文档库 最新最全的文档下载
当前位置:文档库 › 矩阵分析-矩阵与向量

矩阵分析-矩阵与向量

矩阵等价与向量组等价的关系

矩阵等价与向量组等价的关系矩阵是指排成n行m列的一个数表。在线性代数中矩阵是一个重要而有力的工具,应用于线性代数的始末,与线性代数的每一章节内容都有牵连。 向量是一个数组。如果向量仅有一个分量,它就是通常意义上的数;如果向量的分量有两个或三个,在解析几何中,它表示平面或空间的有向线段。在几何上与线性代数中向量的运算具有相同或相应的法则。向量可以作为特殊的矩阵,也可作为矩阵的一部分。n个m维列向量组成的向量组即可作成一个m×n矩阵。 所以矩阵与向量组之间有着千丝万缕的联系。例如矩阵与其行向量组及列向量组均有相同的秩,方阵可逆的充要条件是其行(列)向量组线性无关等。但是矩阵的等价与向量组的等价却没有任何必然的联系! 矩阵等价的定义:如果矩阵A可以经过有限次初等变换成为矩阵B,就称矩阵A与矩阵B等价。矩阵等价的两个充要条件:存在可逆矩阵P、Q,使得PAQ =B;A与B同型,且r(A)=r(B)。 向量组的等价,是指两个向量组能相互线性表示。 矩阵等价与向量组等价有如下关系: 1.两矩阵等价,它们的行向量组与列向量组不一定等价!(《2012考研数学复习大全》理工类338页有说明及具体反例) 2.两个向量组等价,它们作成的矩阵不一定等价!(向量组等价,两向量组中所含向量个数可以不同,但矩阵等价,两矩阵必定具有相同的行数与列数) 在什么情况下矩阵等价其行向量组或列向量组等价呢? 1.若矩阵A经初等列变换成为矩阵B,即存在可逆矩阵Q,使AQ=B,也可以写为 (α1,α2,…,αn)Q=(β1,β2,…,βn),

此时可知B的列向量组可以由A的列向量组线性表示,因为Q为初等矩阵的乘积,所以可逆,对AQ=B两边右乘Q-1,有A=BQ-1,故A的列向量组可以由B的列向量组线性表示。此时可得A的列向量组与B的列向量组等价。 2.同理可知:若矩阵A经初等行变换成为矩阵B,则A的行向量组与B的行向量组等价。 3.矩阵进行初等行变换后,其列向量组不一定等价!矩阵进行初等列变换后,其行向量组不一定等价!(见《2012考研数学复习大全》理工类312页注) 在什么情况下向量组等价其对应的矩阵也等价呢? 1.若向量组A与向量组B均有n个列(行)向量,且两个向量组等价,则这两个向量组所作成的矩阵A与B等价!(因向量组A与向量组B等价,则它们有相同的秩,又A与B 作成的矩阵A与B有相同的行与列,且秩相等,故矩阵A与B等价) 2.要求两个向量组有相同个数的向量,是因为矩阵等价的首要条件是两矩阵具有相同的行数与列数,故只有对于均有n个向量的两个m维向量组A与B,才有可能讨论其对应的矩阵A与B是否等价。

矩阵的秩与向量组的秩一致

矩阵的“秩”,是线性代数第一部分的核心概念。 “矩阵的秩与向量组的秩一致。矩阵的秩就是其行(或列)向量组的秩。”怎样证明?就当做习题练一练。 设矩阵A的秩为r ,则A必有一个r 阶子式不为0,而所有 r + 1阶子式全为 0 逻辑1——r 阶子式不为0,则 r个r 维向量线性无关。 分析这是格莱姆法则推论,带来的直接判别方法。 (画外音:r个未知量 r个方程的齐次线性方程组仅有0 解的充分必要条件是其系数行列式不为0) 逻辑思维链——这r 个r 维向量与A 的行(或列)向量组有何关系? 逻辑2——(“线性无关,延长无关。”定理)—— 已知一个n 维向量组线性无关,如果在相同的位置,给组内每个向量都增加一个分量,则所得的n + 1维向量组也线性无关。 分析不妨认为给线性无关的n 维向量组a1,a 2,…,a k 的每个向量都加上第n + 1个分量,形成一个n + 1 维向量组b1,b 2,…,b k

若有一组不全为零的数c1,c2,…,c k ,使得c1b1+ c2b 2+ ---+ c k b k = 0 ,如何证明“这组常数只能全为0”? 每个向量有n + 1 分量,向量“线性组合为0”实际上是n + 1个等式。前n 个等式即 c1 a1+ c2a2+ ---+ c k a k = 0 由已知线性无关即得,这组常数只能全为0,而最后那个(第n + 1个)等式自然成立。 逻辑3 ——将线性无关的 r个r 维向量,逐次延长为矩阵A 的r 个行向量(或列向量),它们线性无关。 (潜台词:简而言之,不为0的r阶子式所在的r个行向量(或列向量)线性无关。) 逻辑思维链(关键问题)——这r 个行向量是行向量组的最大无关组吗? 唯一信息——A的所有r + 1阶子式全为0 分析不妨设不为0 的r 阶子式就由这r 个行的左起前r 个分量排成。(画外音:画个示意图最好。)

第五章 矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量 5.1矩阵的特征值与特征向量 5.1.1矩阵的特征值与特征向量的概念 设A 是n 阶矩阵,若存在数λ及非零的n 维列向量α,使得:λαα=A (0≠α)成立,则称λ是矩阵A 的特征值,称非零向量α是矩阵A 属于特征值λ的特征向量. 5.1.2矩阵的特征值与特征向量的求法 把定义公式λαα=A 改写为()0=-αλA E ,即α是齐次方程组()0=-x A E λ的非零解.根据齐次方程组有非零解的充分条件可得:0=-A E λ. 所以可以通过0=-A E λ求出所有特征值,然后对每一个特征值i λ,分别求出齐 次方程组()0=-x A E i λ的一个基础解系,进而再求得通解. 【例5.1】求??? ? ? ?????------=324262423A 的特征值和特征向量. 解:根据()()0273 2 4 26 24 23 2 =+-=---= -λλλλλλA E ,可得71=λ,22-=λ. 当7=λ时,??? ? ? ?????? ??? ???????=-0000002124242124247A E , 所以()07=-x A E 的一个基础解系为:()T 0,2,11-=α,()T 1,0,12-=α,则相应的特征向量为2211ααk k +,其中21,k k 是任意常数且()()0,0,21≠k k . 当2-=λ时,???? ? ?????--? ??? ? ??????---=--00012014152428242 52A E ,所以()02=--x A E 的一个基础解系为()T 2,1,23=α,则相应的特征向量为33αk ,其中3k 是任意常数且

矩阵等价与向量组等价的关系

矩阵等价与向量组等价的关系 向量组等价 12 ,,, n ααα ???和 12 ,,, n βββ ???可以相互线性表示. 记作:()() 1212 ,,,,,, n n αααβββ ???=??? % 矩阵等价(必须含有相同的行数m,相同的列数n,即必为同型矩阵) 矩阵的等价与向量组的等价没有任何必然的联系! 如果两个n维向量组等价(说明矩阵有相同的行数),则以它们为列向量组成的矩阵A,B的秩相等,但是不一定等价, 因为这两个矩阵的列数可能不同.比如,一个3行1列的矩阵与一个 3行2列的矩阵根本谈不上等价与不等价.(如果A,B 的列数相同,则它们等价)例如向量组I: 1 ?? ? ? ? ?? 与向量组II: 21 0,0 00 ???? ? ? ? ? ? ? ???? 等价,但变为矩阵就不等价。 两向量组等价是指两向量组可以互相线性表示,应注意两向量组等价他们所含向量个数可以不一样的!!! 但矩阵等价,两矩阵必定具有相同的行数与列数!!! 如果矩阵A,B等价,则它们的行向量组与列向量组也未必等价.比如,4阶单位矩阵从中间划一竖线分成两个矩阵A,B,这两个矩阵是等价的,但是它们的列向量组不是等价的.

看一个具体的例子: 3131100100101010010010000100101A r r B c c C ?????? ? ? ?=+=+= ? ? ? ? ? ??????? u u u u u r u u u u u u r 矩阵A 经初等行变换化为矩阵B ,矩阵,A B 行等价,,A B 的行向量组等价,但列向量组不等价! 矩阵B 经初等列变换化为矩阵C ,矩阵,B C 列等价,,B C 的列向量组等价,但行向量组不等价! 矩阵A 经初等变换(包含行变换和列变换)化为矩阵C ,矩阵A,C 等价,但他们的行、列向量组均不等价! 所以,矩阵进行初等行变换后,其列向量组不一定等价!矩阵进行初等列变换后,其行向量组不一定等价! 显然,两矩阵,A B 等价,不能推出他们的行向量组一定等价或者列向量组一定等价。 在什么情况下矩阵等价其行向量组或列向量组等价呢? 若矩阵A 经初等列变换成为矩阵B ,即存在可逆矩阵Q ,使AQ =B ,也可以写为 (α1,α2,…,αn )Q =(β1,β2,…,βn ),此时可知B 的列向量组可以由A 的列向量组线性表示,因为Q 为初等矩阵的乘积,所以可逆,对AQ =B 两边右乘Q -1,有A =BQ -1 ,故A 的列向量组可以由B 的列向量组线性表示。此时可得A 的列向量组与B 的列向量组等价。 同理可知:若矩阵A 经初等行变换成为矩阵B ,则A 的行向量组与B 的行向量组等价。 在什么情况下向量组等价其对应的矩阵也等价呢? 若m 维向量组A 与向量组B 均有n 个列(行)向量,且两个向量组等价,则这两个向量组所作成的矩阵A 与B 等价!(因向量组A 与向量组B 等价,所以它们有相同的秩,则以它们为列(行)向量组成的矩阵A,B 的秩相等,因向量组A 与B 作成的矩阵A 与B 有相同的行与列,且秩相等,故矩阵A 与B 等价),要求两个向量组有相同个数的向量,是因为矩阵等价的首要条件是两矩阵具有相同的行数与列数,故只有对于均有n 个向量的两个m 维向量组A 与B ,才有可能讨论其对应的矩阵A 与B 是否等价。

矩阵的特征值和特征向量

第五章矩阵的特征值和特征向量 来源:线性代数精品课程组作者:线性代数精品课程组 1.教学目的和要求: (1) 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. (2) 了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对 角矩阵. (3) 了解实对称矩阵的特征值和特征向量的性质. 2.教学重点: (1) 会求矩阵的特征值与特征向量. (2) 会将矩阵化为相似对角矩阵. 3.教学难点:将矩阵化为相似对角矩阵. 4.教学内容: 本章将介绍矩阵的特征值、特征向量及相似矩阵等概念,在此基础上讨论矩阵的对角化问题. §1矩阵的特征值和特征向量 定义1设是一个阶方阵,是一个数,如果方程 (1) 存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特 征向量. (1)式也可写成, (2) 这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 , (3) 即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的 次多项式,记作,称为方阵的特征多项式.

== = 显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值. 设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明 (ⅰ) (ⅱ) 若为的一个特征值,则一定是方程的根, 因此又称特征根,若为 方程的重根,则称为的重特征根.方程的每一个非 零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下: 第一步:计算的特征多项式; 第二步:求出特征方程的全部根,即为的全部特征值; 第三步:对于的每一个特征值,求出齐次线性方程组: 的一个基础解系,则的属于特征值的全部特征向量是 (其中是不全为零的任意实数). 例1 求的特征值和特征向量. 解的特征多项式为 =

矩阵范数标准详解

《周国标师生交流讲席010》 向量和矩阵的范数的若干难点导引(二) 一. 矩阵范数的定义 引入矩阵范数的原因与向量范数的理由是相似的,在许多场合需要“测量”矩阵的“大小”,比如矩阵序列的收敛,解线性方程组时的误差分析等,具体的情况在这里不再复述。 最容易想到的矩阵范数,是把矩阵m n A C ?∈可以视为一个mn 维的向量(采用所谓“拉 直”的变换),所以,直观上可用mn C 上的向量范数来作为m n A C ?∈的矩阵范数。比如 在1l -范数意义下,111 ||||||m n ij i j A a === ∑∑( ) 12 tr()H A A =; () 在2l -范数意义下,1 2 211||||||m n F ij i j A a ==??= ??? ∑∑, () 注意这里为了避免与以后的记号混淆,下标用“F ”,这样一个矩阵范数,称为Frobenius 范数,或F-范数。可以验证它们都满足向量范数的3个条件。 那么是否矩阵范数就这样解决了因为数学上的任一定义都要与其对象的运算联系起来,矩阵之间有乘法运算,它在定义范数时应予以体现,也即估计AB 的“大小”相对于A B 与的“大小”关系。 定义1 设m n A C ?∈,对每一个A ,如果对应着一个实函数()N A ,记为||||A ,它满足以下条件: (1)非负性:||||0A ≥; (1a )正定性:||||0m n A O A ?=?= (2)齐次性:||||||||||,A A C ααα=∈; (3)三角不等式:||A ||||||||||||,m n A B A B B C ?+≤+?∈ 则称()||||N A A =为A 的广义矩阵范数。进一步,若对,,m n n l m l C C C ???上的同类广义矩阵 范数||||?,有 (4)(矩阵相乘的)相容性:||A ||||||||||||AB A B ≤, n l B C ?∈, 则称()||||N A A =为A 的矩阵范数。 我们现在来验证前面()和()定义的矩阵范数是否合法我们这里只考虑(),把较容易的()的验证留给同学们, 三角不等式的验证。按列分块,记1212(,,,),(,,,)n n A a a a B b b b ==。 2 22112||)(,),(),(||||||F n n F b a b a b a B A +++=+ 2 222222211||||||||||||n n b a b a b a ++++++= ()()2 2 121222||||||||||||||||n n a b a b ≤++ ++ ()()()2 2 2 2 122121222122||||||||2||||||||||||||||||||||||n n n n a a a b a b b b =+ +++ +++ + 对上式中第2个括号内的诸项,应用Cauchy 不等式,则有 222||||||||2||||||||||||F F F F F A B A A B B +≤++2 (||||||||)F F A B =+ () 于是,两边开方,即得三角不等式。 再验证矩阵乘法相容性。

实验矩阵的秩与向量组的极大无关组

项目五 矩阵运算与方程组求解 实验2 矩阵的秩与向量组的极大无关组 实验目的 学习利用Mathematica 求矩阵的秩,作矩阵的初等行变换; 求向量组的秩与极大无关组. 基本命令 1. 求矩阵M 的所有可能的k 阶子式组成的矩阵的命令:Minors[M,k]. 2. 把矩阵A 化作行最简形的命令:RowReduce[A]. 3. 把数表1,数表2, …,合并成一个数表的命令:Join[list1,list2,…]. 例如输入 Join[{{1,0,-1},{3,2,1}},{{1,5},{4,6}}] 则输出 {{1,0,-1},{3,2,1},{1,5},{4,6}} 实验举例 求矩阵的秩 例2.1 (教材 例2.1) 设,815073*********???? ? ??-------=M 求矩阵M 的秩. 输入 Clear[M]; M={{3,2,-1,-3,-2},{2,-1,3,1,-3},{7,0,5,-1,-8}}; Minors[M,2] 则输出 {{-7,11,9,-5,5,-1,-8,8,9,11},{-14,22,18,-10,10,-2, -16,16,18,22},{7,-11,-9,5,-5,1,8,-8,-9,-11}} 可见矩阵M 有不为0的二阶子式. 再输入 Minors[M,3] 则输出 {{0,0,0,0,0,0,0,0,0,0}} 可见矩阵M 的三阶子式都为0. 所以.2)(=M r

例2.2 已知矩阵???? ? ??----=1t 0713123123M 的秩等于2, 求常数t 的值. 左上角的二阶子式不等于0. 三阶子式应该都等于0. 输入 Clear[M]; M={{3,2,-1,-3},{2,-1,3,1},{7,0,t,-1}}; Minors[M,3] 输出为 {{35-7t,45-9t,-5+t}} 当5=t 时, 所有的三阶子式都等于0. 此时矩阵的秩等于2. 例2.3 (教材 例2.2) 求矩阵???????? ??-----322 4211631095114047116的行最简形及其秩. 输入 A={{6,1,1,7},{4,0,4,1},{1,2,-9,0},{-1,3,-16,-1},{2,-4,22,3}} MatrixForm[A] RowReduce[A]//MatrixForm 则输出矩阵A 的行最简形 ???????? ??-0000000010000510 01 01 根据矩阵的行最简形,便得矩阵的秩为3. 矩阵的初等行变换 命令RowfReduce[A]把矩阵A 化作行最简形. 用初等行变换可以求矩阵的秩与矩阵的逆. 例2.4 设,41311221222832A ???? ? ??--=求矩阵A 的秩. 输入

矩阵的特征值与特征向量习题

第五章 矩阵的特征值与特征向量 习题 1 试用施密特法把下列向量组正交化 (1)?? ? ? ? ??=931421111) , ,(321a a a (2)???? ?? ? ??---=011101110111) , ,(321a a a 2 设x 为n 维列向量 x T x 1 令H E 2xx T 证明H 是对称的正交 阵 3 求下列矩阵的特征值和特征向量: (1)??? ?? ??----20133 521 2; (2)??? ? ? ??633312321. 4 设A 为n 阶矩阵 证明A T 与A 的特征值相同 5 设 0是m 阶矩阵A m n B n m 的特征值 证明 也是n 阶矩阵BA 的特 征值. 6 已知3阶矩阵A 的特征值为1 2 3 求|A 35A 2 7A | 7 已知3阶矩阵A 的特征值为1 2 3 求|A * 3A 2E | 8 设矩阵??? ? ? ??=50413102x A 可相似对角化 求x

9 已知p (1 1 1)T 是矩阵???? ? ??---=2135212b a A 的一个特征向量 (1)求参数a b 及特征向量p 所对应的特征值 (2)问A 能不能相似对角化?并说明理由 10 试求一个正交的相似变换矩阵, 将对称阵??? ? ? ??----020212022化为对角 阵. 11 设矩阵????? ??------=12422421x A 与??? ? ? ? ?-=Λy 45 相似 求x y 并 求一个正交阵P 使P 1AP 12 设3阶方阵A 的特征值为1 2 2 2 3 1 对应的特征 向量依次为p 1 (0 1 1)T p 2(1 1 1)T p 3(1 1 0)T 求A . 13 设3阶对称矩阵A 的特征值 1 6 2 3 3 3 与特征值 1 6对应的特征向量为p 1 (1 1 1)T 求A . 14 设?? ? ? ? ??-=340430241A 求A 100

矩阵特征值和特征向量解法的研究

矩阵特征值和特征向量解法的研究 周雪娇 (德州学院数学系,山东德州 253023) 摘 要:对矩阵特征值和特征向量的一些方法进行了系统的归纳和总结.在比较中能够 更容易发现最好的方法,并提高问题的解题效率. 关键词: 矩阵; 特征值; 特征向量; 解法 引言 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具.矩阵计算问题是很多科学问题的核心.在很多工程计算中,常常会遇到特征值和特征向量的计算问题,如:机械、结构或电磁振动中的固有值问题;物理学中的各种临界值等,这些特征值的计算往往意义重大.很多科学问题都要归结为矩阵计算的问题,在这里主要研究矩阵计算中三大问题之——特征值问题. 1 矩阵特征值与特征向量的概念及性质 1.1 矩阵特征值与特征向量的定义 设A 是n 阶方阵,如果存在数λ和n 维非零向量x ,使得x Ax λ=成立,则称 λ为A 的特征值,x 为A 的对应于特征值λ的特征向量. 1.2 矩阵特征值与特征向量的性质 矩阵特征值与特征向量的性质包括: (1)若i i r A 的是λ重特征值,则i i s A 有对应特征值λ个线性无关的特征向量,其中i i r s ≤. (2)若线性无关的向量21,x x 都是矩阵A 的对应于特征值0λ的特征向量,则当21,k k 不全为零时,2211x k x k +仍是A 的对应于特征值0λ的特征向量. (3)若A n 是矩阵λλλ,,,21 的互不相同的特征值,其对应的特征向量分别是 n x x x ,,,21 ,则这组特征向量线性无关.

(4)若矩阵()n n ij a A ?=的特征值分别为n λλλ,,,21 ,则 nn n a a a +++=+++ 221121λλλ,A n =λλλ 21. (5)实对称矩阵A 的特征值都是实数,且对应不同特征值的特征向量正交. (6)若i λ是实对称矩阵A 的i r 重特征值,则对应特征值i λ恰有i r 个线性无关的特征向量. (7)设λ为矩阵A 的特征值,()x P 为多项式函数,则()λP 为矩阵多项式()A P 的特征值.[]1 2 普通矩阵特征值与特征向量的求法 2.1 传统方法 确定矩阵A 的特征值和特征向量的传统方法可以分为以下几步: (1)求出矩阵A 特征多项式()A E f -=λλ的全部特征根; (2)把所求得的特征根()n i i ,,2,1 =λ逐个代入线性方程组()0=-X A E i λ, 对于每一个特征值,解方程组()0=-X A E i λ,求出一组基础解系,这样,我们也就求出了对应于每个特征值的全部线性无关的特征向量.[]2 例1 已知矩阵 ???? ? ?????-=11 111 110 A 求矩阵A 的特征值和特征向量. 解 A E -λ = 1 1 1 1 1 11 ------λλλ = ()21-λλ 所以,由()012=-λλ知A 的特征根1,0321===λλλ.

第五章 习题与复习题详解(矩阵特征值和特征向量)----高等代数

习题 1. (1) 若A 2 = E ,证明A 的特征值为1或-1; (2) 若A 2 = A ,证明A 的特征值为0或1. 证明(1)2 2A E A =±所以的特征值为1,故A 的特征值为1 (2) 2222 2 ,,()0,001 A A A X A X AX X X X λλλλλλλ===-=-==所以两边同乘的特征向量得即由于特征向量非零,故即或 2. 若正交矩阵有实特征值,证明它的实特征值为1或 -1. 证明 1,1 T T T A A A E A A A A A λλλλ -=∴==±设是正交阵,故有与有相同的特征值, 1 故设的特征值是,有=,即 3.求数量矩阵A=aE 的特征值与特征向量. 解 A 设是数量阵,则 000000000000a a A aE a a a E A a λλλλ?? ? ?== ? ??? ---= -L L L L L L L L L L L L 所以:特征值为a (n 重), A 属于a 的特征向量为 k 1(1,0,…,0)T + k 2(0,1,…,0)T + k n (0,0,…,1)T ,(k 1, k 2, …, k n 不全为0)

4.求下列矩阵的特征值与特征向量. (1)113012002-?? ? ? ??? (2)324202423?? ? ? ??? (3)??? ?? ??---122212 221 (4)212533102-?? ?- ? ?--?? ()1112221211(5) , , (0,0)0.T T n n n n a a b a a b A b b b a b a a b αβαβαβ?? ???? ? ? ? ? ? ?====≠≠= ? ? ? ? ? ? ? ? ??? ???? L M M M 其中,且 解(1) 11 3 0120,1,2,00 2A E AX λλλ λλλλ ---=-====-0,123求得特征值为:分别代入=求得 A 属于特征值1的全部特征向量为k(1,0,0)T ,(k ≠0) A 属于特征值2的全部特征向量为k(1,2,1)T ,(k ≠0) 解(2)

矩阵范数的意义

矩阵范数的意义 几何方法是一种数学思维方法。函数和几何是数学的两条主要主线。我们学习各种函数及其性质,比如微积分、复变函数、实变函数、泛函等。而几何是函数形象表达,函数是几何的抽象描述,几何研究“形”,函数研究“数”,它们交织在一起推动数学向更深更抽象的方向发展。 函数图象联系了函数和几何,表达两个数之间的变化关系,映射推广了函数的概念,使得自变量不再仅仅局限于一个数,也不再局限于一维,任何事物都可以拿来作映射,维数可以是任意维,传统的函数图象已无法直观地表达高维对象之间的映射关系,这就要求我们在观念中,把三维的几何空间推广到抽象的n维空间。 由于映射的对象可以是任何事物,为了便于研究映射的性质以及数学表达,我们首先需要对映射的对象进行“量化”,取定一组“基”,确定事物在这组基下的坐标,事物同构于我们所熟悉的抽象几何空间中的点,事物的映射可以理解为从一个空间中的点到另一个空间的点的映射,而映射本身也是事物,自然也可以抽象为映射空间中的一个点,这就是泛函中需要研究的对象——函数。 从一个线性空间到另一个线性空间的线性映射,可以用一个矩阵来表达,矩阵被看线性作映射,线性映射的性质可以通过研究矩阵的性质来获得,比如矩阵的秩反映了线性映射值域空间的维数,可逆矩阵反映了线性映射的可逆,而矩阵范数反映了线性映射把一个向量映射为另一个向量,向量的“长度”缩放的比例。 并不是只有线性空间才有范数的定义,任意空间都可以引入范数,这样的空间称为赋范空间,使得这个空间可以被度量,如希尔伯特空间。 范数是把一个事物映射到非负实数,且满足非负性、齐次性、三角不等式,符合以上定义的都可以称之为范数,所以,范数的具体形式有很多种(由内积定义可以导出范数,范数还也可以有其他定义,或其他方式导出),要理解矩阵的算子范数,首先要理解向量范数的内涵。矩阵的算子范数,是由向量范数导出的,由形式可以知: 或方阵

向量组及其线性组合分布图示n维向量的概念向量组与矩阵

第一节 向量组及其线性组合 分布图示 ★ n 维向量的概念 ★ 向量组与矩阵 ★ 向量的线性运算 ★ 例1 ★ 例2 ★ 线性方程组的向量形式 ★ 向量组的线性组合 ★ 例3 ★ 例4 ★ 例5 ★ 定理1 ★ 例6-8 ★ 例9 ★ 向量组间的线性表示 ★ 内容小结 ★ 课堂练习 ★ 习题3-2 内容要点 一、n 维向量及其线性运算 定义 1 n 个有次序的数n a a a ,,,21 所组成的数组称为n 维向量, 这n 个数称为该向量的n 个分量, 第i 个数i a 称为第i 个分量. 注:在解析几何中,我们把“既有大小又有方向的量”称为向量,并把可随意平行移动的有向线段作为向量的几何形象. 引入坐标系后,又定义了向量的坐标表示式(三个有次序实数),此即上面定义的3维向量. 因此,当3≤n 时,n 维向量可以把有向线段作为其几何形象. 当3>n 时,n 维向量没有直观的几何形象. 若干个同维数的列向量(或行向量)所组成的集合称为向量组. 例如,一个n m ?矩阵 ????? ?? ??=mn m m n n a a a a a a a a a A 21222 2111211 每一列 ???? ?? ? ??=mj j j j a a a 21α),2,1(n j = 组成的向量组n ααα,,,21 称为矩阵A 的列向量组,而由矩阵A 的的每一行 ),,2,1(),,,(21m i a a a in i i i ==β 组成的向量组m βββ,,,21 称为矩阵A 的行向量组. 根据上述讨论,矩阵A 记为 ),,,(21n A ααα = 或 ???? ?? ? ??=n A βββ 21. 这样,矩阵A 就与其列向量组或行向量组之间建立了一一对应关系. 矩阵的列向量组和行向量组都是只含有限个向量的向量组. 而线性方程组 0=?X A n m 的全体解当n A r <)(时是一个含有无限多个n 维列向量的向量组.

矩阵特征值和特征向量的几何意义

矩阵特征值和特征向量的几何意义(---by 小马哥整理) 从定义来理解特征向量的话,就是经过一个矩阵变换后,空间沿着特征向量的方向上相当于只发生了缩放,比如我们考虑下面的矩阵: A=1.50.50.5 1.0?????? 求这个变换的特征向量和特征值,分别是:0.850.530.530.85U -??=???? (列向量) 特征值为:1λ=1.81,2λ=0.69 注意,这里U 是正交矩阵,根据正交矩阵的性质,我们有1T U U -=。 用一个形象的例子来说明一下几何意义,我们考虑下面笑脸图案: 图1.1 为方便演示笑脸图案在[0,0]和[1,1]围起来的单位正方形里,同时也用两个箭头标出来了特征向量的方向。经过矩阵A=1.50.50.5 1.0?????? 的变换,也就是用这个图案中的每个点的坐标和这个矩阵做乘法,得到下面图案: 图1.1 可以看到就是沿着两个正交的,特征向量的方向进行了缩放。 根据特征向量的定义,我们知道1U AU -=Λ,也即,T U AU =Λ,那么:T A U U =Λ

假设我们把笑脸图案也看作某一个矩阵C ,那么,矩阵A*C ,即把矩阵A 作用于C ,可以理解为:T U U C Λ我们从这个式子就可以看出来,A 矩阵是从旋转和沿轴缩放的角度来作用于C ,分成三步: 第一步,把特征向量所指的方向分别转到横轴和纵轴,这一步相当于用U 的转置,也就是T U 进行了变换 图1.2 第二步,然后把特征值作为缩放倍数,构造一个缩放矩阵1.81 0.69?????? ,矩阵分别沿着横轴和纵轴进行缩放: 图1.3 第三步,很自然地,接下来只要把这个图案转回去,也就是直接乘U 就可以了 图1.4

数值分析向量,矩阵范数,矩阵的条件数.

§8 向量,矩阵范数,矩阵的条件数 一 、 向量、矩阵范数 为了讨论线性方程组近似解的误差估计与研究解方程组迭代法的收敛性,需要在)(n n n R R ?或中引进向量序列(或矩阵序列)极限概念。为此,这就需要对量空间n R (或n n R ?矩阵空间)元素的“大小”引进某种度量即 向量范数(或矩阵范数)即距离的概念。 (一)向量范数:向量范数是3R 中向量长度概念的推广。 },{1为复数i n n x x x x x C ??????????== 称为n 维复向量空间。 },)({为复数ij n n ij n n a a A A C ??==称为n n ?复矩阵空间。 (2)设n n n C A C x ?∈∈,,称T n H x x x x =≡),,(1 为x 的共轭转置, T H A A =称为A 共轭转置矩阵。 在许多应用中,对向量的范数(对向量的“大小”的度量)都要求满足正定条件,齐次条件和三角不等式,下面给出向量范数的抽象定义。 n R x ∈(或n C x ∈)的某个实值非负函数 x x N ≡)(,如果满足下述条件 (1)正定性 00,0=??=≥x x x (2)齐次性 x ax α=其中R ∈α(或C ∈α)

(3)三角不等式 )(,,n n C R y x y x y x ∈∈?+≤+或,称x x N ≡)(是n R 上(或n C )一个向量范数(或为模)。 由三角不等式可推出不等式 (4)y x y x -≤- 下面给出矩阵计算中一些常用向量范数。 设)(),,(1n n T n C x R x x x ∈∈=或 (1)向量的“∞”范数 i n i x x x N ≤≤∞ ∞=≡1max )( (2)向量的“1”范数 ∑==≡n i i x x x N 1 1 1)( (3)向量的“2”范数 2/11 2 2 /12 2)() ,()(∑===≡n i i x x x x x N (4)向量的能量范数 设n n R A ?∈为对称正定阵 2/1),()(x Ax x x N R x A A n =≡→∈? 称为向量的能量范数。 设n R x ∈(或n C x ∈),则)(),(),(12x N x N x N ∞是n R 上(或n C )的向量范数。 证明 只验证三角不等式:对任意n R y x ∈,,则222 y x y x +≤+ 利用哥西不等式:22 ),(y x y x ≤,则有 ),(22 y x y x y x ++=+),(),(2),(y y y x x x ++= 22 2 2 22 2y y x x ++≤222))(y x += 对任何n R y x ∈,则 (1) ∞∞ ≤≤x n x x 2

相关文档
相关文档 最新文档