系数:隐含值1.15。可采用。

10、指定薄弱层个数及层号:事先难以确定,可经运算后确定。

11、地震作用调整:

11-1、全楼地震作用放大系数:找不到规范依据,可配质量参与系数使用。

11-2、0.2Qo调整起、止层号:按自然层的起、止层号填入。

11-3、顶塔楼地震作用放大起始层号及系数:按顶塔楼的起始层自然层号填入。系数一般取3。

SATWE参数便览之设计信息

1、考虑“p-△”:可暂不勾选,经计算确定。

2、梁柱重叠部分简化位刚域:一般不简化,梁、柱截面特别大的节点可勾选。

3、按高规或高钢规进行构件设计:符合高层条件的建筑应勾选,多层建筑不勾选。

4、钢柱计算长度系数按有侧移计算:勾选按有侧移计算,否则按无侧移计算。判断见《钢规》5.3.3条

5、混凝土柱的计算长度系数计算执行《混规》7.3.11-3条:当水平荷在产生的弯矩大于75%勾选。

6、结构重要性系数:按《混规》3.2.2条确定。

7、梁保护层厚度:按《混规》9.2节慎重确定。

8、柱保护层厚度:按《混规》9.2节慎重确定。

9、钢构件截面净毛面积比:0.85偏小,可据节点连接方式、螺孔多少适当加大。

10、柱配筋计算原则:由X、Y轴的弯矩比例确定,选双偏压比较稳妥。

SATWE参数便览之配筋信息

1、梁主筋强度:据《混规》表4.2.3-1选用。

2、柱主筋强度:据《混规》表4.2.3-1选用。

3、墙主筋强度:据《混规》表4.2.3-1选用。

4、梁箍筋强度及间距:抗震设防工程填加密区间距可用100,非抗震设防工程按构造规定填可用200。

5、柱箍筋强度及间距:抗震设防工程填加密区间距可用100,非抗震设防工程按构造规定填可用200。

6、墙分布筋强度:据《混规》表4.2.3-1选用。

7、墙边缘构件箍筋强度:据《混规》表4.2.3-1选用。

8、墙水平分布筋间距:非、一、二、三级抗震300,框支墙200,见《混规》10.5.10条、《抗规》6.4.3条。

9、墙竖向分布筋配筋率:非抗震工程见《混规》10.5.10条,抗震工程见《抗规》6.4.3条,高层特一级抗震见《高规》4.9.2条。

SATWE参数便览之调整信息

11、地震作用调整:

11-3、顶塔楼地震作用放大起始层号及系数:按顶塔楼的起始层自然层号填入。系数一般取3”

1.根据《抗规》第5.

2.4条,当采用底部剪力法时,突出屋面的屋顶间、女儿墙、烟囱等的地震作用效应,宜乘以增大系数3,……;采用振型分解法时,突出屋面部分可作为一个质点;……

2.根据李国胜先生编著的《多高层钢筋混凝土结构设计中疑难问题的处理及算例》第2.16条:在高层建筑顶部,当有突出屋面的楼电梯间、水箱间等高度较小的小塔楼时,如果采用振型分解反应谱法,并取3个振型时,小塔楼的水平地震作用宜乘以放大系数1.5;当采用9~15个振型时,求得的地震作用不再放大。

补充:

“SATWE参数便览之调整信息

11、地震作用调整:

11-3、顶塔楼地震作用放大起始层号及系数:按顶塔楼的起始层自然层号填入。系数一般取3”

1.根据《抗规》第5.

2.4条,当采用底部剪力法时,突出屋面的屋顶间、女儿墙、烟囱等的地震作用效应,宜乘以增大系数3,……;采用振型分解法时,突出屋面部分可作为一个质点;……

2.根据李国胜先生编著的《多高层钢筋混凝土结构设计中疑难问题的处理及算例》第2.16条:

(1).在高层建筑顶部,当有突出屋面的楼电梯间、水箱间等高度较小的小塔楼时,如果采用振型分解反应谱法,并取3个振型时,小塔楼的水平地震作用宜乘以放大系数1.5;当采用9~15个振型时,求得的地震作用不再放大。

(2).广播、通讯、电力调度等建筑物,由于天线高度以及其他功能要求,常常在主体建筑物的顶部再建一个细高的塔楼,塔高常超过主体建筑高度的1/4以上,甚至超过建筑物的高度,塔的层数较多,刚度较小。塔楼的高振型影响很大,其地震作用比按底部剪力法的计算结果大很多,远远不止3倍,有的甚至大8~10倍。因此,一般情况下塔与建筑物应采用振型分解反应谱法(≥15个振型)或时程分析法进行分析,求出其水平地震作用。

SATWE参数便览之荷载组合

1、恒荷载分项系数:可变(活)荷载效应控制取1.20;永久(恒)荷载效应控制取1.35。《荷规》3.2.5条。

2、活荷载分项系数:可变(活)荷载效应控制取1.40-1.30;永久(恒)荷载效应控制取0.98。《荷规》3.2.5条。

3、活荷载组合值系数:民用建筑多数0.7,《荷规》表4.1.1。民用建筑见《荷规》附录C。

4、活荷载重力代表值系数:0.5,《抗规》5.1.3、表5.1.3。

5、风荷载分项系数:1.4《荷规》3.2.5条。

6、风荷载组合值系数:0.6《荷规》7.1.4条。

7、水平地震作用分项系数:1.3《抗规》5.4.1条表5.4.1。

8、竖向地震作用分项系数:0.4《抗规》5.4.1条表5.4.1。

9、温度荷载分项系数:待议。

10、吊车荷载分项系数:1.4《荷规》3.2.5条。

11、特殊风荷载分项系数:1.4《荷规》3.2.5条。

12、自定义组合及工况:按提示操作。

13、另有积灰、雪荷载未纳入,应据《荷规》另行处理,荷载组合是由程序自动完成,注意校核。

SATWE参数便览之地下室信息

1、回填土对地下室约束相对刚度比:改版前一般填3运算,填5为完全约束。新版填-m(地下室层数)为完全约束。

2、外墙分布筋保护层厚度:按《混规》9.2节慎重确定。

3、地下室外墙侧土、水压力参数:

3-1、回填土容重:18可行。

3-2、室外地坪标高:据建筑设设计确定。

3-3、回填土侧压力系数:据地质报告,经计算确定。一般情况为0.3-0.4。

3-4、地下水位标高:据地质报告确定。

3-5、室外地面附加荷载:据地面功能确定。

4、人防设计信息:

4-1、人防设计等级:据人防部门的意见确定。

4-2、人防地下室层数:据人防部门的意见确定。

4-3、顶板人防等效荷载:按《防规》确定,并可在菜单10里修改。

4-4、外墙人防等效荷载:按《防规》确定,并可在菜单10里修改。

5、新版不允许活载为0,底板也有人防等效荷载及邻空墙的土压力需另案处理。

SATWE参数便览之砌体结构

1、砌块种类:分烧结砖、蒸压砖、砌块三种。《砌规》3.1节。

2、砌块墙体容重:22是烧结砖的容重(含双饰面),其它种类应换算。

3、构造拄刚度折减系数:应是构造柱与砌体弹性模量的比值,一般可取0.3。

4、底部框架层数:填建模时的层数。

5、底框结构空间分析方法:抗震设防工程选PM菜单8,非抗震设防工程选可选有限元整体法。

6、材料强度变化起始层号:填自然层号。

7、第一种弹性模量:《砌规》3.2.5节。

8、第一种抗压强度:《砌规》表3.2.1-1。《砌规》表3.2.1-2。《砌规》表3.2.1-3。《砌规》表3.2.1-5。

9、第一种砂浆强度等级:M7.5、M5、M2.5、M0选其一。

10、第二种弹性模量:《砌规》3.2.5节。

11、第二种抗压强度:《砌规》表3.2.1-1。《砌规》表3.2.1-2。《砌规》表3.2.1-3。《砌规》表3.2.1-5。

12、第二种砂浆强度等级:M7.5、M5、M2.5、M0选其一。

13、配筋砌块砌体结构:采用时勾选。

SATWE参数便览之特殊构件定义

一、特殊梁:

1、不调幅梁:指配筋计算不作弯矩调幅的梁。用于裂缝有特别要求的梁,程序有隐含定义,亮青色显示。

2、连梁:指与剪力墙平行或交角不大于25度连接的梁。其刚度应近行折减。程序有隐含定义,亮黄色显示。

3、转换梁:指框支转换梁和托柱梁。程序没有隐含定义,需用户自定义。亮白色显示。

4、铰接梁:程序考虑了一端、两端饺接。程序没有隐含定义,需用户自分端定义。以红色小圆点显示。

5、滑动支座梁:程序考虑了一端为滑动支座。程序没有隐含定义,需用户自定义。以白色小圆点显示。

6、门式钢梁:程序没有隐含定义,需用户自定义。梁长的1/3暗白色显示。

7、耗能梁:程序没有隐含定义,需用户自定义。梁长的1/3亮绿色显示。

8、组合梁:在下级菜单里定义,信息记录在“ZHL.SAT”文件里,取消定义可删除该文件,也可查询修改。

9、刚性梁:点取菜单,在对话框里选择截面类型,双击1/0的1即完成定义。用于柱内节点连接。

二、特殊柱:

1、上、下、两端饺接柱:程序考虑了柱一端、两端为饺接的情况,户自定义后,上端饺接柱亮白色显示。下端饺接柱暗白色显示。两端饺接柱亮青色显示。

2、角柱:指位于阳角X、Y向只有单面拉接的柱,程序没有隐含定义,户自定义后显示“JZ”,再点击取消定义。

3、框支柱:指其框支梁上有混凝土墙连接的框支柱,用户自定义,方法同角柱。

4、门式钢柱:指按《门规》设计的柱,用户自定义,方法同角柱。

三、特殊支撑:

1、铰接支撑:程序考虑了支撑一端、两端为饺接的情况,定义方法同铰接梁。亮黄色显示,饺端以红色小

圆点显示。

2、人/V支撑:点取定义后,其一半长度亮青色显示。

3、十/斜支撑:点取定义后,其一半长度亮红色显示。

四、弹性板:按房间单元定义,点取定义后显示一个圆环,圆环内数字示板厚。洞口占房间的一半时,应定义为弹性板。

弹性板分三种:

1、弹性板6:由程序据实计算板平面内、外刚度的板。

2、弹性板3:假定板平内无限刚。由程序据实计算板平面外刚度的板。

3、弹性膜:由程序据实计算板平面内刚度,平面外刚为0的板。

五、临空墙:有人防地下室时定义,红色宽线显示。

六、吊车荷载:输入吊车荷载相关参数和吊车布置。按菜单要求执行。吊车梁红色宽线显示。

SATWE参数便览之计算控制参数

1、刚心座标、层刚度比计算:必需勾选。

2、形成总刚并分解:必需勾选。

3、结构地震作用计算:有抗震设防工程勾选。

4、结构位移计算:必需勾选。

5、全楼构件内力计算:必需勾选。

6、吊车荷载计算:有吊车工程勾选。

7、生成传给基础的刚度:必需勾选。

8、构件配筋及验算:必需勾选。

8-1、配筋起始层:按需填入。

8-2、配筋终止层:按需填入。

9、层刚度比计算:

9-1、剪切刚度:配合刚性楼板选用。《高规》确定的方法。

9-2、剪弯刚度:配合弹性楼板、错层结构选用。有限元施加单位力法。

9-3、地震剪力与地震层间位移的比:有抗震设防工程选用。《抗规》确定的方法。

10、地震作用分析方法:

10-1、侧刚分析方法:配合刚性楼板选用。

10-2、总刚分析方法:配合弹性楼板、错层结构选用。

11、线性方程组解法:

11-1、VSS向量稀疏求解器:速度快优先选用。

11-1、LDLT三角分解:原项保留。

12、位移输出方法:

12-1、简化输出:侧刚分析方法,仅输出最楼层大位移,总刚分析方法,仅输出周期、地震力,按需选用。

12-2、详细输出:还输出各节点位移,按需选用。

PKPM菜单5(绘制结构平面图)楼板配筋参数:

1、支座受力钢筋最小直径:隐含值8,可选用。

2、板分布筋的最大间距: 隐含值250,和板厚有关。《混规》10.1.8条。

3、双向板计算方法:弹性算法适用于允许裂缝宽度要求较严格的建筑,框架梁端负弯矩有调幅系数的建筑应选塑性算法。

4、边缘梁、墙算法:应选按简支计算,以消除梁、墙的扭矩。

5、有错层搂板算法:应选按简支计算。

7、是否根据允许裂缝挠度自动选筋:当前软件有的版本还有不足,慎重选用。标准见《混规》3.3.2条、《混规》3.3.4条。

8、允许裂缝宽度::隐含值0.3,《混规》3.3.4条。

9、支座负筋长度取整按:隐含值10可选用。

10、钢筋级别:共5个选项,据需要选取。

11、钢筋放大调整系数:一般不需放大。

12、钢筋强度设计值:可用隐含值。

13、使用矩形;连续板跨中弯矩算法:双向板计算方法选弹性算法时选用。

14、嵌固与砌体墙的板角,上部筋应按《混规》10.1.7-2条的规定配置。

15、注意按《混规》10.1.9条的规定配置温度收缩筋。。

1.风荷载

风压标准值计算公式为:WK=βzμsμZ W。其中:βz=1+ξυφz/μz在新规范中,基本风压Wo略有提高,而建筑的风压高度变化系数μE、脉动增大系数ξ、脉动影响系数υ都存在减小的情况。所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。具体的变化包括下面几条:

1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇: 新高规3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。

2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D类。C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。

3)、风压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。新增加的D类对应的风压高度变化系数最小,比C类小20%到50%

4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。新增加的D类对应脉动增大系数比89规范小,约小5%到10%。与结构的材料和形式有关。

5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0.48、0.53和0.63。在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。如C类、高度为5Om、高宽比为3的建筑,υ=0.46,比89高规小28%,若为D类,则小37%。

6)、结构的基本周期:脉动增大系数ξ与结构的基本周期有关(WoT12)。结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0.08-1.00)N:框剪结构、框筒结构T=(0.06-0.08)N:剪力墙结构、筒中筒结构T=(0.05-0.06)N。其中N为结构层数。

2.地震作用

1)、抗震设防烈度::新规范改变了抗震设防烈度与设计基本地震加速度值的对应关系,增加了7度(0.15g〉和8度(0.30g)两种情况(见新抗震规范表3.2.2)。

2〉、设计地震分组:新规范把直接影响建筑的设计特征周期T g的设计近震、远震改为设计地震分组,分别为设计地震第一组、第二组和第三组。

3)、特征周期值:比89规范增加了0.05s以上,这在一定程度上提高了地震作用。

4)、地震影响系数曲线:新规范5.1.5条,设计反应谱范围由原来的3s延伸到6s,分上升段、平台段、指数下降段和倾斜下降段四个区段。在5Tg以内与89规范相同,从5Tg起改为倾斜下降段,斜率为0.02。对于阻尼比δ不等于0.05的结构,设计反应谱在阻尼比δ等于0.05的基础上调整。

5)、扭转耦连:新高规3.3条规定,质量、刚度不对称、不均匀的结构,以及高度超过100m的高层建筑结构应采用考虑扭转稿连振动影响的振型分解反应谱法。

6)、双向地震作用:新抗震规范5.1.1条规定,质量和刚度分布明显不对称的结构,应计入双向地震作用下的扭转影响。

7)、偶然偏心:新高规3.3.3条规定,计算地震作用时,应考虑偶然偏心的影响,附加偏心距可取与地震作用方向垂直的建筑物边长的5%。

8)、竖向地震作用:新规范5.3.1条规定,对于9度的高层建筑,其竖向地震作用标准值应按

公式(5.3.1-1)和〈5.3.14〉计算,并宜乘以1.5的放大系数。相当于重力荷载代表值的33.4%:新规范5.3.3条规定,长悬臂和其它大跨度结构竖向地震作用标准值,8度、8.5度和9度时分别取重力荷载代表值的10%、15%和20%:新高规10.2.3条规定,带转换层的高层建筑结构,8度抗震设计时转换构件应考虑竖向地震影响。

3.地震作用调整

1)、最小地震剪力调整::新规范5.2.5条规定,抗震验算时,结构任一楼层的水平地震的剪重比不应小于表5.2.5给出的最小地震剪力系数λ。对于竖向不规则结构的薄弱层,尚应乘以1.15的增大系数2)、0.2Q0调整:新规范6.2.13条规定,侧向刚度沿竖向分布基本均匀的框一剪结构,任一层框架部分的地震剪力,不应小于结构底部总地震剪力的20%和按框-剪结构分析的框架部分各楼层地震剪力中最大值1.5倍二者的较小值。

3)、边榀地震作用效应调整:新规范5.2.3条规定,规则结构不进行扭转祸连计算时,平行于地震作用方向的两个边桶,其地震作用效应应乘增大系数。一般情况下,短边可按1.15采用,长边可按1.05采用:当扭转刚度较小时,宜按不小于1.3采用。软件未执行这一条。

4)、竖向不规则结构地震作用效应调整:新规范3.4.3条规定,竖向不规则的建筑结构,其薄弱层的地震剪力应乘以1.15的增大系数:新高规5.1.14条规定,楼层侧向刚度小于上层的70%或其正二层平均值的80%时,该楼层地震剪力应乘1.15增大系数;新规范3.4.3条规定,坚向不规则的建筑结构,竖向抗侧力构件不连续时,该构件传递给水平转换构件的地震内力应乘以1.25-1.5的增大系数。

5〉、转换梁地震作用下的内力调整:新高规10.2.23条规定,转换梁在特一级和一、二级抗震设计时,其地震作用下的内力分别放大1.8、1.5、1.25倍。

6)、框支柱地震作用下的内力调整:新高规10.2.7条规定,框支柱数目不多于10根时:当框支层为1一2层时各层每根柱所受的剪力应至少取基底剪力的2%当框支层为3层及3层以上时,各层每根柱所受的剪力应至少取基底剪力的3%:框支柱数目多于10根时,当框支层为1一2层时每层框支柱所承受剪力之和应取基底剪力20%,当框支层为3层及3层以上时,每层框支柱所承受剪力之和应取基底剪力3。她框支柱剪力调整后,应相应调整框支柱的弯矩及柱端梁的剪力、弯矩,框支柱的轴力可不调整。

4.作用效应组合

1)、作用效应组合基本公式非抗震设计时由可变荷载控制的组合zs=γGSGK+γJQJZ的iYQiSω非抗震设计时由永久荷载控制的组合zs=γGSGK+立的hSQik抗震设计时的组合

2)、恒荷载作用的分项系数:当其对结构不利时,对于可变荷载效应控制的组合,应取1.2,对于永久荷载效应控制的组合,应取l.35:当其对结构不利时,一般应取1.0。

3)、可变荷载作用的分项系数和组合值系数:一般应取l.4;对于标准值大于4.OKN/m2的工业房屋楼面结构的活荷载应取1.3;楼面活荷载的组合值系数见荷载规范表4.1.1,取值范围在0.7-0.9之间;风荷载的组合值系数为0.6;与地震作用效应组合时风荷载的组合系数为0.2。

4)、地震作用的分项系数:一般应取1.3:当同时考虑水平、竖向地震作用时,应取0.5。

5〉、重力荷载代表值:新抗震规范5.1.3条规定,建筑的重力荷载代表值应取结构和构配件自重标准值和各可变荷载组合值之和。各可变荷载组合值系数,应按表5.1.3采用。(与荷载规范表4.1.1不同〉

5.设计内力调整

1)、梁设计剪力调整:抗震规范第6.2.4条和高规第6.2.5、7.2.21条规定,抗震设计时,特一、一、二、三级的框架梁和抗震墙中跨高比大于2.5的连梁,其梁端截面组合的设计剪力值应调整。

2)、柱设计内力调整:为了体现抗震设计中强柱弱梁概念设计的要求,抗震规范第6.2.2、6.2.3、6.2.6、

6.2.10条和高规第4.9.2条规定抗震设计时,特一、一、二、三级的框架柱、框架结构的底层柱下端截面、角柱、框支柱的组合设计内力值应调整。

3)、剪力墙设计内力调整:高规第7.2.10、10.2.14、4.9.2条规定,抗震设计时,特一、一、二、三级的剪力墙底部加强区和非加强区截面组合的设计内力值应调整。

6.结构整体性能控制

1)、位移控制:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.3倍。

2)、周期控制:新高规的4.3.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1之比,A 级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.850 3〉、层刚度比控制:新抗震规范附录E2.1规定,筒体结构转换层上下层的侧向刚度比不宜大于2;新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80%;新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍:新高规的10.2.6条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录D的规定。

D.0.1:底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2

D.0.2:底部为2-5层大空间的部分框支剪力墙结构,其转换层下部框架一剪力墙结构的等效侧向刚度与相同或相近高度的上部剪力墙结构的等效侧向刚度比γe宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。

4)、层刚度比计算:

高规附录D.0.l建议的方法一剪切刚度Ki=Gi Ai/hI

高规附录D.0.2建议的方法一剪弯刚度Ki=A i/Hi

抗震规范的3.4.2和3.4.3条文说明中建议的计算方法:Ki=Vi /A Iji

新规范软件中提供前两种算法。

5)、框剪结构中框架承担的倾覆力矩计算;新抗震规范第6.1.3条、高规8.1.3条规定,框架一剪力墙结构,在基本振型地震作用下,若框架部分承担的地震倾覆力矩大于总地震倾覆力矩的50%,其框架部分的抗震等级应按框架结构确定,柱轴压比限值宜按框架结构采用。抗震规范第6.1.3条的条文说明给出了框架部分承担的倾覆力矩的计算方法zMC=ZZVjh

7.结构构件设计计算

1〉、柱轴压比计算:新抗震规范6.3.7条、高规的6.4.2条和混凝土规范的11.4.16条,都规定了柱轴压比的限值,并规定建造于IV类场地且较高的高层建筑柱轴压比限值应适当降低。柱轴压比指柱考虑地震作用组合的轴压力设计值与柱的全截面面积和混凝土轴心抗压强度设计值乘积之比:可不进行地震计算的结构,取无地震作用组合的轴压力设计值:

2)、剪力墙轴压比计算:新抗震规范6.4.6条、高规的7.2.14条和混凝土规范的11.7.13条,都规定了剪力墙轴压比的限值。目前新规范程序给出各个墙肢的轴压比。

3)、剪力墙强区:底部加新抗震规范和新高规对剪力墙结构底部加强部位的定义略有不同, 分别定义如下:

新抗震规范6.1.10条规定,部分框支抗震墙结构的抗震墙,其底部加强部位的高度,可取框支层加上框支层以上两层的高度及落地抗震墙总高度的l/8二者的较大值,且不大于15m,其它结构的抗震墙,其底部加强部位的高度可取墙肢总高度的1/8和底部二层高度二者的较大值,且不大于15m。

新高规的7.1.9条规定,一般剪力墙结构底部加强部位的高度可取墙肢总高度的l/8和底部二层高度二者

的较大值,当剪力墙高度超过150m时,其底部加强部位的范围可取墙肢总高度的1/10。新高规的10.2.5条规定,带转换层的高层建筑结构,剪力墙结构底部加强部位可取框支层加上框支层以上两层的高度及墙肢总高

度的1/8二者的较大值。

4)、剪力墙的约束边缘构件和构造边缘构件:

新高规的7.2.15条规定,抗震设计时,一、二级剪力墙结构底部加强部位及以上一层的墙肢设置约束边缘构件,一、二级剪力墙的其它部位以及三、四级和非抗震设计的剪力墙墙肢均应设置构造边缘构件。

5)、梁、柱、支撑、墙配筋计算:

基本构件的设计公式都有不同程度改变。

设计参数的合理选取(1--8)

1、抗震等级的确定:

钢筋混凝土房屋应根烈度、结构类型和房屋高度的不同分别按〈抗规〉6.1.2条或〈高规〉4.8条确定本工程的抗震等级。但需注意以下几点:

(1)上述抗震等级是“丙”类建筑,如果是“甲”、“乙”、“丁”类建筑则需按规范要求对抗震等级进行调整。(2)接近或等于分界高度时,应结合房屋不规则程度及场地、地基条件慎重确定抗震等级。

(3)当转换层〉=3及以上时,其框支柱、剪力墙底部加强部的抗震墙等级宜按〈抗规〉6.1.2条或〈高规〉4.8条查的抗震等级提高一级采用,已为特一级时可不调整。

(4)短肢剪力墙结构的抗震等级也应按〈抗规〉6.1.2条或〈高规〉4.8条查的抗震等级提高一级采用。。但注意对多层短肢剪力墙结构可不提高。

(5)注意:钢结构、砌体结没有抗震等级。计算时可选“5”,不考虑抗震构造措施。

2、振型组合数的选取:

在计算地震力时,振型个数的选取应是振型参与质量要达到总质量90%以上所需要振型数。但要注意以下几点:

(1)振型个数不能超过结构固有的振型总数,因一个楼层最多只有三个有效动力自由度,所以一个楼层也就最多可选3个振型。如果所选振型个数多于结构固有的振型总数,则会造成地震力计算异常。

(2)对于进行耦联计算的结构,所选振型数应大于9个,多塔结构应更多些,但要注意应是3的倍数。(3)对于一个结构所选振型的多少,还必需满足有效质量系列化大于90%。在WDISP.OUT文件里查看。

3、主振型的判断;

(1)对于刚度均匀的结构,在考虑扭转耦联计算时,一般来说前两个或前几个振型为其主振型。

(2)对于刚度不均匀的付杂结构,上述规律不一定存在,此时应注意查看SATWE文本文件“周期、振型、地震力”WZQ.OUT。程序输出结果中,给出了输出各振型的基底剪力总值,据此信息可以判断出那个振型是X向或Y向的主振型,同时可以了解没个振型对基底剪力的贡献大小。

4、地震力、风力的作用方向:

结构的参考坐标系建立以后,所求的地震力、风力总是沿着坐标系的方向作用。但设计者注意以下几种情况:

(1)设计应注意查看SATWE文本文件“周期、振型、地震力”WZQ.OUT。输出结果中给出了地震作用的最大方向是否与设计假定一致,对于大于150度时,应将此方向输入重新计算。

(2)对于有有斜交抗侧力构件的结构,当大等于150度时,应分别计算各抗力构件方向的水平地震力。此处所指交角是指与设计输入时,所选择坐标系间的夹角。

(3)对于主体结构中存在有斜向放置的梁、柱时,也要分别计算各抗力构件方向的水平地震力。

5、周期折减系数:

高规3.3.17条规定:当非承重墙体为填充砖墙时,高层建筑结构的计算自振周期折减系数,可按下列规定取值。

(1)框架结构0.6―0.7;

框架―剪力墙结构0.7―0.8;

剪力墙结构0.9―1.0;

短肢剪力墙结构0.8―0.9。

(2)请大家注意:周期折减是强制性条文,但减多少则不是强制性条文,这就要求在折减时慎重考虑,既不能太多,也不能太少,因为折减不仅影响结构内力,同时还影响结构的位移。

6、活荷载质量调整系数:

该参数即为荷载组合系数。可按《抗规》5.1.3条取值。注意该调整系数只改变楼层质量,不改变荷载总值,即对竖向荷载作用下的内力计算无影响,

7、关于柱长计算系数

《混规》7.3.11条规定了三种情况下柱计算长度的选取,设计者应根据实际情况区别对待。

程序默认是7.3.11-2情况。

8、关于阻尼比:

不同的结构有不同的阻尼比,设计者应区别对待:

钢筋混凝土结构:0.05

小于12层纲结构:0.03

大于12层纲结构:0.035

关于梁的几个调整系数

(1)刚度调整系数Bk:梁的刚度调整,主要是考虑现浇楼板对梁的刚度贡献,楼板与梁按T形共同工作。而程序是按矩形取,所以可以考虑梁的刚度放大。一般可取1.5―2.0,但对预制楼板、板柱结构的等代梁取1.0,注意刚度调整系数对连梁不起作用。

(2)梁端负弯矩调整系数:框架梁在竖向荷载作用下梁端负弯矩调整系数,是考虑梁的塑性内力重分布。通过调整使梁端负弯矩减小,跨中正弯矩加大(程序自动加)。梁端负弯矩调整系数一般取0..85。

注意:1:程序隐含钢梁为不调幅梁。2:不要将梁跨中弯矩放大系数与其混淆。

(3)梁弯矩放大系数Bm:当不计算活载或不考虑活载不利布置时,可通过此参数调正梁在恒、活载作用下的跨中正弯矩,一般取1.1―1.2。在选用时注意:如果活载考虑不利布置时则此系数取1.0。

(4)连梁刚度折减系数BLz:主要是指那些与剪力墙一端或两端平行连接的梁,由于梁两端往往变位差很大,剪力就会很大,所以很可能出现超筋。这就要求连梁在进入塑性状态后,允许其卸载给剪力墙,而剪力墙的承载力往往较大,因此这样的内力重分布是可以的。一般取0.55―0.7。

注意:如连梁的跨高比大于等于5时,建议按梁输入,因此时梁往往是受弯为主,刚度不应折减。(5)梁扭矩折减系数Tb:是针对新规范的梁抗扭设计而设的,由于目前梁在整体结构中的扭转问题研究的还不多,楼板对梁平面外究竟有多大约束作用,还不十分清楚,所以程序给出的范围较大0.4―1.0,建议取0.4。

注意:程序规定对于不与刚性楼板相连的梁及弧梁不起作用。

关于楼层刚计算方法的选取:

程序给出了三种计算方法,三种计算方法可能给出差别较大的刚度比,所以设计应根据工程的实际情况做出正确选择,可按下列原则选取:

(1)剪切刚度:即《高规》附录E.0.1建议的方法。对于底层大空间层数为---层时,可近似采用转换层上、下结构的等效剪切刚度比表示转换层上、下结构的刚度变化。此时可近似只考虑剪切变形的影响,适用于多层(砌体、底框),不带转换层的剪力墙结构也宜选用此项。

(2)剪弯刚度:即《高规》附录E.0.2建议的方法(是按有限元法,通过加单位力计算的)。对于底层大空间层数大于---层时,可近似采用转换层上、下结构的等效剪切刚度比表示转换层上、下层的刚度变化,此时同时考虑结构剪切变形和弯曲变形的影响,适用于带斜撑的钢结构、不带转换层的框架--剪力墙结构

也宜选用此项。

(3)地震剪力与地震层间位移比值:即《抗规》建议的方法。,适用于其它多层结构。

注意:

1:上述三种方法计算刚度的含义是不同的,差异较大。如果仅有一个标准层的简单框架结构,按方法1、2计算各层的刚度都相同,按方法3计算各层的刚度不相同。

2:对于高位转换层(8度三层、7度五层以上),建议人工按《高规》附录E.0.2分别建两个模型计算。

必须检查的计算结果输出信息

1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6。

2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,参见《高规》的表3.3.13;地震规范的表5.2.5同。程序对算出的“楼层最小地震剪力系数”如果不满足规范的要求,将给出是否调整地震剪力的选择。根据规范组的解释,如果不满足,就应调整结构方案,直到达到规范的值为止,而不能简单的调大地震力。

3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层。

新抗震规范附录E2.1规定,转换层结构上下层的侧向刚度比不宜大于2。

新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80%

新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。上述所有这些刚度比的控制,都涉及到楼层刚度的计算方法。目前,有三种方案可供选择:

(1)高规附录E.0.1建议的方法--剪切刚度Ki=GiAi/Hi

(2)高规附录E.0.2建议的方法--剪弯刚度Ki=Vi /△i

(3)抗震规范3.4.2和3.4.3条文说明中建议的方法Ki=Vi/△ui

选用方法如下:

(1)对于多层(砌体、砖混底框),宜采用刚度1;

(2)对于带斜撑的钢结构和底部大空间层数>1层的结构宜采用刚度2;

(3)多数结构宜采用刚度3。(所有的结构均可用刚度3)

竖向刚度不规则结构的程序处理:

抗震规范3.4.3条规定,竖向不规则的建筑结构,其薄弱层的地震剪力应乘以1.15的增大系数;

新高规5.1.14条规定,楼层侧向刚度小于上层的70%或其上三层平均值的80%时,该楼层地震剪力应乘1.15增大系数;

新抗震规范3.4.3条规定,竖向不规则的建筑结构,竖向抗侧力构件不连续时,该构件传递给水平转换构件的地震内力应乘以1.25-1.5的增大系数。

1)针对这些条文,程序通过自动计算楼层刚度比, 来决定是否采用1.15的楼层剪力增大系数;并且允许用户强制指定薄弱层位置,对用户指定的薄弱层也采用1.15的楼层剪力增大系数(参数补充输入)

2)通过用户指定转换梁、框支柱来实现转换构件的地震内力放大。(特殊构件补充定义)

4、位移比:取楼层最大杆件位移与平均杆件位移比值。位移比是控制结构的扭转效应的参数。主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。见抗规3.4.3条高规4.3.5条规定。

注意:1)验算位移比可以选择强制刚性楼板假定

2) 验算位移比需要考虑偶然偏心,验算层间位移角则不需要考虑偶然偏心

3)位移比超过1.2,需要考虑双向地震

构件设计与位移信息不是在同一条件下的结果(即构件设计可以采用弹性楼板计算,而位移计算必须在刚性楼板假设下获得),故可先采用刚性楼板算出位移用于送审,而后采用弹性楼板进行构件分析。

5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响,要求见高规4.3.5条。

一旦出现周期比不能满足要求的情况,一般只能通过调整平面布置来改善。这种改善一般是整体性的,局

部小调整往往收效甚微。总的调整原则是要加强结构外圈,或者削弱内筒。一句话,周期比控制的不是在要结构足够结实,而是在承载力布局合理性,限制结构抗扭刚度不能太弱。

6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆。

条文:高规(5.4.2)条和混凝土规范(7.3.12)条都提到重力二阶效应问题。

概念:重力二阶效应一般称为P-DELT效应,在建筑结构分析中指的是竖向荷载的侧移效应。当结构发生水平位移时,竖向荷载就会出现垂直于变形后的结构竖向轴线的分量,这个分量将加大水平位移量,同时也会加大相应的内力,这在本质上是一种几何非线性效应。

高层建筑结构稳定性对刚重比的要求见高规5.4.4条

注意:考虑P-DELT效应后,结构周期一般会变得稍长,这是符合实际情况的。

7、参与振动质量比:即有效质量系数

例:一八层框架,有大量的越层结构和弹性结点,需许多的振型才能使有效质量系数满足要求。

计算振型数剪重比有效质量系数

301.650%

603.290%

原因:振型整体性差,局部振动明显。

注:要密切关注有效质量系数是否达到了要求。若不够,则地震作用计算也就失去了意义。

8、倾覆力距比

1)短肢剪力墙结构

《高规》7.1.2条:抗震设计时筒体和一般剪力墙承受的第一振型底部地震倾覆力距不宜小于结构总底部地震倾覆力距的50%;一、二、三级短肢剪力墙轴压比不宜大于0.5、0.6、0.7,对一字形短肢剪力墙轴压比限值相应降低0.1。

2)框架-剪力墙结构

新抗震规范第6.1.3条、高规8.1.3条规定,框架-剪力墙结构,在基本振型地震作用下,若框架部分承担的地震倾覆力矩大于总地震倾覆力矩的百分比50%,其框架部分的抗震等级应按框架结构确定,柱轴压比限值宜按框架结构采用。

9、楼层最大位移与层高比:(层间位移角限值)

1)弹性层间位移角限值:钢筋混凝土框架为1/550,详《抗震》表5.5.1

2)弹塑性层间位移角限值:钢筋混凝土框架为1/50,详《抗震》表

5.5.5PKPM参数设置

有关PKPM软件SATWE的总信息以下是SATWE总信息中各参数如何取值,规范出处,对设计很有参考价值,当然有些参数还需要与当地的实际情况和工程的具体实际结合,以达到更合理的设计:

总信息..............................................

结构材料信息: 钢砼结构................ 按主体结构材料填写

混凝土容重(kN/m3): Gc = 27.00.............. 应考虑构件装修重量,建议取27kN/m3

钢材容重(kN/m3): Gs = 78.00.............. 一般取78kN/m3(没有计入构件装修重量)

水平力的夹角(Rad): ARF = 0.00.............. 一般取0(地震力.风力作用方向,反时针为正);当结构分析所得的[地震作用最大的方向]>15度时, 宜将其角度输入补充验算

地下室层数: MBASE= 0................ 无地下室时填0

竖向荷载计算信息: 按一次性加荷计算方式.... 多层取[一次性加载];高层取[模拟施工加载1],《高规》5.1.9条,高层框剪基础宜取[模拟施工加载2]

风荷载计算信息: 计算X,Y两个方向的风荷载...选[计算风荷载]

地震力计算信息: 计算X,Y两个方向的地震力...选[计算水平地震力],《抗规》5.1.1条(强条)

特殊荷载计算信息: 不计算.................. 一般情况下不考虑

结构类别: 框架结构................ 按结构体系选择

裙房层数: MANNEX= 0............... 无裙房时填0

转换层所在层号:MCHANGE= 0.............. 无转换层时填0

墙元细分最大控制长度(m) DMAX= 2.00............ 一般工程取2.0,框支剪力墙取1.5或1.0

墙元侧向节点信息: 内部节点................ 剪力墙少时取[出口],剪力墙多时取[内部],[出口]精度高于[内部],参见《手册》

是否对全楼强制采用刚性楼板假定是............. 计算位移与层刚度比时选[是],《高规》5.1.5条;计算内力与配筋及其它内容时选[否]

风荷载信息..........................................

修正后的基本风压(kN/m2): WO = 0.45 .......... 取值应≥0.3 kN/m2,一般取50年一遇(n=50),《荷规》7.1.2(强条),附录 D.4附表D.4

地面粗糙程度: B 类.................... 有密集建筑群的城市市区选[C]类;乡村、乡镇、市郊等选类,D类指有密集建筑群且房屋较高的城市市区;A 类指近海海面和海岛、海岸、湖岸及沙漠地区;详《荷规》7.2.1条结构基本周期(秒): T1 = 0.06............... 宜取程序默认值(按《高规》附录B公式 B.0.2);规则框架T1=(0.08-0.10)n,n为房屋层数,详见《高规》3.2.6条表3.2.6-1注;《荷规》7.4.1条,附录E;

体形变化分段数: MPART= 1................ 体形无变化填1

各段最高层号: NSTi = 6................ 按各分段内各层的最高层层号填写

各段体形系数: USi = 1.30............. 《荷规》7.3.1表7.3.1;高宽比不大于4的矩形、方形、十字形平面取1.3,详见《高规》3.2.5条

地震信息............................................

振型组合方法(CQC耦联;SRSS非耦联) CQC........ 《抗规》3.4.3条,5.2.3条;《高规》3.3.1条2款;一般工程选[耦联],规则结构用[非耦联]补充验算

计算振型数: NMODE= 9............... 《抗规》5.2.2条2款,5.2.3条2款;《高规》5.1.13条2款;参见《手册》;[耦联]取3的倍数,且≤3倍层数,[非耦联]取≤层数,参与计算振型的[有效质量系数]应≥90%

地震烈度: NAF = 7.00............. 《抗规》1.0.4条,1.0.5条,3.2.4条,附录A

场地类别: KD = 2................. 《抗规》4.1.6条表4.1.6(强条);见地勘报告

设计地震分组: 二组................... 《抗规》3.2.4条,附录A

特征周期TG = 0.40............... II类场地一、二、三组分别取0.35s、0.40s、0.45s,《抗规》3.2.3条,5.1. 4 条表5.1.4-2(强条)

多遇地震影响系数最大值Rmax1 = 0.08........... 7度取0.08,《抗规》5.1.4条表5.1.4-1(强条)

罕遇地震影响系数最大值Rmax2 = 0.50........... 7度取0.50,《抗规》5.1.4条表5.1.4-1(强条)

框架的抗震等级: NF = 3.................. 7度H≤30m取3,《抗规》6.1.2条表6.1.2(强条)

剪力墙的抗震等级: NW = 2.................. 7度框剪取2,《抗规》6.1.2条表6.1.2 (强条)

活荷质量折减系数: RMC = 0.50.............. 雪荷载及一般民用建筑楼面等效均布活荷载取0.5,详见《抗规》5.1.3条表5. 1.3(强条)组合值系数

周期折减系数: TC = 0.70............... 框架砖填充墙多0.6-0.7,砖填充墙少0.7-0.8;框剪砖填充墙多0.7-0.8,砖填充墙少0.8-0.9;剪力墙 1.0;《高规》3.3.16条(强条),3.3.17条

结构的阻尼比(%): DAMP = 5.00............. 砼结构一般取5.0;《抗规》5.1.5条1款;《高规》3.3.8条

是否考虑偶然偏心: 否...................... 单向地震力计算时选[是],多层规则结构可不考虑,《高规》3.3.3条;参见《手册》;

是否考虑双向地震扭转效应: 是.................. 一般工程选[是],此时可不考虑上条[偶然偏心];《抗规》5.1.1条3款(强条);《高规》3.3.2条2款(强条)

斜交抗侧力构件方向的附加地震数= 0............ 无斜交构件时取0;《抗规》5.1.1条2款(强条);斜交角度>15应考虑;《高规》3.3.2条1款(强条)

活荷载信息..........................................

考虑活荷不利布置的层数从第 1 到6层......... 多层应取全部楼层;高层宜取全部楼层,《高规》5.1.8条柱、墙活荷载是否折减不折算.................. PM不折减时,宜选[折算],《荷规》4.1.2条(强条)

传到基础的活荷载是否折减折算................. PM不折减时,宜选[折算],《荷规》4.1.2条(强条)

-------柱,墙,基础活荷载折减系数-------..... 《荷规》4.1.2条表4.1.2(强条)

计算截面以上的层号------折减系数

1 1.00 《荷规》4.1.2条表4.1.2(强条)

2---3 0.85 《荷规》4.1.2条表4.1.2(强条)

4---5 0.70 《荷规》4.1.2条表4.1.2(强条)

6---8 0.65 《荷规》4.1.2条表4.1.2(强条)

9---20 0.60 《荷规》4.1.2条表4.1.2(强条)

> 20 0.55 《荷规》4.1.2条表4.1.2(强条)

调整信息........................................

中梁刚度增大系数:BK = 2.00.............. 《高规》5.2.2条;装配式楼板取1.0;现浇楼板取值1.3-2.0,一般取2.0

梁端弯矩调幅系数:BT = 0.85............... 主梁弯矩调幅,《高规》5.2.3条;现浇框架梁0.8-0.9;装配整体式框架梁0. 7-0.8

梁设计弯矩增大系数:BM = 1.00............... 放大梁跨中弯矩,取值1.0-1.3;已考虑活荷载不利布置时,宜取1.0

连梁刚度折减系数:BLZ = 0.70.............. 一般工程取0.7,位移由风载控制时取≥0.8;《抗规》6.2.13条2款,《高规》 5.2.1条

梁扭矩折减系数:TB = 0.40............... 现浇楼板(刚性假定)取值0.4-1.0,一般取0.4;现浇楼板(弹性楼板)取1. 0;《高规》5.2.4条

全楼地震力放大系数:RSF = 1.00.............. 用于调整抗震安全度,取值0.85-1.50,一般取1.0

0.2Qo 调整起始层号:KQ1 = 0................. 用于框剪(抗震设计时),纯框填0;参见《手册》;《抗规》6.2.13条1款;《高规》8.1.4条

0.2Qo 调整终止层号:KQ2 = 0................. 用于框剪(抗震设计时),纯框填0;参见《手册》;《抗规》6.2.13条1款;《高规》8.1.4条

顶塔楼内力放大起算层号:NTL = 0.............. 按突出屋面部分最低层号填写,无顶塔楼填0

顶塔楼内力放大:RTL = 1.00.............. 计算振型数为9-15及以上时,宜取1.0(不调整);计算振型数为3时,取1.5

九度结构及一级框架梁柱超配筋系数CPCOEF91 = 1.15...取1.15,《抗规》6.2.4条

是否按抗震规范5.2.5调整楼层地震力IAUTO525 = 1....用于调整剪重比,《抗规》5.2.5条(强条)

是否调整与框支柱相连的梁内力IREGU_KZZB = 0.....一般不调整,《高规》10.2.7条

剪力墙加强区起算层号LEV_JLQJQ = 1.......... 《抗规》6.1.10条;《高规》7.1.9条

强制指定的薄弱层个数NWEAK = 0............... 强制指定时选用,否则填0,《抗规》5.5.2条,《高规》4.6.4条

配筋信息........................................

梁主筋强度(N/mm2): IB = 300................ 设计值,HPB235取210N/mm2,HRB335取300N/mm2;《砼规》4.2.1条,4.2.3 条表4.2.3-1(强条)

柱主筋强度(N/mm2): IC = 300................《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)

墙主筋强度(N/mm2): IW = 210 ...............《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)

梁箍筋强度(N/mm2): JB = 210................《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)

柱箍筋强度(N/mm2): JC = 210................《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)

墙分布筋强度(N/mm2): JWH = 210...............《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)

梁箍筋最大间距(mm): SB = 100.00.............《砼规》10.2.10条表10.2.10;可取100-400,抗震设计时取加密区间距,一般取100,详见《抗规》6.3.3条3款(强条)

柱箍筋最大间距(mm): SC = 100.00.............《砼规》10.3.2条2款;可取100-400,抗震设计时取加密区间距,一般取100,详见《抗规》6.3.8条2款(强条)

墙水平分布筋最大间距(mm): SWH = 200.00.......《砼规》10.5.10条;可取100-300,《抗规》6.4.3条1款(强条)

墙竖向筋分布最小配筋率(%): RWV = 0.30........《砼规》10.5.9条;可取0.2-1.2;抗震设计时应≥0.25,《抗规》6.4.3条1 款(强条)

设计信息........................................

结构重要性系数: RWO = 1.00..............《砼规》3.2.2条,3.2.1条(强条);安全等级二级,设计使用年限50年,取 1.00

柱计算长度计算原则: 有侧移...................一般按[有侧移],用于钢结构

梁柱重叠部分简化: 不作为刚域...............一般不简化,《高规》5.3.4条,参见《手册》

是否考虑P-Delt 效应:否.......................一般不考虑;《砼规》5.2.2条3款,7.3.12条;《抗规》3.6.3条;《高规》 5.4.1条,5.4.2条

柱配筋计算原则: 按单偏压计算.............宜按[单偏压]计算;角柱、异形柱按[双偏压]验算;可按特殊构件定义角柱,程序自动按[双偏压]计算

钢构件截面净毛面积比: RN = 0.85................用于钢结构

《砼规》9.2.1条表9.2.1,梁保护层厚度(mm): BCB = 25.00..............室内正常环境,砼强度>C20时取≥25mm,

环境类别见3.4.1条表3.4.1

《砼规》9.2.1条表9.2.1,环境类别见3.4.1柱保护层厚度(mm): ACA = 30.00..............室内正常环境取≥30mm,

条表3. 4.1

是否按砼规范(7.3.11-3)计算砼柱计算长度系数: 否...一般工程选[否],详见《砼规》7.3.11条3款,水平力设计弯矩占总设计弯矩75%以上时选[是]

荷载组合信息........................................

恒载分项系数: CDEAD= 1.20..............一般情况下取1.2,详《荷规》3.2.5条1款(强条)

活载分项系数: CLIVE= 1.40..............一般情况下取1.4,详《荷规》3.2.5条2款(强条)

风荷载分项系数: CWIND= 1.40..............一般情况下取1.4,详《荷规》3.2.5条2款(强条)

水平地震力分项系数: CEA_H= 1.30..............取1.3,《抗规》5.1.1条1款(强条),《抗规》5.4.1条表5.4.1(强条)

竖向地震力分项系数: CEA_V= 0.50..............取0.5,《抗规》5.1.1条4款(强条),《抗规》5.4.1条表5.4.1(强条)

特殊荷载分项系数: CSPY = 0.00..............无则填0,《荷规》3.2.5条注(强条)

活荷载的组合系数: CD_L = 0.70..............大多数情况下取0.7,详见《荷规》4.1.1条表4.1.1(强条)

风荷载的组合系数: CD_W = 0.60..............取0.6,《荷规》7.1.4条

活荷载的重力荷载代表值系数: CEA_L= 0.50........雪荷载及一般民用建筑楼面等效均布活荷载取0.5,详见《抗规》5.1.3条表5. 1.3(强条)组合值系数

PKPM(jccad参数设置)

JCCAD参数设置说明 第一版 2006年3月3日

地质资料 地质资料是基础设计计算的重要依据,可以用人机交互方式或填写数据文件方式输入地质资料有两类,一种是供有桩基础使用的,另一种是供无桩基础(弹性地基筏板)使用。两者的格式相同,不同仅在于有桩基础对每层土要求压缩模量、重度、状态参数、内摩擦角、内聚力五个参数,而无桩基础只要求压缩模量一个参数。 建立*.dz文件主要内容包括以下几点: (1) 每个勘探孔柱状图的土层分布及各土层的物理力学参数,物理力学参数包括土的重Gv(用于沉降计算)、相应压力状态下的压缩模量Es(用于沉降计算)、摩擦角φ(用于沉降及支护结构计算)、内聚力c(用于支护结构计算)及计算桩基承载力的状态参数(对于各种土有不同的含义)。 (2) 所有孔点在任意坐标系下的位置坐标,在桩基设计时可通过平移与旋转将勘探孔平面坐标转成建筑底层平面的坐标。 (3) 以勘探孔点作为节点顺序编号,将节点连线划分成多个不相重叠的三角形单元,并将三角形单元编号。程序将以这种三角形单元为控制网格,利用形函数插值的方法得到控制网格内部和附近的地质土层分布。 土层参数 压缩模量、重度、摩擦角、粘聚力、状态参数、状态参数含义

桩基础设计应该使用Ez(自重压力~……),天然浅基础应使用 Es0.1-Es0.2。 土层布置 土名称、厚度、极限侧摩、极限桩端、压缩模量、重度、摩擦角、粘聚力、状态参数、状态参数含义,标高及图幅(坐标系:相对坐标系,单位米。标高与结构标高相同) 孔点输入 输入孔位:打开坐标,将孔点的大体形状输入即可 修改参数:按照勘查报告中的相关数据输入即可 网格修改 点柱状图 选中可以进行桩基承载力与沉降验算。 土剖面图 画等高线

PKPM如何调整参数和选用(完整版)讲解

2010版SATWE计算参数选用 一、2010版计算参数的选用(PKPM及SATWE): 免责声明:炒饭个人总结,仅用作参考。以下内容需与PKPM2010版satwe 说明书结合使用。参数在PKPM中如何实现需参考satwe说明书。 1、总信息: A、“水平力与整体坐标夹角”,此参数一般不做修改。而是将周期计算结果中输出的“地震作用最大的方向角”填到“斜交抗侧力构件方向附加地震数,相应角度”。 B、PM里的“混凝土容重”框架取26,剪力墙取27。(现在版本软件PM与SATWE的“混凝土容重”联动),故在PM中布置楼面恒载时一般不勾选“自动计算现浇板厚”,恒载输入数值为“人工计算板自重+装修荷载重”。 C、“钢材容重”暂时默认78,未研究。 D、“裙房层数”此参数仅用来判定底部加强区:即对剪力墙和框剪结构PKPM 总是将裙房以上一层作为加强区判定的一个条件。框架结构均可输入0,其他结构未研究。此参数包含地下室层数。(如3层地下室,4层裙房,此参数应输入7。)E“转换层所在层号”含地下室层数,详见2010satwe说明书,未深入研究。 F、“嵌固端所在层数”自然地面为嵌固端时填“1”,地下室顶板作为嵌固端时填“地下室层数+1”。 G、“地下室层数”按实际输入。 H、“墙元细分最大控制长度”取“1”。影响计算精度,对含剪力墙的结构有影响。

I、“对所有楼层强制采用刚性楼板假定”仅在计算位移比和周期比时勾选,其他不勾选。 J、“地下室强制采用刚性楼板假定”勾选。 K、“墙梁跨中节点作为刚性楼板从节点”此参数本人尚不能合理选择,只把网上比较后的结果贴出来。勾选该参数后,结构周期减小,连梁内力增大,内力平衡校核轴力。 L、“计算墙倾覆力矩时只考虑腹板和有效翼缘”勾选。对于L型、T型等截面形式,垂直于地震作用方向的墙段称为翼缘,平行于地震作用方向的墙段称为腹板,翼缘可以区分为有效翼缘和无效翼缘两部分。无效翼缘内力计入框架,这对于结构中框架、短肢墙、普通墙的倾覆力矩指标计算,通常更为合理。 M、“弹性板与梁变形协调”勾选。梁细分后弯矩变的平缓,计算结果更加合理。 N、“结构材料信息”如实填写 O、“结构体系”如实填写 P、“恒活荷载计算信息”《PKPM从入门到精通》推荐使用模拟施工加载3。但本人尚未弄明白。 Q、“风荷载计算信息”大部分工程选择计算水平风荷载即可。 R、“地震作用计算信息”一般选择计算水平地震作用。结合抗规5.1.1和高规4.3.2确定是否计算竖向地震作用。高规比抗规对此条的要求严一个等级。 S、“规定水平力”一般选“规范方法”。规范方法适用于大多数结构,节点地震作用CQC组合方法适用于极不规则结构,即楼层概念不清晰,剪力差无法做的结构。

PKPM参数设置

SATWE参数设置 一:总信息 1、水平力与整体坐标夹角(度):一般为缺省。若地震作用最大的方向大于15度则回填。 2、混凝土容重(KN/m3):砖混结构25 KN/m3,框架结构26KN/m3。 3、刚才容重(KN/m3):一般情况下为78.0 KN/m3(缺省值)。 4、裙房层数:程序不能自动识别裙房层数,需要人工指定。应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。 5、转换层所在层号:应按PMCAD楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5.程序不能自动识别转换层,需要人工指定。 对于高位转换的判断,转换层位置以嵌固端起算,即以(转换层所在层号-嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。 6、嵌固端所在层号:无地下室时输入1,有地下室时输入(地下室层数+1)。 7、地下室层数:根据实际情况输入。 8、墙元细分最大控制长度(m):一般为缺省值1。 9、转换层指定为薄弱层:SATWE中转换层缺省不作为薄弱层,需要人工指定。如需将转换层指定为薄弱层,可将此项打勾,则程序自动将转换层号添加到薄弱层号中,如不打勾,则需要用户手动添加。 此项打勾与在“调整信息”页“指定薄弱层号”中直接填写转换层层号的效果是完全一致的。 10、所有楼层强制采用刚性楼板假定:一般仅在计算位移比和周期比时建议选择。在进行结构内力分析和配筋计算时不选择。 11、地下室强制采用刚性楼板假定:一般情况不选取,按强制刚性板假定时保留弹性板面外刚度考虑。特别是对于板柱结构定义了弹性板3、6情况。但已选择对所有楼层墙肢采用刚性楼板假定的话此条无意义。 12、墙梁跨中节点作为刚性楼板从节点:一般为缺省勾选。不勾选的话位移偏小。 13、计算墙倾覆力矩时只考虑腹板和有效翼缘:应勾选,使得墙的无效翼缘部分内力计入框架部分,实现框架,短肢墙和普通强的倾覆力矩结果更合理。 14、弹性板与梁变形协调:相当于强制刚性板假定时保留弹性板面外刚度,自动实现梁板边界变形协调,计算结构符合实际受力情况,应勾选。 15、墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,程序强制为“出口”,即只把墙元因细分而在其内部增加的节点凝聚掉,四边上的节点均作为出口节点,使得墙元的变形协调性好,分析结果更符合剪力墙的实际。 16、结构材料信息:按实际情况填写。 17、结构体系:按实际情况填写。 18、恒活荷载计算信息:1)一般不允许不计算恒活荷载,也较少选一次性加载模型; 2)模拟施工加载1模式:采用的是整体刚度分层加载模型,该模型应用与各种类型的下传荷载的结构,但不使用与有吊柱的情况; 3)按模拟施工2:计算时程序将竖向构件的轴向刚度放大十倍,削弱了竖向荷载按刚度的重分配,柱墙上分得的轴力比较均匀,传给基础的荷载更为合理。 4)模拟施工加载3:采用分层刚度分层加载模型,接近于施工过程,故此建议一般对多、高层建筑首选模拟施工3;对钢结构或大型体育馆类(指没有严格的标准层概念)结构应选一

pkpm及SATWE参数设置个人总结

一、pkpm参数设置 1、材料信息的定义 本层信息里设置混凝土钢筋的强度等级,局部不同的可以在材料强度里特殊定义(也可以在后续SATWE里定义特殊构件的时候定义) 2、设计参数 注意:

(1)、有地下室的按地下室情况如实填写,当无地下室的时候,第一层为地梁,柱子像下伸,这一层计算的时候也定义为地下室(2)、计算指标的时候地下室一般不组装,计算地下室的梁柱配筋的时候再组装 (1)、混凝土容重:如果输楼板荷载的时候没有考虑抹灰找平层等,此处一般输27,若输荷载时考虑了,则可输25; (2)、钢截面净毛面积比值:钢构件截面净面积与毛面积的比值。净面积是构件去掉螺栓孔之后的截面面积,毛面积就是构件总截面面积。软件默认取值为0.5,经验值0.85,轻钢结构最大可以取到0.95,框架的可以取到0.9(当然这些和钢材的厚度负差、钢构件上面的开孔面积、焊接质量等等都有关系)

(1)计算阵型个数,取3的倍数,一般取楼层数的3倍;也可以在后续SATWE参数里不按阵型个数计算,按达到有效质量系数多少来计算(规范规定至少90%) (2)周期折减系数,考虑隔墙对刚度的影响,隔墙越多,对刚度贡献越大,周期越小,折减系数就越小,根据《高规》第4章最后一页确定 其他参数如实填写

二、SATWE参数设置(V3.2为例) 前面pkpm设置了的参数会自动读取到SATWE里,因此可以在这里设置前面未设置的参数,检查前面已经设置了的参数。 1、总信息 (1)水平力与整体坐标夹角:第一次计算不输入,计算后,地震作用最大的方向角度大于15°后,填入该度数再重新计算。

(2)如实填写

PKPM 设计参数

楼层组装—设计参数 a.总信息 1.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,砌体,底框)。 2.结构主材(钢筋混凝土,砌体,钢和混凝土)。 3.结构重要性系数(《高层混凝土结构技术规程》4.7.1 ,混凝土规范3.2.3)。4.底框层数,地下室层数按实际选用。 5.梁柱钢筋的混凝土保护层厚度(《混凝土结构设计规范》表3.4.1及表9.2.1)。6.与基础相连的最大楼层号,按实际情况,如没有什么特殊情况,取1。 7.框架梁端负弯矩调幅系数一般取(0.85—0.9)《高层混凝土结构技术规程》5.2.3条文中有说明。 b.材料信息 1.混凝土容重取 26-27,全剪力墙取27,取25时需输入粉刷层荷载。 2.钢材容重取 78。 3.梁柱主筋类别,按设计需要选取。优先采用三级钢,可以节约钢材。 SATWE设计参数 a.总信息 1.水平力与整体坐标夹角(度),通常采用默认值。(逆时针方向为正,当需进行多方向侧向力核算时,可改变次参数) 2.混凝土容重取 26-27,钢材容重取 78。 3.裙房层数,转换层所在层号,地下室层数,均按实际取用。(如果有转换层必须指定其层号)。 4.墙元细分最大控制长度,这是在墙元细分时需要的一个参数,对于尺寸较大的剪力墙,在作墙元细分形成一定的小壳元时,为确保分析精度,要求小壳元的边长不得大于给定限值Dmax,程序限定1.0≤Dmax≤5.0 ,隐含值为Dmax=2.0 , Dmax对分析精度略有影响,但不敏感,对于一般工程,可取Dmax=2.0 ,对于框支剪力墙结构, Dmax可取略小些, 例如Dmax=1.5或1.0 。 5.对所有楼板强制采用刚性楼板假定(在计算结构位移比时选用此项,除了位移比计算,其他的结构分析、设计不应选择此项)。 6.墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”,则只把墙元因细分而在其内部增加的节点凝聚掉,四边上的节点均作为出口节点,墙元的边形协调性好,分析结果符合剪力墙的实际,但计算量大。若选“内部”则只把墙元上、下边的节点作为出口节点,墙元的其他节点均作为内部节点被凝聚掉,这时,带动口的墙元两侧边中部的节点为变形不协调点。这是对剪力墙的一种简化模拟,其精度略逊于前者,但效率高,实用性好。在为配筋而进行的工程计算中,对于多层,由于剪力墙较少,应选择“出口”,对于高层,由于剪力墙较多,工程规模较大,可选“内部”。 7.结构材料信息(钢筋混凝土结构,钢与混凝土混合结构,有填充墙钢结构,无填充墙钢结构,砌体结构),根据结构材料的不同进行选择。 8.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,板柱剪力墙),根据结构体系的不同进行选择。 9.恒活荷载计算信息[不计算恒活荷载(不计算竖向力),一次性加载(按一次加载方式计算竖向力),模拟施工加载1,模拟施工加载2]。 “模拟施工加载1”方式较好地模拟了在钢筋混凝土结构施工过程中,逐层加载,逐层找平

PKPM设置参数

(一) 前处理注意事项 1、按构件原型输入:按柱、异形柱、梁、墙(含开洞)构件原型输入,没有楼板的房间要开洞,不要把TAT薄壁柱理论对结的简化带入。 2、轴网输入:删除各层无用的网点,利用偏心布置构件功能,消除短梁、短墙、柱内多节点。PMCAD的数据检查要通过。SATWE数据报告提示的问题要消除。 3、柱、梁截面形式及材料:附录A中的15种截面类型,程序可计算自重。范例外的自重需用户输入。 4、板―柱结构输入:柱网需输入截面为100X100的虚梁。 5、厚板转换层输入:柱网需输入截面为100X100的虚梁。层高以板厚的1/2划分。 6、错层结构输入: A、框架错层:在PM中调整梁端高,含斜梁。 B、剪力墙错层:由于PM以楼板划分层,可在错层中局部布板。 C、多塔层高不同:把形成的塔虚层中楼板去掉。 关于整理SATWE设计参数便览的说明 设计参数的合理确定至关重要,以便览的方式整理其目的是在SATWE的操作中,可据本便览比较快的定下来。SATWE的设计参数,用户手册有一些说明,但分散在多处且过于简单,很不好用。论坛里也有许多帖子,但总觉得系统性、实用性有些不足。 SATWE前处理----接PM生成SATWE数据菜单共13项,重点是1、2两项。 由于水平有限在整理中肯定会出现不足和错误,欢迎斧正。更欢迎参与。 SATWE参数便览之总信息 1、水水平力与整体坐标夹角(度):采用隐含值0,经计算后,当大于15度时,填入计算 值重算。 2、混凝土容重:隐含值25。构件自重计算梁板、梁柱重叠部分都未扣除,框架结构可行,剪力墙、板柱结构偏小。 3、钢材容重:隐含值78。可行。 4、裙房层数:指地上的周边都有的群房。当主体一面或多面无裙房时,风荷载需个案处理。 5、转换层所在层号:按自然层号填输,含地下室的层数。 6、地下室层数:按地下层数填输,当一面或多面临空时,填土侧压力需个案处理。 7、墙元细分控制最大控制长度:墙元长度太大则计算精度无法保证,可采用隐含值。 8、对所有楼层采用刚性楼板假定:位移计算时,不论是否开大洞或不规则,必须是刚性板假定。内力计算时,则在任何情况下均不能设为刚性板。 9、墙元侧向节点信息:一般工程选“出口”,剪力墙数量多的高层结构宜选“内部”。选“内部”时,计算精度会有一点点降低,但速度要快很多。 10、结构材料信息:共5个选项:钢筋砼结构;钢与砼混合结构;有填充墙钢结构;无填充墙钢结构;砌体结构。按含义选取,砌体结构用于底框结构。 11、结构体系:按结构布置的实际状况确定。共分:框架结构、框剪结构、框筒结构、筒中筒结构、板柱剪力墙结构、剪力墙结构、短肢剪力墙结构、复杂高层结构、砖混底框结构、共9种类型。确定结构类型即确定与其对应的有关设计参数。

PKPM参数设置

PKPM参数设置 有关PKPM软件SATWE的总信息以下是SATWE总信息中各参数如何取值,规范出处,对设计很有参考价值,当然有些参数还需要与当地的实际情况和工程的具体实际结合,以达到更合理的设计: 总信息 .............................................. 结构材料信息: 钢砼结构................ 按主体结构材料填写 混凝土容重 (kN/m3): Gc = 27.00.............. 应考虑构件装修重量,建议取27kN/m3 钢材容重 (kN/m3): Gs = 78.00.............. 一般取78kN/m3(没有计入构件装修重量)水平力的夹角 (Rad): ARF = 0.00.............. 一般取0(地震力.风力作用方向,反时针为正);当结构分析所得的[地震作用最大的方向]>15度时, 宜将其角度输入补充验算地下室层数: MBASE= 0................ 无地下室时填0 竖向荷载计算信息: 按一次性加荷计算方式.... 多层取[一次性加载];高层取[模拟施工加载1],《高规》5.1.9条,高层框剪基础宜取[模拟施工加载2] 风荷载计算信息: 计算X,Y两个方向的风荷载...选[计算风荷载] 地震力计算信息: 计算X,Y两个方向的地震力...选[计算水平地震力],《抗规》5.1.1条(强条) 特殊荷载计算信息: 不计算.................. 一般情况下不考虑 结构类别: 框架结构................ 按结构体系选择 裙房层数: MANNEX= 0............... 无裙房时填0 转换层所在层号: MCHANGE= 0.............. 无转换层时填0 墙元细分最大控制长度(m) DMAX= 2.00............ 一般工程取2.0,框支剪力墙取1.5或1.0 墙元侧向节点信息: 内部节点................ 剪力墙少时取[出口],剪力墙多时取[内部],[出口]精度高于[内部],参见《手册》 是否对全楼强制采用刚性楼板假定是............. 计算位移与层刚度比时选[是],《高规》5.1.5条;计算内力与配筋及其它内容时选[否] 风荷载信息 .......................................... 修正后的基本风压 (kN/m2): WO = 0.45 .......... 取值应≥0.3 kN/m2,一般取50年一遇(n=50),《荷规》7.1.2(强条),附录 D.4附表D.4 地面粗糙程度: B 类.................... 有密集建筑群的城市市区选[C]类;乡村、乡镇、市郊等选类,D类指有密集建筑群且房屋较高的城市市区;A 类指近海海面和海岛、海岸、湖岸及沙漠地区;详《荷规》7.2.1条 结构基本周期(秒): T1 = 0.06............... 宜取程序默认值(按《高规》附录B公式B.0.2);规则框架T1=(0.08-0.10)n, n为房屋层数,详见《高规》3.2.6条表3.2.6-1注;《荷规》7.4.1条,附录E;

PKPM-SATWE参数信息设置

SATWE 计算参数选择 总信息 1水平力与整体坐标夹角(度):0 初始值为0,satwe可以自动计算出这个最不利方向角,并在wzq.out中输出。如果这个角大于15度,可根据把这个角度作为地震作用的方向角重新进行计算,以体现最不利地震作用的影响。 地震沿着不同的方向作用,结构地震反应的大小一般也不同。结构地震反应是地震作用方向角的函数(逆时针为正)。 2混凝土容重:26kN/m2 在自重荷载有利的情况下,要取25kN/m2 3钢材容重:78 kN/m2 4裙房层数:按实际情况。 高规及抗规规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施;因此该数必须给定。 5转换层所在层号:按实际情况。 抗规3.4.3规定;高规10.2.6规定 6地下室层数:按实际情况。 7墙元细分最大控制长度:1 程序限定1.0-5.0之间,隐含值为2.0,该值对分析精度略有影响,但不敏感,对于一般工程,可取隐含值,对于框支剪力墙结构,可取的略小一些,取1.5或1.0。 8对所有楼板采用刚性楼板假定: 位移计算(周期计算)必须在刚性楼板假定条件下计算得到,而构件设计(配筋)应采用弹性楼板计算。9后面三个基本按默认

10结构体系:按实际情况。 剪力墙结构与框剪结构细分要看规定水平力框架柱及短肢墙地震倾覆力矩百分比(抗规)是否大于50% 11恒活荷载计算信息:一般选择“模拟施工方法3” 当计算框架-剪力墙等柱墙混用的结构的基础时选择“模拟施工方法2”。如有竖吊构件(如吊柱),必须选择“一次性加载。 5.1.9、高层建筑进行重力荷载作用效应分析时,柱、墙轴向变形宜考虑施工过程的影响。施工过程的模拟可根据需要采用适当的简化方法。 “模拟施工方法1”加载:就是按一般的模拟施工方法,对于高层结构一般都采用这种方法计算。但这是在"基础嵌固约束"假定前提下的计算结果,未能考虑基础的不均匀沉降对结构构件内力的影响。若结构地基无不均匀沉降,上述分析结果更能较准确地反映结构的实际受力状态,但若结构地基有不均匀沉降,上述分析结果会存在一定的误差,尤其对于框剪结构,外围框架柱受力偏小,而剪力墙核心筒受力偏大,并给基础设计带来一定的困难。 “模拟施工方法2”加载:在模拟施工方法1的基础上将竖向构件(墙、柱)的侧向刚度增大10倍的情况下,再进行结构计算,采用这种方法计算出的传给基础的力比较均匀合理,可以避免墙的轴力远远大于柱的轴力的不合理的情况,由于竖向刚度放大,使水平梁的两端的竖向位移差减少,从而使其剪力减少,这样就削弱了楼面荷载因刚度不均而导致的内力重分配,所以这种方法更接近于手算。 12风荷载计算信息:选择“计算风荷载”。 13地震作用计算信息:一般选择“计算水平地震力”。 当满足下面规定时,选择“计算水平与竖向地震力”。多层建筑: 《抗规》5.1.1.4、8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用。 高层建筑: (强规)3.3.2、高层建筑结构应按下列原则考虑地震作用:…… 3、8度、9度抗震设计时,高层建筑中的大跨度和长悬臂结构应考虑竖向地震作用; 4、9度抗震设计时应计算竖向地震作用。

pkpm参数设置的问题

1.风荷载 风压标准值计算公式为:WK=βzμsμZ W。其中:βz=1+ξυφz/μz在新规范中,基本风压Wo 略有提高,而建筑的风压高度变化系数μE、脉动增大系数ξ、脉动影响系数υ都存在减小的情况。所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。具体的变化包括下面几条: 1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇:新高规3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。 2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D类。C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。 3)、凤压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。新增加的D 类对应的风压高度变化系数最,比C类小20%到50%。 4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。新增加的D类对应脉动增大系数比89规范小,约5%到10%。与结构的材料和形式有关。 5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0.48、0.53和0.63。在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。如C类、高度为5Om、高宽比为3的建筑,υ=0.46,比89高规小28%,若为D类,则小37%。 6)、结构的基本周期:脉动增大系数ξ与结构的基本周期有关(WoT12)。结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0.08-1.00)N:框剪结构、框筒结构T=(0.06-0.08)N:剪力墙结构、筒中筒结构T=(0.05-0.06)N。其中N为结构层数。 PKPM结构设计参数2 2.地震作用 1)、抗震设防烈度::新规范改变了抗震设防烈度与设计基本地震加速度值的对应关系,增加了7度(0.15g〉和8度(0.30g)两种情况(见新抗震规范表3.2.2)。 2)、设计地震分组:新规范把直接影响建筑的设计特征周期Tg的设计近震、远震改为设计地震分组,分别为设计地震第一组、第二组和第三组。 3)、特征周期值:比89规范增加了0.05s以上,这在一定程度上提高了地震作用。 4)、地震影响系数曲线:新规范5.1.5条,设计反应谱范围由原来的3s延伸到6s,分上升段、平台段、指数下降段和倾斜下降段四个区段。在5Tg以内与89规范相同,从5Tg起改为倾斜下降段,斜率为0.02。对于阻尼比不等于0.05的结构,设计反应谱在阻尼比δ等于0.05的

最新pkpm参数设置

结合规范的SATWE参数说明 (2013-07-31 18:36:06) 转载▼ 四、活载信息 1、柱、墙设计活荷载:【不折减】或【折减】 作用在楼面上的活荷载,不可能以标准值的大小同时布满所有楼面上,所以在墙柱设计时,需要考虑实际荷载沿楼面分布的变异情况。 民用建筑勾选折减。非民用建筑另议。 注意:在PMCAD的<楼面荷载传导计算>中也有“荷载折减”选项。如果两处选折减,则荷载折减会累加。 2、传给基础的活荷载:【不折减】或【折减】 民用建筑勾选折减。非民用建筑另议。 3、梁活载不利布置最高层号: 此参数若取0,表示不考虑活荷载不利布置。若取>0的数NL,就表示1~NL各层均考虑梁活载的不利布置。 考虑活载不利布置后,程序仅对梁活荷不利布置作用计算,对墙柱等竖向构件并不考虑活荷不利布置作用,而只考虑活荷一次性满布作用。 建议:一般多层混凝土结构应取全部楼层;高层宜取全部楼层。见《高规》5.1.8。 按自然层号填入。 4、柱、墙、基础活荷载折减系数:《荷规》表5.1.2。 此处仅当勾选了【折减柱、墙设计活荷】或【折减传给基础的活荷】后,才生效。 5.考虑结构使用年限的活荷载调整系数: 该参数见《高规》5.6.1条:使用年限为50年时取1.0;100年取1.1。 五、调整信息 1、梁端负弯矩调整系数: 在竖向荷载作用下,当考虑框架梁及连梁塑性变形内力重分布时,可对梁端负弯矩进行调幅,并相应增加其跨中正弯矩。 此项调整只针对竖向荷载,对地震力和风荷载不起作用。 《高规》5.2.3条,梁端负弯矩条幅系数对于:

1)装配整体式框架取0.7~0.8; 2)现浇框架取0.8~0.9; 3)对悬臂梁的负弯矩不调幅; 建议一般取0.85 2、梁活荷载内力放大系数: 【梁设计弯矩放大系数】起源于梁活载的不利布置。当不考虑活载不利布置时,梁活载弯矩偏小,故通过该参数调整梁弯矩设计值,作为安全储备。 因此,该系数,只对梁在满布荷载下的内力(包括弯矩、剪力、轴力)进行放大,然后再与其它荷载工况进行组合。 一般工程建议取1.1~1.2. 如果已经考虑了【梁活载不利布置】后,则应取1。 3、梁扭矩折减系数: 对于现浇楼板结构,当采用刚性楼板假定时,可以考虑楼板对梁的抗扭作用而对梁扭矩进行折减。 折减系数可在0.4~1.0范围内取值,建议一般取默认值0.4.详见《高规》5.2.4 但对结构转换层的边框架梁扭矩折减系数不宜小于0.6。 4.托墙梁刚度放大系数: 托墙梁刚度放大系数的原因:对于实际工程中“转换大梁上面托剪力墙”的情况,墙与梁之间的实际协调关系在计算模型中不能得到充分体现。1)实际的结构受力情况是,剪力墙的下边缘与转换梁的上表面变形协调。2)计算模型的情况是:剪力墙的下边缘与转换大梁的中性轴变形协调。于是计算模型中的转换大梁的上表面在荷载的作用下会与剪力墙脱开,失去本应的变形协调。与实际情况相比这样的计算模型的刚度偏柔。 建议一般取默认值100. 5.实配钢筋超配系数 对于【9度设防烈度的各类框架】和【一级抗震等级的框架结构】,框架梁和连梁端部剪力、框架柱端弯矩、剪力调整应按实配钢筋和材料强度标准值来计算。根据《抗规》6.2.2条,6.2.5条及《高规》6.2.1条、6.2.3条,一、二、三、四级抗震等级分别取1.4、1.2、1.1和1.1。 本参数只对【一级框架结构】或【9度区框架】起作用,程序可自动识别;当为其它类型的结构时,也不需要用户手动修改为1.0。 5、连梁刚度折减系数: 多、高层结构设计中允许连梁开裂,开裂后连梁刚度会有所减低。程序通过该参数来反映开裂后的连梁刚度。

技术措施-PKPM参数2018

结构专业技术措施之PKPM-SATWE参数取值: 一.总信息: 1)水平力与整体坐标夹角: 该参数主要针对风荷载计算,同样对地震力起作用。只需考虑其它角度的地震作用时,无需在此填数值,应填“斜交抗侧力构件方向地震数,相应角度”或勾选“程序自动考虑最不利水平地震作用” 一般按0输入。 2)混凝土容重: 钢筋砼计算重度,考虑饰面的影响应大于25,不同结构构件的表面积与体积比不同饰面的影响不同,一般按结构类型取值: 结构类型框架结构框剪结构剪力墙结构 重度 26 26.5 27 3) 钢材容重: 一般情况下,钢材容重为78KN/m3,若要考虑钢构件表面装修层重,钢材的容重可以填入适当值。 4)裙房层数:层数要从最底层算起,包括地下室层数。此参数主要用来确定剪力墙底部加强区高度。 抗规第6。1。3条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施;但是该参数的作用在程序中并没有反应。绘图中采用构造加强。 注意:对于体型收进的高层建筑结构、底盘高度超过总高度20%的多塔尚应符合高规10.6.5条;目前程序不能自动将体型收进部位上、下各两层塔楼周边竖向构件抗震等级提高一级,需要在“特殊构件定义”中自行定义,不宜事后提高配筋。 5)转换层所在层号:层数要从最底层算起,包括地下室层数。 如果有转换层,必须在此指明其层号,以便进行正确的内力调整。 注意:程序不能自动识别转换构件! 作用:a、程序自动判断加强区层数;b、输入转换层数,并选择相应的楼层刚度算法,软件会输出上下层楼层刚度比。C、计算参数中有将转换层号自动识别为薄弱层的选项。 抗震等级:程序设有“框支剪力墙结构底部加强区剪力墙抗震等级自动提高一级”的选项。(高位转换可以自动再提高) 转换层全层应设置为“弹性膜”(平面内刚度真实考虑,平面外为0) 转换层结构选择“施工模拟3”时,施工次序:宜将转换层与其上2层设为同一施工次序。 6)嵌固端所在层号: 如在基础顶面嵌固,嵌固端所在层号为1;当地下室顶板作为嵌固端部位时,那么嵌固端所在层为地上一层,即地下室层数+1. 作用:确定剪力墙底部加强部位时,程序将起算层号取为:嵌固端所在层号-1;程序自动将嵌固端下一层的柱纵向钢筋对应上层增加10%;梁端弯矩设计值放大1.3倍。 涉及到《底层》的内力调整等,程序针对嵌固层进行调整。 7)地下室层数:

PKPM参数设置教程

1.1.1 水平力与整体坐标夹角(度) 规范规定:《抗震规范》,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进形抗震验算”。 程序实现:该参数为地震作用力方向或风荷载作用方向与结构整体坐标的夹角,逆时针方向为正,如地震沿着不同方向作用,结构地震反映的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向称为最不利地震作用方向,从严格意义上讲,规范中所讲的主轴是指地震沿该轴方向作用时,结构只发生沿该轴方向的侧移而不发生扭转位移的轴线,当结构不规则时,地震作用的主轴方向就不一定时0°或90°,如最大地震力方向与主轴夹角较大时,可以输入该角度考虑最不利作用方向的影响。 操作要点:由于设计人员事先很难估算结构最不利地震作用方向,因此可以先取初始值0°,SATWE计算后在计算书WZQ.OUT中输出结构最不利方向角,如果这个角度与主轴夹角大于±15°,应将该角度重新计算,以考虑最不利地震作用方向的影响。 注意事项:(1)为避免填入该角度后图形旋转带来的不便,也可以将最不利地震作用方向在多方向水平地震参数中输入。 (2)本参数不是规范要求的,供设计人员选用。 (3)本参数也可以考虑最大风力作用的方向,但需要用户自行设定多个角度进行计算,比较多次计算结构取最不利值。 1.1.2 混凝土容重(kN/m3) 规范规定:参看《荷载规范》附录A常用材料和构件的自重表。容重是用来计算梁、柱、墙、板重力荷载用的。 操作要点:初始值钢筋混凝土容重为25.0 kN/m3,这适合于一般工程情况,若采用轻只混凝土或需要考虑构件装饰层重量时,应按实际情况修改此参数。 注意事项:如果结构分析是不想考虑混凝土构件自重荷载,可以填0。 1.1.3 对所有楼层强制采用刚性楼板假定 规范规定:《高规》,“进行高层建筑内力与位移计算时,可假定楼板在其自身平面内均无限刚性” 程序实现:选择该项后,程序可以将用户设定的弹性楼板强制为刚性楼板参与计算。 操作要点:初始值为不选择该项。 (1)在计算位移、周期等控制参数时,应选择该项,将弹性楼板强制为刚性楼板参与计算,以满足规范要求的计算条件,计算完成后应去掉此项选择,以弹性楼板方式进行配筋和其他就算分析。 注意事项:对于复杂结构,如不规则坡屋顶、体育馆看台、工业厂房,或者柱、墙不在同一标高,或者没有楼板等情况,如果采用强制刚性楼板假定,结构分析会严重失真。对这类结构可以查看位移的<详细输出>,或观察结构的动态变形图,考察结构的扭转效应。 (2)对于错层或带夹层的结构,总是伴有大量的越层柱,如采用强制刚性楼板假定,所有越层柱将受到楼层约束,造成计算结构失真。 操作要点:按工程实际情况设定结构材料信息 操作要点:按工程实际情况确定结构体系 规范规定:《高规》,柱、墙轴向变形宜考虑施工过程的影响,施工过程的模拟可根据需要采用适当的简化方法。”

pkpm七个重要参数

一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14及相应的条文说明。轴压比不满足要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。 轴压比不满足时的调整方法: 1、程序调整:SATWE程序不能实现。 2、人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。 二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全,见抗规 5.2.5,高规3.3.13及相应的条文说明。这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。 剪重比不满足时的调整方法: 1、程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。 2、人工调整:如果还需人工干预,可按下列三种情况进行调整: 1)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度。 2)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标。 3)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。 三、刚度比:主要为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层,见抗规3.4.2,高规4.4.2及相应的条文说明;对于形成的薄弱层则按高规5.1.14予以加强。 刚度比不满足时的调整方法: 1、程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。 2、人工调整:如果还需人工干预,可按以下方法调整: 1)适当降低本层层高,或适当提高上部相关楼层的层高。 2)适当加强本层墙、柱和梁的刚度,或适当削弱上部相关楼层墙、柱和梁的刚度。 四、位移比:主要为限制结构平面布置的不规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。见抗规3.4.2,高规 4.3.5及相应的条文说明。 位移比不满足时的调整方法: 1、程序调整:SATWE程序不能实现。 2、人工调整:只能通过人工调整改变结构平面布置,减小结构刚心与形心的偏心距;调整方法如下: 1)由于位移比是在刚性楼板假定下计算的,最大位移比往往出现在结构的四角部位;因此应注意调整结构外围对应位置抗侧力构件的刚度;同时在设计中,应在构造措施上

对pkpm参数设置的疑问解答

1、一般情况下模拟施工加载取模拟施工加载3比较符合逐层施工的实际情况。模拟施工加载2则可以更合理的给基础传递荷载。复杂结构设计人员可以指定施工次序。 2、修正后的基本风压一般就是荷载规范规定的基本风压,对于沿海和强风地带对风荷载敏感的建筑可以在此基础上放大10%~20%,门刚中则规定按放大5%采用。 3、对于高度大于150M的高层混凝土建筑才要验算风振舒适度。结构阻尼比取0.01~0.02,程序缺省0.02。 4、侧刚计算方法:一种简化计算法,计算速度快,但应用范围有限,当定义有弹性楼板或有不与楼板相连的构件时(如错层结构、空旷的工业厂房、体育馆等)用此法会有一定误差; 总刚计算方法:精度高,适用范围广,计算量大。 对于没有定义弹性楼板且没有不与楼板相连构件的工程,两种方法结果一样。 (以下转贴) “刚性楼板”的适用范围:绝大多数结构只要楼板没有特别的削弱、不连续,均可采用这个假定。 相关注意:由于“刚性楼板假定”没有考虑板面外的刚度,所以可以通过“梁刚度放大系数”来提高梁面外弯曲刚度,以弥补面外刚度的不足。同样原因,也可通过“梁扭矩折减系数”来适当折减梁的设计扭矩。 “弹性板6 ”的适用范围:所有的工程均可采用。 相关注意:由于已经考虑楼板的面内、面外刚度,则梁刚度不宜放大、梁扭矩不宜折减。板的面外刚度将承担一部分梁柱的面外弯矩,而使梁柱配筋减少。此时结构分析时间大大增加。

“弹性板3 ”的适用范围:需要保证楼板平面内刚度非常大,外刚度承担荷载,不使梁柱配筋减少,以保证梁柱设计的安全度。“ 如厚板转换层中的厚板,板厚达到1m以上。而面外刚度则需要按实际考虑。 相关注意:一般在厚板转换层不设梁,或用等代梁,并注意上下部轴线差异产生的传力问题。 “弹性膜”的适用范围:仅适用于梁柱结构,设计时不使楼板面相关注意:不能用于“板柱结构”。设计时可以进行梁的刚度放大和扭矩折减。 (弹性楼板6:考虑楼板的面内刚度和面外刚度,采用壳单元.原则上适用于所有结构,但采用弹性楼板6计算时,楼板和梁共同承担面外弯矩,计算结果中梁的配筋小了,而楼板承担面外弯矩,计算的配筋又未考虑.此外计算工作量大.因此该模型仅适用于板柱结构;弹性楼板3:考虑楼板的面内刚度无限大,并考虑楼板的面外刚度.适用于厚板转换层;弹性膜:考虑面内刚度,面外刚度为零.采用膜剪切单元.弹性板由用户人工指定,但对于斜屋面,如果没有指定,程序会缺省为弹性膜,用户可以指定为弹性板6或者弹性膜,不允许定义为刚性板或者弹性板3) 5、根据高规(JGJ 3-2010)第,抗震设计时SATWE计算结果中楼层层间最大位移与层高之比的限值可不考虑偶然偏心的影响。 6、对于质量和刚度分布明显不对称的结构应选择双向地震作用;《高规》规定计算单向地震作用时应考虑偶然偏心的影响;SATWE程序允许同时考虑双向地震作用和偶然偏心,此时仅对无偏心的地震作用效应进行双向地震计算,而偏心地震作用并不考虑双向地震,另外考虑双向地震并不改变内力组合数。 7、振型个数选择原则:《抗规》GB 50011-2010中 一般情况振型数至少为3个,且为3的整数倍(3N,N≤层数);当考虑扭转耦联计算时应不少于9个,对于多塔结构应大于12个。《高规》JGJ 3-2010中,B级高度的高层结构、混合结构和本规程第10章规定的复杂高层建筑结构宜考虑平扭耦联计算结构的扭转效应,振

PKPM参数设置和文本详解讲解

PKPM参数设置和文本分析详解(一) 前处理注意事项 1、按构件原型输入:按柱、异形柱、梁、墙(含开洞)构件原型输入,没有楼板的房间要开洞,不要把TAT薄壁柱理论对结的简化带入。 2、轴网输入:删除各层无用的网点,利用偏心布置构件功能,消除短梁、短墙、柱内多节点。PMCAD的数据检查要通过。SATWE数据报告提示的问题要消除。 3、柱、梁截面形式及材料:附录A中的15种截面类型,程序可计算自重。范例外的自重需用户输入。 4、板―柱结构输入:柱网需输入截面为100X100的虚梁。 5、厚板转换层输入:柱网需输入截面为100X100的虚梁。层高以板厚的1/2划分。 6、错层结构输入: A、框架错层:在PM中调整梁端高,含斜梁。 B、剪力墙错层:由于PM以楼板划分层,可在错层中局部布板。 C、多塔层高不同:把形成的塔虚层中楼板去掉。 关于整理SATWE设计参数便览的说明 设计参数的合理确定至关重要,以便览的方式整理其目的是在SATWE的操作中,可据本便览比较快的定下来。SATWE的设计参数,用户手册有一些说明,但分散在多处且过于简单,很不好用。论坛里也有许多帖子,但总觉得系统性、实用性有些不足。 SATWE前处理----接PM生成SATWE数据菜单共13项,重点是1、2两项。 SATWE参数便览之总信息 1、水水平力与整体坐标夹角(度):采用隐含值0,经计算后,当大于15度时,填入计算 值重算。 2、混凝土容重:隐含值25。构件自重计算梁板、梁柱重叠部分都未扣除,框架结构可行,剪力墙、板柱结构偏小。 3、钢材容重:隐含值78。可行。 4、裙房层数:指地上的周边都有的群房。当主体一面或多面无裙房时,风荷载需个案处理。 5、转换层所在层号:按自然层号填输,含地下室的层数。 6、地下室层数:按地下层数填输,当一面或多面临空时,填土侧压力需个案处理。 7、墙元细分控制最大控制长度:墙元长度太大则计算精度无法保证,可采用隐含值。 8、对所有楼层采用刚性楼板假定:位移计算时,不论是否开大洞或不规则,必

2010 PKPM参数(超详细)解析

一、总信息 1、水平力与整体坐标夹角: 该参数为地震力、风荷载作用方向与结构整体坐标的夹角。抗规》5.1.1 条和《高规》4.3.2 条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算”。如果地震沿着不同方向作用,结构地震反应的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向就称为“最不利地震作用方向”。这个角度与结构的刚度与质量及其位置有关,对结构可能会造成最不利的影响,在这个方向地震作用下,结构的变形及部分结构构件内力可能会达到最大。 SATWE 可以自动计算出这个最不利方向角,并在WZQ.OUT 文件中输出。如果该角度绝对值大于15 度,建议用户按此方向角重新计算地震力,以体现最不利地震作用方向的影响。 一般并不建议用户修改该参数,原因有三:①考虑该角度后,输出结果的整个图形会旋转一个角度,会给识图带来不便;②构件的配筋应按“考虑该角度”和“不考虑该角度”两次的计算结果做包络设计;③旋转后的方向并不一定是用户所希望的风荷载作用方向。综上所述,建议用户将“最不利地震作用方向角”填到“斜交抗侧力构件夹角”栏,这样程序可以自动按最不利工况进行包络设计。水平力与整体坐标夹角与地震信息栏中斜交抗侧力构件附加地震角度的区别是:水平力不仅改变地震力而且同时改变风荷载的作用方向;而斜交抗侧力仅改变地震力方向(增加一组或多组地震组合),是按《抗规》5.1.1 条 2 款执行的。对于计算结果,水平力需用户根据输入的角度不同分两个计算工程目录,人为比较两次计算结果,取不利情况进行配筋包络设计等;而{斜交抗侧力}程序可自动考虑每一方向地震作用下构件内力的组合,可直接用于配筋设计,不需要人为判断。 只有在风荷载起控制作用时,现有的坐标下风荷载不能起到控制结构的最大受力状态,此时填写一个角度(逆时针为正,顺时针为负),让坐标系发生变化,使风荷载在新的坐标系下(如何计算出风荷载产生的内力最大值的角度值?),能起控制作用(控制结构的最大受力状态),改变参数后,地震作用和风荷

相关文档