文档库 最新最全的文档下载
当前位置:文档库 › 浅析电喷雾质谱仪中的电喷雾系统

浅析电喷雾质谱仪中的电喷雾系统

浅析电喷雾质谱仪中的电喷雾系统
浅析电喷雾质谱仪中的电喷雾系统

浅析电喷雾质谱仪中的电喷雾系统

王化斌 刘钟栋 郑隆钰 卢奎

(郑州工程学院,郑州 450052)

曹书霞

(郑州大学,郑州 450052)

刘艳

(清华大学,北京 100084)

摘 要:本文主要介绍了电喷雾质谱仪中的电喷雾部分的基本组成及基本原理。主要包括电喷雾的过程、喷雾源、气相离子的选择以及在电喷雾系统中发生的相关气相化学反应。最后介绍了电喷雾质谱的优缺点。

关键词:电喷雾,电喷雾质谱仪

The Basic Construction and Principles of the Electro_spray System in Electro_spray Mass Spectrometry

Wang Huabin,Liu Zhongdong,Zheng Longyu,Lu Kui

(Zhengzhou Institute of Technology,Zhengzhou 450052)

Cao Shuxia

(Zhengzhou University,Zhengzhou 450052)

Liu Yan

(Tsinghua University,Beijing 100084)

Abstract:This article mainly introduced the basic construction and principles of the electro_spray sys tem of electro_spray mass spectrometry including the processes of electro_spraying,sampling gas phase ions and the accompanying chemical reactions and last the authors gave a roughly summary of the electro_spray mass spectrometry s advantages and disadvantages.

Key words:Electro_spray,Electro_spray mass spectrometry

前言

电喷雾作为一种产生气相离子的方法是由Dole和他的合作者们于1968年提出的,在1973年,Dole等人提出将电喷雾与传统质谱仪联用,而

95

到1984年才被用于实验中[1]。电喷雾质谱作为一种较新的分析手段,它正越来越广泛地被人们所利用。自从90年代以来,关于电喷雾质谱发展、应用和功能方面的出版物呈指数上升[2]。电喷雾质谱主要有两部分组成,电喷雾部分和质谱仪部分。电喷雾部分可以提供一种相对简单的方式,使非挥发性溶液相的离子转入到气相;而质谱仪部分则可以提供一种灵敏的、直接的检测方式。对于质谱部分的介绍有很多书籍可以参考,但对于电喷雾部分,国内关于此方面系统介绍的书籍、文章却极少。所以作者认为很有必要向大家较为详细地介绍一下

电喷雾质谱中的电喷雾部分的有关知识。

1 电喷雾过程

与大多数以原子为基础(等离子体质谱)的技术相比,电喷雾质谱产生离子的方法截然不同[2]。电喷雾并不是真正的产生离子,而是使前存在溶液离子易于转入气相。这主要有两个过程来完成,即产生带电液滴和将离子从带电液滴中转移到气相。这些过程易于保留重要的溶液信息,如一个既定离子的形态和氧化状态。在电喷雾质谱中,带电液滴通过静电喷雾过程而产生。对此过程的一般性描述[1]如下(如图1[3]所示)。分析物被溶解于电解质溶液中,而后在泵的作用下(~1-10 l/min)通过不锈钢毛细管(内径不超进100 m)。这个不锈钢毛细管与质谱检测器中的选样孔板之间有一个~2-4kv 的高压电场。在正电场的影响下,在毛细管管尖处的溶液中的正离子向液面迁移(如图2[2]所示),然而负离子则离开液面。这种液面中离子的分离过程被通常称为?电泳#带电过程[4],结果使液面聚集的全部都是正电荷。需要指出的是,?电泳#涉及到的离子只需要很小的位置空间的置换(最多一个离子直径的长度)。可以想像,电解质溶液中一个阴离子在毛细管的一端被释放掉,则剩余阴离子的轻微重排将会引起电解质溶液在毛细管的另一端产生一个正电荷[2]。当电场足够高时,液滴表面的电荷移向低场,则液面被拉伸变形。在稳定的条件下,溶液的弯液面(管尖处溶液表面)形成一锥状物,即通常称为的?泰勒圆锥[5]#这个形状代表着减小液面面积的内聚力与液面的由使加了电场而产生的液体离子移向低场的力之间的平衡。

图1[3] 精选器-分离器二级串联装置示意图

这也代表着液体的供给与毛细管尖之间液体的平衡[6]。即由液体的供给和毛细管尖端的圆锥液面的快速剥离(液滴脱落)来维持着这种平衡。

图2[2] 电解质溶液样的带电过程示意简图像。

图3[4] 一个稳定电喷雾源的电荷耦合装置图

图3中,a是泰勒锥示意图;b是羽状气雾示意图。

96

带电液体在电场力的影响下,在圆锥面由锥底向锥顶流过,在电场中它们呈现丝状(如图3a所示)。喷雾表面下的液体则以轴对称的方式迅速补上。在某一临界距离带电液丝散开而产生带电气雾。带电富足的液滴与带电贫瘠的毛细管之间的平衡是靠电解过程来维持的。在固定操作条件下(也就是毛细管的锥度、电场力、溶液流速),泰勒圆锥具有表面张力、导电、介电力和粘度等特性[6][7]。图3a[4]实际上是一个泰勒圆锥的电偶装置图像。图3b[4]是相似的图像,只是放大倍数较图3a小。(明暗度是用来强调电喷雾所产生的气雾)。当新形成的液滴开始蒸发,液滴表面的电荷密度开始上升直到不稳定[8]。大量的带有大部分不稳定电荷的小液滴释放将会缓解原始液滴表面受到的力[9]。这个过程被称为液滴的裂解。液滴自身的裂解过程不断重复将会产生一系列的越来越小液滴,在这些小液滴将会在空间电荷效应的影响下被迫使产生喷雾,最终结果是产生强的喷雾,随着时间和距离的延长雾滴将会变得越来越细小(如图3b所示)。上述过程可以结合上述三幅图来理解。

这些非常小的液滴最终产生气相离子。对于产生气相离子的精确机理目前尚不清楚。离子蒸发理论首先由Iribare和Thomson[10]提出,他们认为,当液滴达到临界尺寸和临界密度,溶剂化离子就会从液滴表面直接解吸出来。Dole等人提出了一个理论认为:蒸发或裂解过程,最终会导致液滴只带一个电荷。这有可能是一个单离子、一个带有液剂的离子或带有电解质的离子。Wang,C ole[11]和Striegel等人[12]最近的研究工作提供了支持Dole 理论的证据。但不论是哪种理论,都认为气相离子最有可能从小液滴中产生。产生气相离子主要依赖于两个主要参数,带电和蒸发。最初液滴的带电状态决定理论上能够进入气相中的最大离子数,这与电喷雾质谱最终检测的灵敏度正相关。蒸发决定液滴变小的速率。当电喷雾毛细管尖端与质谱选样板之间的距离较小时,通过提高蒸发效率来保证检测的灵敏度就很重要了。这对于产生大液滴而相对低的液滴带电量的系统来说就显得尤其为重要了,尤其对于高流速系统。

2 喷雾源

电喷雾的效率决定于产生稳定的带电液滴。由于样品基质和溶液流速要求的不同,产生稳定的带电液滴往往会被干扰,或者说在一定条件下会实现不了。结果,人们致力于发现一种新的,功能强大喷雾源能够实现同样的电喷雾而受到上述变化的影响较小;考虑到喷雾的基本设计,雾滴在喷雾源的产生是靠纯静电方式(真正的电喷雾)。自从Zeleny[13][14][15]最初的设计描述以来没有多大发展。也许唯一重要的改变是用极细内径(1-2 m)的毛细管,用这种管的喷雾被称之为纳米电喷雾或纳米喷雾。这个概念是由Mann和Wilmi[16]当时为了减少小样样品的体积消耗速率和提高离子转入到气相中的效率,通过提高电荷/液体质量比率而首先提出且设计的。典型的,它们只需要1 l样品,样品液滴的自然蒸发速率为20-40nl/min[17]。而目前需要的进一步就是要提高喷雾系统的使用寿命和耐久性[18]。

3 选择气相离子进入检测器

如果有合适的大气压力介面,实际上任何质谱检测器都可以被用来选择并检测分析电喷雾所产生的离子。为了处理气体负荷问题,大多数大气压力介面用到了二级泵系统(参考图1)。这个介面通常由一个具有一个较小直径的(~100 m)孔的选样板组成。通过这个小孔,在大气压力下,气体可以全部扩张进入到选样板后的低压区(~1torr)。这种由离子、中性物质组成的气体扩张进入到精选器,从精选器,气体离子进入到离子光学进行质谱分析器检测。图1是一个典型的精选器-分离器二级串联装置示意图。为了明了起见,下面的选样过程描述主要着眼于样品的分离器。在电喷雾质谱中,气相离子的选择是一个非常重要的过程[1]。作为电喷雾质谱中基础技术的一部分,选样会严重影响记录在质谱检测器中的离子自然特性。当施加电场时,在存在于毛细管尖端的高压和相反电极低压之间的电场作用下,正离子飞向质谱检测器。负离子的情况与此相似。在许多简单系统中(如图1)反性电极板安置在选样板之前,它具有相对较大的孔径(2-5nm),被称为前板。通常被称之为?帘气#的氮气(通常被称为干燥气)从前板与选样板之间引入。通常气体流动速率足够在此区域产生过压气体,而这个过压气体将在前板孔会产生一股与离子源漂移方向相反的气流。?帘气#的目的主要

97

是防止中性物质如溶剂或水蒸汽进入质谱检测器。有了?帘气#就会减少在扩张过程中产生加成物或团簇物质(若干个离子与若干个中性物质附在一起)。除了提供在扩张区域的中性碰撞气源,?帘气#还可以促使液滴和溶剂化离子变干。当在选样板和精选器之间存在一个电场时,相对于中性扩张气体(如N2),离子会因被加速而产生有力的中性物/离子碰撞。碰撞能量的大小取决于离子的加速情况,即取决于电场强度。举一个溶剂化离子(如Na(H2O)+n)与扩张气之间碰撞的例子来说明。它们之间有力碰撞将导致丢失溶剂配体,如(Na (H2O)+n Na(H2O)+n-x+x H2O)。这个过程通常被称为碰撞诱导解离(CID)。由于CID能够修饰样品离子的原始形态,所以它具有重要的分析意义,多电荷离子或分子的CID是一个相当复杂的事情。

两个控制CID程度的重要参数是:碰撞气体的压力(正比于气体的数量密度,自由路径,碰撞频率)和电势差。如果碰撞气体各参数恒定,则CID 的程度则由选样器和精选器之间的电势差控制。在选样板和精选器之间的区域的CID通常被称为高压CID,它决于场的能级,它能够非常有效地使溶剂化的金属离子除去溶剂[19],离压CID虽然有效,但很难控制,通常不具有选择能力。利用四极杆检测器、离子阱、扇形磁场和静电场、离子回旋共振腔的串联特性可以提供一种方式来选择特定的离子并对其进行碰撞-诱导裂解离。这个过程通常通过控质谱仪中给定气压产生的加速势能来完成。气压可以被设定,从而使气体与被选择的离子进行单次或多次碰撞。更为详尽关于CID方面的知识请参考相关文献。

4 电喷雾过程中的相关化学反应

电喷雾作为一种强有力的化学研究借助设备,它的有效之处在于它将前存在溶液离子转入到气相的能力。结果,大量的原始溶液信息,如元素的形式和氧化状态被保存下来。一旦进入气相,离子的形式在选样过程中就会被极大地改变,在一些情况下,最简单的就是丢失金属离子的溶剂化配体,或严重到分子离子的裂解,修饰作用通常伴随着电荷减少和碰撞诱导解离。虽然通常会被避免,但是它也可能产生加合物和溶剂金属团簇。因此,对于对化学物质研究感兴趣的研究者来说,意识到气相修饰和其化学原理就很重要,以便于通过电喷雾质谱来正确鉴别一种化学物质在溶液中的存在形式。这里只是对电喷雾质谱的相关气相化学作了一个简要的介绍。Freiser[20]和Armentrout[21]已经写了关于金属离子的气相化学方面的文章,大家可以参考。

4 1 电荷减少

当溶剂配体已不能够再使多电荷离子稳定时,电荷减少是一种非常重要的气相现象。最终结果,这个团簇的离子总电荷数减少,同时随着它的化学形式的改变。Jayaweera et al[22]和Blades et al[23][24][25],已经描述了多电荷金属离子团簇的电荷减少过程。定性地说,电荷减少可以通过以下例子来说明。试想一个具有一定形状的带有三个电荷的溶剂化金属离子,一旦进入气相,这个离子在施加宾电场力的影响下将移向选样板。当这个离子通过具有相对于溶剂蒸汽压低的气压区时(如H2O,水分子将从这个溶剂化金属离子团簇蒸发掉),配体将会丢失。此过程持续将会使配体进一步丢失,即电荷继续减少。

M(H2O)n3+M(OH)(H2O)n-22++H3O+(1) M(O H)(H2O)n-22+M(O H)2(H2O)n-4++H3O+(2)这个过程通常被称为电荷减少(分离),如上,电荷从3+到2+,再到1+。这里需要指出,当水合氢离子从主要的团簇中分离出来后,它将自己将被水合。对于其它电荷减少过程这里不再深入介绍,对于相关方面知识可以参考其它资料[24][25]。

4 2 碰撞诱导解离

在大多数电喷雾环境下,由于带电液滴的蒸发作用,周围大气中富含溶剂分子,结果使配体丢失,电荷减少,当然,这通常只在一定程度上发生。当气相离子进入扩张区时,它与中性扩张气体(?帘气#)碰撞(可参考选择气相离子进入检测器部分)时会得到大量的传递能,这将会使溶质化离子的进一步修饰变的容易。当扩张时,碰撞频率将正比于气体的数量密度。这意味着离子将在扩张早期经历大量的碰撞,在后来会经历较少次数的碰撞。过了精选板,将是一个没有碰撞的区域,这取决于背景压力。从碰撞产生的相应的传递能反比于气体密度。在扩张初期,平均自由路径较小,因此离子路径(在电场力的影响下)在碰撞间隔之间不会有太大的加速。当气体密度降低时,平均自由路径增

98

加,离子将会被加速到一个相对较高的速度,同时这种碰撞也更有力,在扩张初期的频繁低能碰撞很有可能有助于配体的丢失和导致电荷数减少。然而在后来的扩张过程中,碰撞频率较小,但碰撞却更有力,这可能导致碎片的产生、离子-溶剂团簇的分解、分子离子的产生。明白CID过程将会揭示更多的关于离子信息。对于CID的更深层次理解,请参考相关文献。

5 电喷雾的优缺点

5 1 电喷雾的优点

电喷雾[1]可以提供一个相对简单的方式使非挥发性溶液相离子转入到气相(主要用来产生分子离子[2])。从而质谱仪便可提供一个灵敏的直接检测。电喷雾质谱不但可以用于无机物(如元素周期表中的大部分元素)的检测分析,还可以用来分析有机金属离子复合物以及生物大分子的检测分析。在电喷雾质谱图上检测到的离子(质子或阴离子化的分子离子[2],这主要取决于样品液中主要带电载体的自然特性。)除非经历了CID,否则是不会有碎片产生的,这就意味着电喷雾质谱的软电离优点。最显著的优点(这是仅电喷雾质谱才具有的优点)是在电喷雾质谱中,高分子量的分子通常会带有多个电荷,拿生物大分子,如蛋白质举例说明一下:在质谱分析中,蛋白质分子所带电荷数大约正比于分子质量,若一个分子质量为10,000Da的蛋白质分子在质谱图中观察到的离子峰是带有10个电荷的,则分子量为100,000Da的蛋白质分子的离子峰所带电荷数则会为100左右。简而言之,电荷状态的分布可以精确对分子量定量;同时,由于上述特性,可以使大多数分析离子进入质谱仪检测范围,这样,价格便宜的质谱分析器如四极杆质谱过滤器就可以被使用。

5 2 电喷雾的缺点

每一个电喷雾的变量(如,真空度、电势、溶剂的挥发性、溶液的导电性、电解质的浓度、样品液的各种物理特性等)都有一个应用的限制范围,同时,实验参数或技术条件必须根据需要解决的问题去仔细选择。另一个限制因素是,溶济的选择范围和可以使用的溶液范围也有限制,尤其是当遇到使用纯水或高导电性溶液时,这个问题就很难解决,很多是凭经验的。同时,质谱检测器对不同的复合物的响应变化范围很大。(如,与蛋白质相比,电喷雾质谱对糖的灵敏度就低)。这将妨碍准确定量分析。由于溶液参数控制喷雾过程,因此即使在良好的条件下也存在离子信号的波动。当然,这些问题需要质谱专家和电喷雾研究专家协同来解决。

参考文献

1 Th.D lcks and R.Juraschek,Electros pray as an ionization method

for mas s spec trome try,J.Aerosol Sci.Vol.30,No.7,pp.927-

943,1999.

2 Ian I.Stewart,Electrospray mass spectrometry:a tool for elemental

s peci ation,Spectrochi mica Acta Part B54(1999)1649-1695.

3 A.P.Bruins,ESI source design and dyna mic range considerations,

in:R.B.Cole(Ed.),Electrospray Ioniz ation Mass Spectro metry:

Foundmentals,Ins trumentation,and Applications,Wiley,Ne w York,

1997,pp107-136.

4 A.T.Blades,M.G.Ikonomou,P.Kebarle,Mechanis m of electro

spray mass spec trome try.Electrospray as an elec trosis cell,Anal.

Chem.63(1991)2109-2114.

5 G.I.Taylor,Di sintegration of water drops in an elec tric field,Proc.

R oy.Soc.A.280(1964)383-397.

6 I.Hayati, A.I.Bailey,T.H.F.Tadros,Investigati ons into the

mechanis ms of electrohydrodynamic spraying of liquids,J.Colloid

Interface Sci.117(1987)205.

7 D.P.H.Smith,The electrohydrodynamic atomiz ation of liquids,

IEEE Trans.Ind.Appl.63(1986)527-535.

8 Lord Reyligh,On the equilibrium of liquid conducti ng masses

charged w i th elec tricity,Philos.Mag.14(1882)184-186.

9 D.B.Hager,N.J.Dovichi,J.Klassen,P.Keblare,Droplet electro

spray mas s spec trome try,Aanl.Che m.66(1994)3944-3947.

10 J.V.Iribarne,B.A.Thoms on,On the evaporati on of small ions

from charged droplets,J.Chem.Phys.64(1976)2287-2294.

11 G.D.Wang,R.B.Cole,Solvation energy and gas_phase s tabili ty

influence on al kali metal cluster ion formation i n electrospray ion

ization mass spectrometry,Anal.Chem.70(1998)873-881.

12 A.M.Strie gel,J.D.Ti mpa,P.Pi otrowiak,R.B.Cole,Multiple

neutral alkali halide attachments onto oligosaccharides i n electro

spray ioniz ati on mass s pectrometry.,Int.J.Mas s Spectrom.Ion

Processes162(1997)45-53.

13 J.Zeleny,The electrical discharge from liqui d points and a hydro

static method of meas uring the electric intensity at thei r s urfaces,

Phys.Rev.3(1914)69-91.

14 J.Zeleny,On the conditions of i nstability of electrifield drops with

applications to the electrical discharge from liquid poi nts,Proc.

Cambridge Philos.Soc.18(1915)71-83.

15 J.Zeleny,Instability of electri field liquid surfaces,Phys.Rev.10

(1917)1-6.

(下转94页)

99

2.4 产品质量标准

2.4.1感官指标

色泽:浅绿色;香气:具有仙人掌复合醋饮料特有的香气,香气柔和;滋味:具有仙人掌复合醋饮料特有的滋味,味感协调,酸甜爽口;组织状态:澄清透明,无沉淀,无杂质。

2.4.2理化指标

可溶性固形物(20?折光法计)%9.1%,酸度(以醋酸计)%240mg/100ml,氨基态氮%58mg/ 100ml。

2.4.3卫生指标

细菌总数&50个/ml,大肠菌群&3个/100ml,致病菌不得检出。

3 结论

3.1护绿是防止仙人掌在加工过程中由天然绿色变为黄绿色的有效方法。试验结果表明:仙人掌护绿液最佳配方为:碳酸钠0.09%,醋酸铜0.010%, VC0.15%,制成的饮料室温下存放1a仍保持仙人掌天然绿色。

3.2果胶酶处理是提高仙人掌出汁率的重要工艺。试验结果显示,酶解仙人掌汁的适宜工艺条件为:果胶酶用量0.2%,酶解温度45?,时间3.0h, pH

4.5,按最佳工艺条件进行果胶酶处理,仙人掌出汁率可提高10.2%。

3.3优选配方是仙人掌复合醋饮料研制的关键工艺,通过正交试验确定仙人掌复合醋饮料配方为:仙人掌汁120ml/L,糯米酿造醋50ml/L,蜂蜜50g/L,糯米糖化汁90ml/L,制成的饮料风味独特,营养保健,老少皆宜。

参考文献

1.汪开治.仙人掌的食与用.植物杂志,2001(1):10~12

2.江苏新医学院编.中药大辞典(上册).上海:上海人民出版

社,1997

3.陈朝银等.仙人掌茎有效成分分析.中国野生植物资源,

1997,(4)

4.朱琳等.仙人掌保健饮料的制作.农产品加工,2003(1):29

~30

5.王福源主编.现代食品发酵技术.北京:中国轻工业出版社,

1998

6.褚维元.桔皮醋酸发酵饮料工艺条件及配方的研究.食品科

学,2002,23(10):70~72

7.天津轻工业学院等编.食品生物化学.北京:轻工业出版社.

1981

8.肖志剑等.从仙人掌中分离提取果胶的研究.广州食品工业

科技,2001,17(3):4~6

(上接99页)

16 M.S.Wilm,M.M ann,Electrospray and Tayl or_cone theory,Doles

bea m of macromolec ules at las t?Int.J.Mass Specrom.Ion Pro

cess es135(1994)167-186.

17 M.S.Wilm,M.Mann,Anal ytical properties of the Nanoelectro

s pray ion source,Anal.Chem68(1996)1-8

18 G.A.Valaskovic,F.W.Mclafferty,Long-lived metalized ti ps for

nanoli ter elec trospray mass spectrometry,J.Am.Soc.M as s.Spec

trom.7(1996)1270-1272.

19 G.R.Agnes,G.Horlick,Electrospray mass spectrometry as a tech

ni que for elemental analysis:preliminary res ults,Appl.Spectrosc.

46(1992)401-406.

20 B.S.Freiser,Gas Phase metal ion c hemis try,J.M ass Spec trom.31

(1996)703-715.

21 P.B.A mentrout,Buildi ng organometalic complexes from the bare

me tal:thermochemis try and elec tronic s truc ture along the way, Acc.Chem.Res.28(1995)430-436.

22 P.Jayaweera,A.T.Blades,M.G.Ikonomou,P.Kebarle,Produc

tion and study in the gas phase of multiply charged s ol vated or c o ordinated metal ions,J.Am.Chem.Soc.112(1990)2452-2454.

23 A.T.Blades,P.Jayaweera,M.G.Ikono mou,P.Kebarle,Studies of

al kali ne earth and transi ti on metal M++gas phase ion chemi stry, J.Chem.Phys.92(1990)5900-5906.

24 A.T.Blades,P.J aya w eera,M.G.Ikonomou,P.Kebarle,First

studies of the gas phase i on c hemis try of M3+metal i on li gands, Int.J.Mass Spectrom.,Ion Processes101(1990)325-336.

25 A.T.Blades,P.Jayaweera,M.G.Ikonomou,P.Kebarle,Ion

molecule clus ters involving doubly charged metal i ons(M2+),Int.

J.Mass Spectrom.,Ion Process es102(1990)251-267.

94

浅析电喷雾质谱仪中的电喷雾系统

浅析电喷雾质谱仪中的电喷雾系统 王化斌 刘钟栋 郑隆钰 卢奎 (郑州工程学院,郑州 450052) 曹书霞 (郑州大学,郑州 450052) 刘艳 (清华大学,北京 100084) 摘 要:本文主要介绍了电喷雾质谱仪中的电喷雾部分的基本组成及基本原理。主要包括电喷雾的过程、喷雾源、气相离子的选择以及在电喷雾系统中发生的相关气相化学反应。最后介绍了电喷雾质谱的优缺点。 关键词:电喷雾,电喷雾质谱仪 The Basic Construction and Principles of the Electro_spray System in Electro_spray Mass Spectrometry Wang Huabin,Liu Zhongdong,Zheng Longyu,Lu Kui (Zhengzhou Institute of Technology,Zhengzhou 450052) Cao Shuxia (Zhengzhou University,Zhengzhou 450052) Liu Yan (Tsinghua University,Beijing 100084) Abstract:This article mainly introduced the basic construction and principles of the electro_spray sys tem of electro_spray mass spectrometry including the processes of electro_spraying,sampling gas phase ions and the accompanying chemical reactions and last the authors gave a roughly summary of the electro_spray mass spectrometry s advantages and disadvantages. Key words:Electro_spray,Electro_spray mass spectrometry 前言 电喷雾作为一种产生气相离子的方法是由Dole和他的合作者们于1968年提出的,在1973年,Dole等人提出将电喷雾与传统质谱仪联用,而 95

炔类药物及其代谢物的高效衍生-电喷雾质谱分析

分类号 学校代码10542密级 学号201002121366 炔类药物及其代谢物的高效衍生 一电喷雾质谱分析 Highly—efficientderivationforESI-MSdetectionofalkynyldrugsandtheir metabolites ?…‘ 研究生姓名指导教师姓名、职称学科专业研究方向 朱卫桃 郭宾副教授 药物分析 色谱与药物分析 湖南师范大学学位评定委员会办公室 二零一三年五月

摘要 本文研究的炔类药物是指化学结构中含有炔基基团的化合物,包括人工合成和天然来源药物,如长效雌激素、孕激素、单胺氧化酶抑制剂、烯二炔类抗生素、逆转录酶抑制剂等,在人工避孕、降血糖、抗癌等方面应用较广。多数炔类药物在服用后的体内代谢过程复杂,其检测难点是含量低、结构多样、基质干扰大,同时又因离子化问题(如炔类激素)I琨NT高灵敏度和选择性质谱的运用。为实现复杂生物基质中炔类药物的有效分析,本论文从分子结构修饰入手,探索新型的样品衍生化策略,进而建立一种高效、专一、灵敏的高效液相色谱.质谱生物体液检测方法,因此在拓展常规质谱检测技术的运用范围上具有重要的方法学意义。 基于炔类药物结构有着相同的炔基基团,本课题利用点击化学反应原理将叠氮化合物与待测物分子环化加成,生成质荷比增大的衍生物离子,不仅提高了分析物在电喷雾质谱中的离子化效率,而且有效降低基质中的杂质干扰;同时该方法具有产率高、副产物少、产物易于分离、反应条件简单等优点,便于对炔类药物的进行定量分析。这种基于学科交叉优势的新型检测筛选方法很适合“一锅法’’对生物基质中的多种端基炔类激素的同时定量检测和代谢物的定性鉴别。该方法被成功运用于相关激素类药物及其复杂代谢产物的检测和筛查。 本论文的主要工作如下: 1.基于叠氮.炔点击反应的化学原理,首先优化筛选出一种高效

生物质谱技术

生命科学被誉为21世纪的最前沿科学之一,随着人类第一张基因序列草图的完成和发展,生命科学的研究也将进入一个崭新的后基因组学,即蛋白质组学时代。正如基因草图的提前绘制得益于大规模全自动毛细管测序技术一样,后基因组研究也将会借助于现代生物质谱技术等得到迅猛发展。本文拟简述生物质谱技术及其在生命科学领域研究中的应用。 1.质谱技术 质谱(MassSPectrometry)是带电原子、分子或分子碎片按质荷比(或质量)的大小顺序排列的图谱。质谱仪是一类能使物质粒子高化成离子并通过适当的电场、磁场将它们按空间位置、时间先后或者轨道稳定与否实现质荷比分离,并检测强度后进行物质分析的仪器。质谱仪主要由分析系统、电学系统和真空系统组成。 质谱分析的基本原理 用于分析的样品分子(或原子)在离子源中离化成具有不同质量的单电行分子离子和碎片离子,这些单电荷离子在加速电场中获得相同的动能并形成一束离子,进入由电场和磁场组成的分析器,离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道便相交于一点。与此同时,在磁场中还能发生质量的分离,这样就使具有同一质荷比而速度不同的离子聚焦在同一点上,不同质荷比的离子聚焦在不同的点上,其焦面接近于平面,在此处用检测系统进行检测即可得到不同质荷比的谱线,即质谱。通过质谱分析,我们可以获得分析样品的分子量、分子式、分子中同位素构成和分子结构等多方面的信息。 质谱技术的发展 质谱的开发历史要追溯到20世纪初J.J.Thomson创制的抛物线质谱装置,1919年Aston制成了第一台速度聚焦型质谱仪,成为了质谱发展史上的里程碑。

电喷雾质谱

电喷雾电离质谱(电喷雾部分)的简介 ESI-MS的大概结构 电喷雾质谱主要有两部分组成, 电喷雾部分和质谱仪部分。电喷雾部分可以提供一种相对简单的方式, 使非挥发性溶液相的离子转入到气相; 而质谱仪部分则可以提供一种灵敏的、直接的检验。 ESI的基本原理 ESI 是一种离子化技术, 它将溶液中的离子转变为气相离子而进行MS分析。电喷雾过程可简单描述为: :样品溶液在电场及辅助气流的作用下喷成雾状带电液滴,挥发性溶液在高温下逐渐蒸发,液滴表面的电荷体密度随半径减少而增加,当达到雷利极限时,液滴发生库伦爆破现象,产生更小的带电微滴。上述过程不断反复,最终实现样品的离子化。由于这一过程即没有直接的外界能量作用于分子,因此对分子结构破坏较少,是一种典型的“软电离”方式。

ESI过程 ESI过程中大致可以分为液滴的形成、去溶剂化、气相离子的形成3 个阶段。 液滴的形成和雾化 样品溶液通过雾化器进入喷雾室, 这时雾化气体通过围绕喷雾针的同轴套管进入喷雾室, 由于雾化气体强的剪切力及喷雾室上筛网电极与端板上的强电压( 2~6 kV) ,将样品溶液拉出, 并将其碎裂成小液滴。随着小液滴的分散, 由于静电引力的作用, 一种极性的离子倾向于移到液滴表面, 结果样品被载运并分散成带电荷的更微小液滴。液滴的形成及电喷雾过程如图2 所示。 去溶剂化和离子的形成进入喷雾室内的液滴, 由于加热的干燥气-氮气的逆流使溶剂不断蒸发, 液滴的直径随之变小,并形成一个“突出”使表面电荷密度增加。当达到Rayleigh( 雷利) 极限时, 电荷间的库仑排斥力足以抵消液滴表面张力时, 液滴发生爆裂, 即库仑爆炸, 产生了更细小的带电液滴, 离子的形成如图 3所示。

电喷雾质谱法快速分析三种农药的残留

Journal of Organic Chemistry Research 有机化学研究, 2015, 3(3), 115-121 Published Online September 2015 in Hans. https://www.wendangku.net/doc/1a8706577.html,/journal/jocr https://www.wendangku.net/doc/1a8706577.html,/10.12677/jocr.2015.33016 Rapid Analysis of Three Kinds of Pesticide Residues Using Electrospray Ionization Mass Spectrometry Jing Li1*, Jun Yan2, Wenxiang Hu3* 1School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan Shanxi 2Central Research Institute of China Chemical Science and Technology, Beijing 3Beijing Excalibur Space Military Academy of Medical Sciences, Beijing Email: *lxf7777@https://www.wendangku.net/doc/1a8706577.html,, *huwx66@https://www.wendangku.net/doc/1a8706577.html, Received: Jul. 13th, 2015; accepted: Aug. 4th, 2015; published: Aug. 10th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/1a8706577.html,/licenses/by/4.0/ Abstract Electrospray ionization mass spectrometry (ESI-MS) combined with electrospray ionization tan-dem mass spectrometry technology was used for rapid analysis of three kinds of pesticide resi-dues. In this manuscript, the rapid analytical method for Hexaconazo, Iimidacloprid residues, as well as the rule of tandem mass spectrometry for Difenconazole, was established. The method is simple and rapid. It is applicable to determine the pesticide and pesticide residues. Keywords Electrospray Ionization Mass Spectrmetry (ESI-MS), In-Source Collision Induced Dissociation (CID), Pesticide Residues, Rapid Analysis 电喷雾质谱法快速分析三种农药的残留 李竞1*,闫峻2,胡文祥3* 1山西大学化学化工学院,山西太原 2中化化工科学技术研究总院,北京 3北京神剑天军医学科学院,北京 *通讯作者。

大黄蒽醌类化合物电喷雾质谱研究

文章编号:1000-2375(2006)04-0403-04 大黄蒽醌类化合物电喷雾质谱研究 马小红,沈少林,韩凤梅,陈 勇 (湖北大学中药生物技术湖北省重点实验室,湖北武汉430062) 摘 要:采用电喷雾-离子阱质谱(E SI -ITMS )法,通过一级质谱全扫描和二级质谱碰撞诱导解离技术, 研究5种大黄蒽醌衍生物(大黄素、芦荟大黄素、大黄酸、大黄素甲醚、大黄酚)的质谱行为及分子结构与裂解 规律间的关系,并对大黄药材中总游离蒽醌提取物进行了电喷雾质谱检测.实验结果显示,5种大黄蒽醌类化 合物一级质谱负离子出峰较好,被测样品均为基峰或第二强峰,未发现聚合体离子及加合离子产生,二级质谱 各碎片离子归属明确,特征性强.实验结果可应用于大黄蒽醌类化合物的结构分析及进一步的代谢产物研究, 并为大黄药材有效成分的鉴定提供了一种快速,灵敏的检测方法. 关键词:大黄;蒽醌;电喷雾质谱;特征图谱 中图分类号:O657.63;Q946.88 文献标志码:A 收稿日期:2006-04-13 基金项目:科技部攻关项目(2001BA701A01)和湖北省杰出青年基金项目(2002AC004)资助 作者简介:马小红(1968- ),女,实验师;陈勇,通讯作者 大黄(Radix et rhizoma rhei )为蓼科植物掌叶大黄(Rheum palmatum L )、唐古特大黄(Rheum tanguticum Maxim .)或药用大黄(Rheum officinale Baill )的干燥根及根茎[1],其主要药效成分为1,8-二 羟基蒽醌类衍生物,包括大黄素(emodin )、大黄酚(chr ysophanol )、大黄酸(r hein )、大黄素甲醚(physcion )、芦荟大黄素(aloe -emodin )等.这类物质及其甙类具有泻下、抗菌、抗癌等多种生理活性,临床应用非常广泛[2] .对于大黄蒽醌类物质的分离、含量测定、药理研究等一直是一个非常活跃的领域,多见文献报道[3,4].但迄今为止,还少见大黄蒽醌类化合物电喷雾离子阱质谱(ESI -ITMS )电离规律方面的研究报道.电喷雾质谱离子化条件温和、谱图简单,特别适用于极性和热不稳定的天然化合物的分析,其一级质谱主要产生准分子离子峰,而多级质谱能提供化合物的结构信息,是研究分子结构的灵敏、快捷和有效的现代分析方法[5~8].本文中应用E SI -ITMS 技术研究并探讨了5种大黄蒽醌衍生物一级质谱行为规律及二级质谱裂解规律,分析了该类化合物分子结构与其质谱裂解规律之间的关系,并对大黄药材总蒽醌提取物进行了电喷雾质谱检测.研究结果为该类化合物的结构分析提供了理论依据,同时也为大黄药材有效成分鉴定提供了一种快速、灵敏的检测方法.1 实验 1.1 仪器和试剂 Finnigan LCQ Duo 型质谱仪(包括电喷雾电离(ESI )源,TSP P4000泵,TSP AS3000自动进样器,Xcalibur 数据分析软件1.10版),宁波新芝JY92-Ⅱ超声波细胞破碎仪,大黄素、大黄酸、大黄素甲醚、芦荟大黄素、大黄酚对照品和大黄对照药材均购自中国药品生物制品检定所,Fisher 公司色谱纯甲醇,超纯水,其他试剂为国产分析纯. 1.2 质谱条件 ESI 离子源喷雾电压:4.5kV ;毛细管温度:200℃;毛细管电压:45V ;鞘气(N 2)流速:40个单位;流动相:甲醇∶0.01mol ·L -1乙酸铵水溶液(50∶50V /V );流速:0.20mL ·min -1;正、负离子一级质 谱全扫描及二级质谱全扫描分析.1.3 样品制备 分别准确称取大黄素、大黄酸、大黄素甲醚、芦荟大黄素和大黄酚配制成1.0g /L 甲醇储备液,进样分析前用甲醇稀释5倍后直接进样.准确称取0.50g 大黄药材粉末,置100mL 离心管中,加20mL 甲醇浸泡30min 后,超声提取30min ,功率300W .药材提取液经浓缩后用乙醚萃取,乙醚萃取 第28卷第4期2006年12月湖北大学学报(自然科学版)Journal of Hubei University (Natural Science ) Vol .28 No .4 Dec .,2006

电喷雾电离质谱的简介与改进

电喷雾电离质谱

电喷雾电离质谱(电喷雾部分)的简介与改进 摘要:本文主要围绕电喷雾电离质谱的电喷雾部分的结构,原理,电喷雾的过程,以及其优缺点和应用对其做了简要的介绍,并在最后提出了一些改进的建议。希望通过本文的介绍大家可以进一步了解电喷雾电离质谱,并引起大家对电喷雾电离质谱的重视,在以后的实际运用中使其发挥更大的作用。关键字:电喷雾电离质谱质谱分析 Abstract: This paper mainly introduces the structure, principle, electrospray ionization process of ESI in ESI-MS(electrospray ionization mass spectrometry), as well as its advantages、disadvantages and application, and concludes with some suggestions for improvement。 Through this paper I hope all of you can learn more about ESI-MS, draw your attention on ESI-MS, and let ESI-MS play a greater role in the practical application。Keywords: ESI-MS Mass Spectrometry 引言:电喷雾作为一种产生气相离子的方法是由Dole 和他的合作者们于1968 年提出的, 在1973年, Dole 等人提出将电喷雾与传统质谱仪联用, 而到1984 年才被用于实验中。电喷雾质谱作为一种较新的分析手段, 它正越来越广泛地被人们所利用。自从90 年代以来, 关于电喷雾质谱发展、应用和功能方面的出版物呈指数上升。但是在日常学习生活中电喷雾质谱却鲜为人知,对于质谱部分的介绍有很多书籍可以参考, 但对于电喷雾部分,国内关于此方面系统介绍的书籍、文章却极少。因此在此做一些介绍,并针对在实际分析工作中存在的一些问题提出一些改进的意见。 ESI-MS的大概结构 电喷雾质谱主要有两部分组成, 电喷雾部分和质谱仪部分。电喷雾部分可以提供一种相对简单的方式, 使非挥发性溶液相的离子转入到气相; 而质谱仪部分则可以提供一种灵敏的、直接的检测方式。 图 1电喷雾质谱示意图

单糖衍生物的电喷雾质谱裂解规律研究

研究报告 单糖衍生物的电喷雾质谱裂解规律研究 孙学军1 孙志伟2 户宝军1 盛筱1  尤进茂 31,2 1 (曲阜师范大学化学科学学院,生命有机分析重点实验室,曲阜273165) 2 (中国科学院西北高原生物研究所,西宁810001) 摘 要 以12(22萘基)232甲基252吡唑啉酮(NM P )作单糖标识剂,经在线串联的LC 2ESI 2MS 建立了单糖衍生物的电喷雾质谱裂解方法。衍生物在质谱裂解中糖类化合物特有的规范信息。借助糖类化合物在ESI 2M S 条件下表现出的分子离子峰m /z [M +H ]+,及在ESI 2M S/M S 条件下呈现出的特征碎片离子峰m /z 473,可有效地确定出单糖类化合物的组成。尽管一些脂肪醛和芳香醛也能同时被标识,然而在质谱条件下不产生 m /z 473的特征碎片离子峰,且它们的洗脱远在糖类组分之后,因此不干扰糖类化合物的分离和结构确定。 通过建立的LC 2ESI 2MS 方法,对水解蜂花粉中的单糖进行了分析。结果表明:水解的蜂花粉中含甘露糖 (Man )、半乳糖醛酸(Gal U A )、葡萄糖醛酸(Glc UA )、鼠李糖(Rha )、葡萄糖(Glc )、半乳糖(Gal )、阿拉伯糖(A ra )、木糖(Xyl )和岩藻糖(Fuc )。本方法为环境样品中单糖类化合物的确定提供了准确、可靠的技术手段。 关键词 高效液相色谱2质谱,柱前衍生,单糖,12(22萘基)232甲基252吡唑啉酮  2007211211收稿;2008204214接受 本文系国家自然科学基金(No .20075016)资助项目3E 2mail:j m you6304@https://www.wendangku.net/doc/1a8706577.html, 1 引 言 糖广泛分布于自然界,是生物体内重要的营养物质,对调节生物体内各项生理和生物功能起着重要作用,尤其寡糖和多糖的结构特征与生理功能的关系备受关注。糖在紫外区无吸收,采用常规方法检测 较为困难。利用示差折光检测时,灵敏度低且不利于梯度洗脱[1] 。尽管糖类组分可直接用于LC 2MS 进行分析,但由于离子化效率低,直接对其分离和结构鉴定难度较大[2,3] 。糖类物质的标识多采用还原氨 化法[4,5] ,过程繁琐,耗时长,有时导致不稳定基团如唾液酸残基的解离,致使测定结果发生偏差。1989 年Honda 首次用12苯基232甲基252吡唑啉酮(P MP )对还原性单糖LC 分析[6] ,之后该方法扩展为ESI 2MS 标识分析,给出满意的分子离子峰信息[2] 。但对P MP 与还原性糖标识物的MS/MS 给出的信息不足。 邓永智等[7] 用GC 2MS 方法分析了海水小球藻中超声水解后的8种单糖。 本实验在P MP 的基础上,合成了12(22萘基)232甲基252吡唑啉酮(NMP ),并用其标记还原性单糖进行高效液相色谱2质谱分析,通过解析MS 和MS/MS 信息,就NMP 与还原性单糖的缩合反应阐述了合 理的机理。实验结果表明:NMP 标识的还原性单糖给出稳定的分子离子峰m /z [M +H ]+ 和特征碎片离子峰m /z 473.0。尽管芳香醛和脂肪醛也能同时被标识,但它们不产生特征碎片离子峰m /z 473.0,故不干扰质谱鉴定。对实际水解花粉进行单糖分析发现了9种还原性单糖。所建立的方法可望在医药、食品、生命科学等领域获得广泛应用。 2 实验部分 2.1 仪器与试剂 1100series LC /MS D Trap 高效液相色谱2质谱联用仪(Agilent 公司),配备四元梯度泵,在线真空脱 气机,100位自动进样器,DAD 检测器,电喷雾电离源(ESI Source ),离子阱(S L )。 12(22萘基)232甲基252吡唑啉酮(NMP )(自制);单糖标准品:葡萄糖(Glc )、半乳糖(Gal )、木糖(Xyl )、甘露糖(Man ),鼠李糖(Rha )(国药集团化学试剂公司);葡萄糖醛酸(Glc UA )、半乳糖醛酸 第36卷 2008年10月 分析化学(FE NX I HUAXUE ) 研究报告Chinese Journal of Analytical Che m istry 第10期 1309~1315

电喷雾电离质谱及其在蛋白质化学研究中的应用.

电喷雾电离质谱及其在蛋白质化学研究中的应用 桑志红综述杨松成审校 (国家生物医学分析中心北京100850) 摘要本文综述了电喷雾电离质谱及其在蛋白质化学研究中的应用。由于电喷雾电离质谱可产生多电荷峰,因此大大扩大了检测的分子质量范围,同时灵敏度高,另外它可与HPLC 及高效毛细管电泳分离技术联用,扩大了质谱在蛋白质化学研究中的应用。 关键词电喷雾电离;质谱;蛋白质化学 在有机化合物结构的鉴定中,质谱、核磁、红外及紫外等分析手段,从不同的侧面提供了化合物的结构信息。质谱以质量分析为基础,灵敏度高,可提供化合物的分子量、分子式(高分辨质谱)以及一些有关的结构信息。经典的有机质谱要求待测物能气化,有一定纯度,热稳定性好等条件,因此,极性高,不易气化,热不稳定以及不纯的化合物难以用经典质谱测定。近年来随着有机质谱在质谱硬件、软件、电离技术的发展,以及与各种分离方法相联(如色质联用技术)的接口的不断完善,扩大了化合物的检测范围,在分子量测定方面,已从化学小分子扩展到生物大分子,可测定的分子量达到几十万道尔顿。 质谱有多种电离方法,包括场解吸、等离子体解吸、激光解吸、快速粒子轰击、热喷雾电离和大气压电离等。每一种电离方法都有一定的分子量检测范围,一般认为热喷雾的分子量检测最大范围约8ku,快原子轰击为25ku。但是随着分子质量的增加,所有分析方法的灵敏度均有所下降。 电喷雾电离质谱(ESI-MS)由于可以产生多电荷峰,与传统的质谱相比扩大了检测的分子质量范围,同时提高了灵敏度,使一种M/Z限制在一定范围的四极质谱,就可以分析分子质量超过200ku的蛋白质[1]。另外ESI-MS方法产生一系列的多电荷峰,可以得到准确的分子量,它还可与HPLC和高效毛细管电泳(CE)分离方法相连接,扩大了质谱在生物领域的应用。 电喷雾现象的出现可以追溯到两个世纪之前,但真正把电喷雾作为一种电离方法的创新性的研究是由Dole等在大约30前开始的,他们研究的目的是用电喷雾来产生气态大离子。1984年Yamashita等把大气压电喷雾电离技术与四极质谱结合起来,同年,Alexandror把它和磁质谱结合起来。1988年Fenn研究小组报道了用ESI-MS得到了带有45个正电荷分子量为40ku的蛋白质,随后ESI-MS在生物大分子的研究领域进入了一个全新的发展阶段。到

质谱联用技术及应用

质谱联用技术及应用 摘要:色谱质谱联用是最具发展和应用前景的技术之一,克服了色谱难以获得结构信息和质谱需要预处理的缺点。本文主要讲述了气相色谱-质谱联用、液相色谱-质谱联用及质谱-质谱联用技术的优点,以及质谱联用技术在生物、医药、化工、农业等领域的应用。 关键词:气相色谱-质谱联用、液相色谱-质谱联用、质谱-质谱联用 质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。色谱-质谱联用技术是当代最重要的分离和鉴定的分析方法之一。色谱的优势在于分离,色谱的分离能力为混合物分离提供了最有效的选择,但色谱方法难以得到结构信息,其主要靠与标样对比达到对未知物结构的推定;在对复杂混合未知物的结构分析方面显得薄弱;在常规的紫外检测器上对于无紫外吸收化合物的检测和大量未知化合物的定性分析还需依赖于其他手段。质谱法能提供丰富的结构信息,用样量又是几种谱学方法中用量最少的,但其样品需经预处理(纯化、分离),程序复杂、耗时长。长期以来,人们为解决这两种技术的弱点发展了许多技术,其中色谱. 质谱联用技术是最具发展和应用前景的技术之一。目前应用较多的是气相色谱-质谱(GC-MS)联用。但是GC要求样品具有一定的蒸气压,只有20%的药品可不经过预先的化学处理而能满意地用气相色谱分离,多种情况下所研究的药物需要经过适当的预处理和衍生化,以使之成为易汽化的样品才能进行GC-MS分析。而HPLC可分离极性的、离子化的、不易挥发的高分子质量和热不稳定的化合物,同时LC-MS联机弥补了传统LC检测器的不足,具有高分离能力,高灵敏度,应用范围更广和具有极强的专属性等特点,越来越受到人们的重视。据估计已知化合物中约80%的化合物均为亲水性强、挥发性低的有机

解读ESI电喷雾质谱

解读ESI电喷雾质谱 第三页 电喷雾的产生 电喷雾 当在液体流上加上高电压,会产生液滴,这种技术被称为电喷雾。例如:HPLC流出的就是液体流。在20世纪早期这种产生液滴的方法有各种各样的应用。在电喷雾中,较大的液滴不断爆裂成更小的液滴,最后, 被分析物解离为离子进入气态。 在这里,纯粹的电喷雾指不使用雾化气。在更高的LC流速下,使用鞘气在帮助完成雾化过程。一些研究者称这种方法为“气动辅助的电喷雾”(pneumatically assisted electrospray)。

举例 在这个例子中,一个单肽离子化产生一个带电部分和一个不带电部分。分子中正电荷的数量常和分子中碱基位点的数目是相关的。在质谱的正离子采集模式下,分析物在低pH下喷出,更容易形成正离子。在质谱的负离子采集模式下,在分子等电点以上的负离子化有利于产生去质子的分子。ESI质谱的基本原则是:在质谱本身能用其电场影响分子之前,分子必须能够带电。下面的部分我们会介绍质谱中为什么会出现分子群。 注:大部分从胰蛋白酶酶解产生的肽,会有两个潜在的质子化的位点:氨基和碱性的C端残基,赖氨酸或精氨酸。 液质联用流动相的选择 1)甲醇vs乙腈 甲醇: 优点:便宜、相同的保留因子所需要的甲醇的比例大,有机相浓度大有利于离子化。 缺点:反压高,洗脱能力差。 乙腈: 优点:洗脱能力强(色谱峰窄),反压低。 缺点:价格较高。 2)有机相的比例: 一般有机相比例太低,不利于雾化,太高不利于离子化(且背景较高)。推荐使

用40%左右的有机相比例。 3)梯度vs等梯度 梯度洗脱有利于未知样品的测试,但所需要的时间较长,且信号稳定性较差。等梯度洗脱,常用于2-3个保留时间较近的化合物的测试,所需时间短(2-3min),且信号稳定。 流动相过滤 预防:所有的流动相(水相,有机相,盐溶液等),必须用0.45um的滤膜过滤;仪器不使用时,需将溶剂滤头从水相或缓冲液相中取出,并浸泡在有机溶剂中,否则会导致霉菌和微生物的生长,造成溶剂滤头堵塞。 吸滤头 材质:不锈钢烧结,陶瓷,玻璃,聚四氟等 故障:堵塞,流路不畅(水相滤头容易产生) 表现:管路中不断有气泡生成,而且容易造成流量不准,严重的话压力波动 原因:水中细菌、流动相中颗粒、空气中灰尘等 措施:用5%稀硝酸,超声波清洗,再用蒸馏水清洗,最好一个月洗一次(玻璃材质的不能超声) 对不能用在做LC-MS的流动相系统中加甲酸钠或醋酸钠。 因为无论你使用ESI还是APCI源,这样的盐类都不能挥发,结果很可能是堵住离子源后方的加热毛细管,这时问题就很严重了。 我不大清AB,Agilent的公司的质谱仪对于不挥发性的盐的耐受能力如何,但是就我们实验室的几台Finnigan公司的质谱仪情况来看,无论是离子阱质谱仪还是三重四极杆的质谱仪,都不能在流动相系统中加入不挥发性的盐类。如果实在是必须在流动相中加缓冲盐以调节峰形,我使用的唯一的缓冲盐就是可以挥发的醋酸铵,而且浓度也严格控制在10 mM以下。即便这样,晚上作完实验打开仪器的离子源也还是发现在离子源里有层白色的膜。 总之,对于LC-MS,能不用盐就尽量不要用缓冲盐了。若做的药物对于正离子响应好,一般采用甲醇-水-甲酸系统或乙腈-水-甲酸系统就完全可以搞定;若做的药物对于负离子响应好,一般采用甲醇-水-氨水系统或乙腈-水-氨水系统也完全可以搞定。 从我的经验来看,M+Na峰离子确实不稳定,对M+Na峰进行二级全扫描质谱分析,几乎不可能得到稳定的二级碎片离子。M+Na峰和M+NH4峰的情况是类似的。我做过大约30个药物的体内样品LC-MS-MS定量分析,约有10%的药物出现M+Na峰或M+NH4峰,我从来不用它们做定量分析的离子。我认为很难做好。

电喷雾质谱仪操作规程

电喷雾质谱仪操作规程 (非实验操作人员严禁操作机器,严禁改动实验参数) 1.进入操作间时请换上拖鞋,并穿上实验服。 2.打开喷雾腔,去掉橡皮帽,安装喷雾遮盖,关上喷雾腔,小心不要夹到输送氮气的塑料管。3.进入esquire Control窗口,调到standby模式。进入菜单栏Option 下vacuum system 查看真空状态,Fore: 3.0 mbar, High: 1.5 × 10 -5 mbar, 必须达到此数值以下才能操作。没有达到时,将仪器调到shutdown 模式,继续抽真空。关闭对话框。 4.Standby 模式下,调到Tune面板,参数设置如下: Nebulizer: 1.0 psi; Dry Gas: 3.0 l/min; Dry Temp: 300 °C 等到机器温度稳定地达到300 °C 时才能开始操作,操作时参数设置如下: Nebulizer: 7.0 psi; Dry Gas: 4.0 l/min; Dry Temp: 300 °C 除多肽和蛋白样品可稍做改动外,其他有机小分子勿改动参数。前面的参数为设置值,后面为实际值,如果实际值跟不上设置值的改动变化时,需要更换液氮。做样间隔时,重新将参数设置为: Nebulizer: 1.0 psi; Dry Gas: 3.0 l/min; Dry Temp: 300 °C 中午下午休息时,将机器调为shutdown 模式。 5. 缓慢用甲醇清洗注射器4到5次后,清洗仪器管线,先推两次空针再用甲醇清洗4到5次。 6.用甲醇或乙腈稀释样品,样品浓度应尽可能稀,在10 μmol/L – 100 μmol/L 数量级即可,样品必须是清澈透明的,决不允许有沉淀和漂浮物。 7.打开进样器开关。进样器的流量已设为240 μl/h,勿改动。把注射器与仪器管线连好后,安装在进样器上。 8.点击工具栏设置保存路径,Tune面板中更改Target Mass、 Scan范围、Nebulizer: 7.0 psi、Dry Gas: 4.0 l/min,Mode面板中选择离子模式,其他参数勿动。点击Operate模式,同时按下进样器右起两个按键,看到显示屏上有信号时松手,再按下run/stop键开始进样,点击工具栏保存。重新调至Standby模式,按下进样器run/stop键停止进样。如果离子强度达到107甚至更高,立即停止进样,重新稀释样品。 9. 特别注意:在做同一个样品时,如果要在Mode面板中转换离子模式,即正负离子的转换, 一定要先将机器调为Standby,再转换离子模式,切记切记!!以前我们是在Operate模式

苦参中黄酮类化合物的电喷雾质谱研究

V o l.25高等学校化学学报 N o.2 2004年2月 CH E M I CAL JOU RNAL O F CH I N ESE UN I V ERS IT IES 284~288  苦参中黄酮类化合物的电喷雾质谱研究 白 玉,郭明全,宋凤瑞,刘志强,刘淑莹 (中国科学院长春应用化学研究所,长春130022) 摘要 采用电喷雾多级串联质谱对苦参中黄酮类化合物二氢黄酮及二氢黄酮醇类化合物的特征质谱行为进行了研究.实验结果表明,两类化合物在电喷雾多级串联质谱条件下均可以在C环发生开环断裂,但断裂的位点不同;两类化合物生成的碎片离子也有很大差异,提出了由二氢黄酮醇类化合物C环上3位连接的—OH所诱发的不同反应过程的质谱碎裂机理. 关键词 电喷雾质谱;二氢黄酮;二氢黄酮醇;苦参 中图分类号 O656.2 文献标识码 A 文章编号 025120790(2004)022******* 随着研究方法和技术的不断提高,人们发现生物类黄酮有很多新的种类和生理作用[1].中药苦参是豆科槐属植物苦参(S op hora F lavaescens A it)的干燥根,含有丰富的黄酮类化合物,具有抗心率不齐等药理作用[2],特别是苦参醇A(Kusheno l A)等黄酮类化合物为磷酸二酯酶的抑制剂[3]. 质谱在对中药有效成分的简便、快速分析过程中起着越来越重要的作用.早期用于黄酮类化合物研究的质谱为电子轰击质谱(E I2M S)和快原子轰击质谱(FAB2M S).随着软电离技术的出现,电喷雾质谱以其灵敏度高、对杂质承受能力强等优点而被广泛用于天然产物的分析研究[4~7]. 本文采用电喷雾多级串联质谱(ES I2M S n)技术对苦参中的两类黄酮化合物二氢黄酮及二氢黄酮醇类化合物进行了研究,得出了它们在电喷雾条件下的一些质谱碎裂规律,为研究类似化合物在电喷雾条件下的裂解规律及建立中药有效成分的标准指纹图谱奠定了一定的理论基础. 1 实验部分 1.1 样品制备 样品按文献[8]方法由苦参中提取分离,经聚酰胺柱层析,不同梯度洗脱液洗脱获得A,B,C和D 等4部分,C部分供质谱分析用. 1.2 质谱研究 质谱研究在L CQ ES I2M S n(美国F inn igan公司)质谱仪上进行.样品通过流动注射泵引入,样品流速为3ΛL m in,喷雾电压为515kV,金属加热毛细管温度为200℃,负离子模式扫描. 2 结果与讨论 实验选择了正离子和负离子两种模式.但在正离子谱中苦参黄酮未见明显的质谱峰,而在负离子谱中则很容易出现去质子的准分子离子峰,这主要是由于苦参中的黄酮类化合物绝大多数为游离黄酮类化合物,含有多个酚羟基,不含糖苷键,易失去1个质子以[M-H]-的准分子离子峰形式存在,而很难获得1个质子而形成[M+H]+. 图1为苦参C流分的全扫描一级负离子质谱图.结合文献[8]报道的苦参总黄酮的柱层析分离方法,并比较图1中准分子离子峰的质荷比与苦参中已知黄酮类化合物的分子量,可确认C部分为苦参 收稿日期:2002211222. 基金项目:国家自然科学基金(批准号:20173057)资助. 联系人简介:刘淑莹(1943年出生),女,博士,研究员,博士生导师,从事质谱研究.E2m ial:m slab@https://www.wendangku.net/doc/1a8706577.html, 刘志强(1962年出生),男,博士,研究员,博士生导师,从事质谱研究.E2m ial:m slab@https://www.wendangku.net/doc/1a8706577.html,

电喷雾串联质谱图的叠合与多肽序列分析

ISSN 0582 9879 生物化学与生物物理学报 ACTA BIOCHIM ICA et BIOPH YS ICA S INICA 2001,33(6):665-670 CN 31 1300/Q 收稿日期:2001 05 14 接受日期:2001 06 29国家自然科学基金重大项目资助,No.39990600 *联系人:Tel,0731 *******;Fax,0731 *******;e mail, liangsp@https://www.wendangku.net/doc/1a8706577.html, 电喷雾串联质谱图的叠合与多肽序列分析 王贤纯 梁宋平* (湖南师范大学生命科学学院,长沙410081) 摘要 利用离子阱电喷雾串联质谱仪,在选择性改变某些仪器参数的条件下对模式分子M et 脑啡肽和自行固相化学合成的7肽及其修饰产物、10肽和20肽进行碎裂处理,从而获得一系列具有一定差异的串联质谱图。选择具有适当互补性的图谱进行叠合处理,得到具有连贯性 三联套 (triplet)及 二联套 (doublet )碎片离子峰的叠合串联质谱图,据此可以方便准确地解析出多肽的氨基酸序列。实验结果表明,这种方法在多肽的质谱法测序中具有一定的实用性。 关键词 串联质谱;序列测定;图谱叠合;多肽 研究未知蛋白质的结构与功能时,首先要做的工作之一是测定其氨基酸序列。随着蛋白质组学研究的开展和不断深入,以Edman 降解为基础的传统测序方法已难以适应蛋白质结构研究的微量测序要求。利用 软 电离技术的串联质谱具有测序功能,能在微量乃至超微量水平准确快速地进行蛋白质多肽的氨基酸序列分析,从而在蛋白质组学研究中成为鉴定蛋白质的关键技术之一[1~3] 。 通过串联质谱图的解析推断蛋白质多肽氨基酸序列的基本方法之一,是在串联质谱图中找到连续的 三联套 (triplet)及 二联套 (doublet)系列碎片离子峰:A n 、B n 和C n ,X n 、Y n 和Z n ,同系列中相邻成套碎片离子峰间的质量数之差即代表一个氨基酸残基 [4,5] 。然而,多肽的碎裂化学是复杂的, 常常在形成系列碎片离子峰时出现 缺口 ,从而给 串联质谱图的解析带来困难。 进行串联质谱实验时发现,适当调节某些仪器参数(如激发电压)的大小,可以得到具有一定差异的串联质谱图。这些图谱在碎片离子峰的多少和信号强弱的分布区域等方面具有一定的互补性,提示可以有选择地将它们叠合起来进行分析,从而达到易化串联质谱图的解析和提高多肽氨基酸序列推测准确性的目的。本研究首先利用M et 脑啡肽作模式分子,探讨串联质谱图的叠合与解析的一般方法,然后用同样的方法对固相化学合成多肽进行序列鉴 定,以检验该方法的实用性。 1 材料和方法(M aterials and M ethods) 1.1 材料 三氟乙酸(TFA)购自Eastman 公司;M et 脑啡肽购自Sig ma 公司;乙腈(ACN)和冰醋酸分别为国产色谱纯和分析纯试剂;7肽、10肽和20肽均为本实验室用固相法化学合成。1.2 方法 1.2.1 样品液制备 将多肽样品溶于乙腈 水 冰醋酸(50 50 0.2)溶液中,浓度约为10-5mol/L 。1.2.2 质谱分析 多肽样品的质谱分析在美国Bruker 公司生产的Esquire LC 离子阱电喷雾质谱仪上进行。正离子方式检测,离子电荷控制(ICC),碰撞气为氦气。采用注射泵直接进样,流速为200 l/h 。喷雾器压力15psi,干燥气(N 2)流速5.0L/min,干燥气(N 2)温度300 ,离子阱驱动55.0,平均数5,滚动数5,扫描范围50~2200m /z ,在上述各主要参数固定的前提下,改变激发电压等参数,获得一系列串联质谱(MS/MS)图,以轮廓谱的形式储存。 1.2.3 MS/M S 图的叠合与解析 选择谱峰互补性较好的MS/MS 图,利用Bruker DataAnalysis 软件处理得到适宜的MS/MS 叠合图;利用软件中的Find Masslist 功能列出所有谱峰的m /z 值;截去下部的背景峰,先在上部的碎片离子峰中按B n +Y m -n =(M +H )++1(m 为多肽残基总数)的规律寻找成对的B n 和Y n 峰,然后按A n 、B n 、C n

磷酸化酪氨酸的电喷雾质谱研究

https://www.wendangku.net/doc/1a8706577.html, 磷酸化酪氨酸的电喷雾质谱研究 石伟群,赵玉芬,李艳梅* 清华大学化学系生命有机磷化学及化学生物学教育部重点实验室 北京 100084 E-mail: limy@https://www.wendangku.net/doc/1a8706577.html, 摘要:酪氨酸磷酸化是一种重要的蛋白质翻译后修饰,它在细胞分化和细胞信号转导方面发挥着不可替代的作用,利用电喷雾质谱(ESI-MS)和多级质谱(ESI-MS n)是确定蛋白质磷酸化和磷酸化的位点的有效方法。本文研究了磷酸化酪氨酸负离子模式的ESI-MS和ESI-MS n,发现了磷酸化酪氨酸在气相条件下通过五配位磷的共价二聚,二聚体容易脱去两个酪氨酸分子形成还状的HP2O6-离子。 关键词: 酪氨酸, 磷酸化,电喷雾质谱 1.引言 随着近代生物化学和分子生物学的飞速发展,已经证实蛋白质可逆磷酸化几乎调节着生命活动的所有过程,尤其在细胞应答外界刺激时,蛋白质可逆磷酸化是目前所知道的最主要的信号传递方式[1-3]。1992年,Krebs和Fisher因在蛋白质可逆磷酸化研究方面的突出贡献而被授予诺贝尔生理学和医学奖。发现于十几年前的酪氨酸残基磷酸化是在细胞调节领域振奋人心的发展之一[4],它很好的证实了受体或者膜结合蛋白酪氨酸激酶(PTKs)提供了最初的信息,蛋白激酶具有使蛋白质磷酸化的作用,从而能够引导下一步酶的活性,最后导致细胞生长,增殖和分裂[5-7]。 ESI-MS采用的是一种软电离技术,主要只产生分子离子峰,因而相对于其它类型质谱,大大简化了谱图,同时多电荷离子的形成可以分析大分子量(如长肽)的化合物。ESI-MS n是鉴定化合物结构的一种十分重要的方法,它可以确认母离子和子离子之间的归属,从而提供化合物比较准确的结构信息。本文我们利用ESI-MS 和ESI-MS n发现了磷酸化酪氨酸在气相条件下通过五配位磷的共价二聚,并研究了二聚体的质谱裂解规律。

液相色谱质谱联用技术(LCMS)的各种模式探索

实验七液相色谱-质谱联用技术(LC-MS)的各种模式探索 093858 张亚辉 一、实验目的 1、了解LC-MS的主要构造和基本原理; 2、学习LC-MS的基本操作方法; 3、掌握LC-MS的六种操作模式的特点及应用。 二、实验原理 1、液质基本原理及模式介绍 液相色谱-质谱法(Liquid Chromatography/Mass Spectrometry,LC-MS)将应用范围极广的分离方法——液相色谱法与灵敏、专属、能提供分子量和结构信息的质谱法结合起来,必然成为一种重要的现代分离分析技术。 但是,LC是液相分离技术,而MS是在真空条件下工作的方法,因而难以相互匹配。LC-MS经过了约30年的发展,直至采用了大气压离子化技术(Atmospheric pressure ionization,API)之后,才发展成为可常规应用的重要分离分析方法。现在,在生物、医药、化工、农业和环境等各个领域中均得到了广泛的应用,在组合化学、蛋白质组学和代谢组学的研究工作中,LC-MS已经成为最重要研究方法之一。 质谱仪作为整套仪器中最重要的部分,其常规分析模式有全扫描模式(Scan)、选择离子监测模式(SIM)。 (一)全扫描模式方式(Scan):最常用的扫描方式之一,扫描的质量范围覆盖被测化合物的分子离子和碎片离子的质量,得到的是化合物的全谱,可以用来进行谱库检索,一般用于未知化合物的定性分析。实例:(Q1 = 100-259m/z)(二)选择离子监测模式(Selective Ion Monitoring,SIM):不是连续扫描某一质量范围,而是跳跃式地扫描某几个选定的质量,得到的不是化合物的全谱。主要用于目标化合物检测和复杂混合物中杂质的定量分析。实例:(Q1 =

相关文档
相关文档 最新文档