文档库 最新最全的文档下载
当前位置:文档库 › 最新-2018年中考数学代数式的变形与代数式的求值 精品

最新-2018年中考数学代数式的变形与代数式的求值 精品

最新-2018年中考数学代数式的变形与代数式的求值 精品
最新-2018年中考数学代数式的变形与代数式的求值 精品

热点1 代数式的变形与代数式的求值

(时间:100分钟分数:100分)

一、填空题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)

1.在x,1

3

2

3

xy

1

2

x+

1

2

y,xy-2,

a

π

中,单项式有()

A.2个 B.3个 C.4个 D.5个

2.x的5倍与y的差等于()

A.5x-y B.5(x-y) C.x-5y D.x5-y

3.用正方形在日历中任意框出的四个数一定能被()整除

A.3 B.4 C.5 D.6

4.现规定一种运算:a*b=ab+a-b,其中a、b为常数,则2*3+1*4等于()

A.10 B.6 C.14 D.12

5.已知一个凸四边形ABCD的四条边长依次是a、b、c、d,且a2+ab-ac-bc=?0,?b2+bc-bd-cd=0,那么四边形ABCD是()

A.平行四边形 B.矩形 C.菱形 D.梯形

6.若m2x2-2x+n2是一个完全平方式,则mn的值为()

A.1 B.2 C.±1 D.±2

7.某商店有两个进价不同的计算器都卖了64元,其中一个赢利60%,?另一个亏本20%,在这次买卖中这家商店()

A.赔38元 B.赚了32元 D.不赔不赚 D.赚了8元

8.要使

2

2

9

69

m

m m

-

-+

的值为0,则m的值为()

A.m=3 B.m=-3 C.m=±3 D.不存在

9.已知

2

3

x+

+

2

3x

-

+

2

218

9

x

x

+

-

的值为正整数,则整数x的值为()

A.4 B.5 C.4或5 D.无限个

10.已知有理数a、b满足ab=1,则M=

1

1a

+

+

1

1b

+

,N=

1

a

a

+

+

1

b

b

+

的大小关系是()

A.M>N B.M=N C.M

二、填空题(本大题共8小题,每小题3分,共24分)

11.如果a、b、c为互不相等的实数,且满足关系式b2+c2=2a2+16a+14,bc=a2-4a-5,?那么a的取值范围是______.

12.若单项式-2a2m-1b2与ab n-3的和仍是单项式,则m+n________.

13.x a=4,x b=3,则x a-2b=________.

14.已知a ≠o .

15.已知x+5y=6,则x 2+5xy+30y=_________.

16.已知:

(x-1)(x+1)=x 2-1,

(x-1)(x 2+x+1)=x 3-1,

(x-1)(x 3+x 2+x+1)=x 4-1,

……

根据以上规律试写出下题结果:

(x-1)(x n +x n-1+x n-2+…+x+1)=________.

17.某商店原价a 元,因需求量大,经营者两次提价,每次提价10%;?后经市场物价调整,

又一次降价20%,降价后这种商品的价格是__________元.

18.观察图2-1,若第1个图形中的阴影部分的面积为1,第2?个图形中的阴影部分面积为34,第3个图形中的阴影部分面积为916

,第4个图形中阴影部分的面积为2764,…,?则第n 个图形的阴影部分的面积为_________.

三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分,解答题应写在文字说明、证明过程或演算步骤)

19.利用简便方法计算:

(1)20018-2001×1999. (2)9992.

20.化简:

(1)

22x x +-+2444x x -+÷2x x -; (2

21.已知1

x

-x=2,求x2+

2

1

x

的值.

22.分解因式:

(1)3(a-b)2+6(b-a);(2)(x+1)(x+2)+1

4

23.某地电话拨号入网有两种收费方式,用户可任选其一:(A)计时制,0.18元/分;(B)包月制,50元/月(只限一部宅电上网).?此外,?每种上网方式都得加收通讯费0.18元/分.

(1)某用户平均每月上网x小时,请你帮他计算一下应该选择哪种收费方式合算.(2)若x=20时,则你帮他选用的收费方式应缴多少钱?

24.小刚做了一道数学题:两个多项式A、B,其中B为4x2-5x-6,试求A+B.?他误将“A+B”看作“A-B”,结果求得的答案是10x-7x2+12,由此你能求出A+B的正确答案吗?

25.扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时小明准确地说出了中间一堆牌现有的张数,请你用所学的知识确定中间牌的张数.

答案:

一、选择题

1.C 2.A 3.B 4.B 5.A 6.C 7.D 8.B 9.C 10.B

二、填空题

11.a ≥-1 12.6 13.

49 14.│a+1a

│ 15.36 16.x n+1-1 17.0.968a 18.(34)n-1 三、解答题

19.解:(1)原式=2 0018-(2 000+1)(2 000-1)=2 0018-2 0018+1=1.

(2)原式=(1 000-1)2=1 0018+1-2 000=998 001.

20.解:(1)22242x x x x

++-.(2)1. 21.解:由

1x -x=2知(1x

-x )2=4, 故21x +x 2-2=4.所以21x +x 2=6. 22.解:(1)原式=3(a-b )(a-b-2).

(2)原式=x 2+3x+94=(x+32

)2. 23.解:(1)选用(A )方式应缴费(0.18+0.18)×60x=4.2x ;

选用(B )方式应缴费为500+0.18×60x=50+1.2x .

当4.2x<50+1.2x ,即x<

503时选用(A )方式便宜; 当x>503

时,选用(B )方式合算; 当x=503

时选用(A )(B )两种方式一样. (2)由于20>503

,所以选择(B )方式合算,费用为50+1.2×20=74元. 24.解:A+B=A-B+2B=10x-7x 2+12+2(4x 2-5x-6)=x 2.

25.解:设第一步分发的左、中、右三堆牌的张数均为x 张;?则第二步左边一堆有(x-2)

张,中间一堆(x+2)张,右边仍是x 张;第三步左边有(x-2)张,中间有(?x+3)张,右边为(x-1)张,第四步中间有[x+3-(x-2)]张,即5张牌.

代数式恒等变形及答案

代数式恒等变形 A 卷 1、若3265122-+ -+=+--x b x a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M 是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C 解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴?? ???-=--=++-=1 236051b a M b a M M ,解得:??? ??=-==831 b a M 提示:利用待定系数法解决问题。 2、(2002年重庆市初中竞赛题)若012192=+- x x ,则=+441 x x ( ) A 、411 B 、16121 C 、1689 D 、4 27 答案:C 解答:∵0≠x ∴2191= + x x ,411 122=+x x ∴16892112 2244 =-??? ? ?+=+x x x x 提示:本题的关键是利用2112 22 -??? ? ?+=+x x x x 进行化简。 3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( ) A 、2 B 、4 C 、6 D 、8 答案:D 解答:∵143=-x x ∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x 提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。

初中奥数恒等变形知识点及习题2019

初中奥数恒等变形知识点及习题2019 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个. 反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r 例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立

设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6 再设x=2,代入①,因为已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得出

“代数式求值的常用方法”专题辅导

代数式求值的常用方法 代数式求值问题是历年中考试题中一种极为常见的题型,它除了按常规代入求值外,还要根据其形式多样,思路多变的特点,灵活运用恰当的方法和技巧.本文结合2006年各地市的中考试题,介绍几种常用的求值方法,以供参考. 一、化简代入法 化简代入法是指把字母的取值表达式或所求的代数式进行化简,然后再代入求值. 例1先化简,再求值: () 11b a b b a a b ++ ++,其中a =,b =. 解:由a = ,b =得,1a b ab +==. ∴原式()()22()()()()ab a a b b a b a b ab a b ab a b ab a b ab a b ab +++=++===++++. 二、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 通过整体代入,实现降次、归零、约分,快速求得其值. 例2已知114a b -=,则2227a ab b a b ab ---+的值等于( ). A .6 B .-6 C .215 D .2 7 - 解:由114a b -=得, 4b a ab -=,即4a b ab -=-. ∴ ()()2242662272787a b ab a ab b ab ab ab a b ab a b ab ab ab ab -------= ===-+-+-+-.故选A. 例3若 1233215,7x y z x y z ++=++=,则111 x y z ++= . 解:把 1235x y z ++=与3217x y z ++=两式相加得,444 12x y z ++=, 即111412x y z ??++= ??? ,化简得,111 3x y z ++=.故填3. 三、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的

人教版数学七年级上册第二章 整式的加减 代数式求值专项练习

代数式求值 一、选择题. 1、若a=36,b=?29,c=?116,则?a+b?c的值为(D ) A. 181 B. 123 C. 99 D. 51 2、若x是2的相反数,|y|=3,则x?y的值是(D) A. ?5 B. 1 C. ?5或1 D. 1或?5 3、已知|x|=2,|y|=3,且xy>0,则x?y的值等于(B) A. 5或?5 B. 1或?1 C. 5或1 D. ?5或?1 4、已知|x|=4,|y|=1 2,且x

初中奥数恒等变形知识点归纳整理.pdf

初中奥数恒等变形知识点归纳整理 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数 值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种 形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立 设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6

再设x=2,代入①,因为已得c=6,故有 22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得 由②得b=5 将b=5代入③得 1-5+c=2 c=6 ∴x2+3x+2=(x-1)2+5(x-1)+6 这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.

初中代数式求值练习题

代数式求值 合并同类项 化简求值 1、当x=2时,求代数式-3x 2+5x-0.5x 2+x-1的值 2、当p=3,q=3时,求代数式8p 2-7q+6q-7p 2-7的值。 3、当x=-5时,求代数式6x+2x 2-3x+2x+1的值 4、当x=2,y=-3时,求代数式4x 2+3xy-x 2-9的值 5、当m=6,n=2时,求代数式31m-23n-65n-61 m 的值 6、当m=5,p=31,q=-23 时,求代数 式3pq-5 4 m-4pq 的值 7、当x=-2时,求代数式 9x+6x 2-3(x-3 2 x 2)的值 8、当x=2 1 时,求代数式 41(-4x 2+2x-8)-(21 x-1)的值 9、当a=-1,b=1时,求代数式 (5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)的值 10、当a=-2,b=2时,求代数式 2(a 2b+ab 2)-2(a 2b-1)-2ab 2-2的值

11、当x=- 2 1 ,y=-1时,求代数式2x 2y+1的值 12、当x=-2时,求代数 式x+x 1 的值 13、当x=-1,y=-2时,求代数式2xy+3x 2y-6xy-4x 2y 的值 14、当m=5,p=31,q=-2 3 时,求代数式 3pq-54 m-4pq+m 的值 15、当m 2-mn=1,4mn-3n 2=-2时,求代数式m 2+3mn-3n 2的值 16、当x=-1,y=-2时,求代数式3-2xy+3yx 2+6xy-4x 2y 的值 17、当x 2-xy=3a,xy-y 2=-2a 时,求代数式x 2-y 2的值 18、当x=2004,y=-1时,求代数式 A=x 2-xy+y 2,B=-x 2+2xy+y 2 ,A+B 的值 19、当a=5时,求代数式(6a+2a 2+1)-(a 2-3a)的值

1—1代数式的恒等变换方法与技巧

1—1 代数式的恒等变换方法与技巧 一、代数式恒等的一般概念 定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。字母的所有允许值组成的集合称为这个代数式的定义域。对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。 定义2 如果两个代数式A 、B ,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B 。 两个代数式恒等的概念是相对的。同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但 x =,在x≥0时成立,但在x<0时不成立。因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。 定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。 代数式的变形,可能引起定义域的变化。如lgx 2的定义域是(,0)(0,)-∞+∞U ,2lgx 的定义域是 (0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx 2=2lgx 。由lgx 2变形为2lgx 时, 定义域缩小了;反之,由2lgx 变形为lgx 2时,定义域扩大了。这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。 例1:设p x =有实根的充要条件,并求出所有实根。 由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。这样可避免增根和遣根的出现。 解: 原方程等价于222(0,0 x p x x x ?-=-??-≥≥?? 2 22222 (4)4448(2)441330440,0p x x p p x x x x p x ?-=??=+--?????≤≤?≤ ???? ≥??+-≤≥?? ? 222(4)8(2) 44,043p x p p x x ?-=??-??-?≤≤≥?? 由上式知,原方程有实根,当且仅当p 满足条件24(4)44 048(2)33 p p p p --≤≤?≤≤- 这说明原方程有实根的充要条件是4 03p ≤≤ 。这时,原方程有惟一实根x =。 二、恒等变换的方法与技巧 恒等变换的目的是使问题变得简单,便于求解。因此,式的恒等变换是根据需要进行的,根据不同问题的特点,有其不同的规律性。 1.分类变换 当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。分类变换方法适用于式的化简与方程(组)的化简、求解。

代数式的恒等变形

代数式的恒等变形 一、常值代换求值法——“1”的妙用 例1 、 已知ab=1,求2 211 11b a +++的值 [解] 把ab=1代入,得 22 11 11b a +++ =22 b ab ab a ab ab +++ =b a a b a b ++ + =1 例2 、已知xyzt=1,求下面代数式的值: 分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变. 解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同. 同理 练习:1 111,1=++++++++=c ca c b b c b a ab a abc 证明:若 二、配方法 例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b + 之值。 [解] ∵a2b2+a2+b2-4ab+1 =(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴?? ?==-.1,0ab b a 解得?? ?==;1,1b a ?? ?-=-=.1,1b a 当a=1,b=1时,b a a b + =1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 例1 设a 、b 、 c 、 d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数 的平方和,其形式是______. 解mn=(a2+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2

代数式求值的常用方法1

代数式求值的常用方法 代数式求值问题是历年中考试题中一种极为常见的题型,它除了按常规代入求值外,还要根据其形式多样,思路多变的特点,灵活运用恰当的方法和技巧.本文结合2006年各地市的中考试题,介绍几种常用的求值方法,以供参考. 一、化简代入法 化简代入法是指把字母的取值表达式或所求的代数式进行化简,然后再代入求值. 例1先化简,再求值: () 11b a b b a a b ++ ++,其中512a +=,51 2b -=. 解:由512a += ,51 2 b -=得,5,1a b ab +==. ∴原式()()22()()5()()ab a a b b a b a b ab a b ab a b ab a b ab a b ab +++=++===++++. 二、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 通过整体代入,实现降次、归零、约分,快速求得其值. 例2已知 114a b -=,则2227a ab b a b ab ---+的值等于( ). A .6 B .-6 C .215 D .2 7 - 解:由114a b -=得, 4b a ab -=,即4a b ab -=-. ∴()()2242662272787a b ab a ab b ab ab ab a b ab a b ab ab ab ab -------====-+-+-+-.故选A. 例3若 1233215,7x y z x y z ++=++=,则111 x y z ++= . 解:把 1235x y z ++=与3217x y z ++=两式相加得,444 12x y z ++=, 即111412x y z ??++= ??? ,化简得,111 3x y z ++=.故填3. 三、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的值的一种方法.这是一种开放型题目,答案不唯一,在赋值时,要注意取值范围. 例4先化简2332 11 x x x +---,然后选择一个你最喜欢的x 的值,代入求值. 解:原式()()()312321 111111 x x x x x x x += -=-= +-----.

整式恒等变形

第8讲整式恒等变形 模块一恒等变形→降幂迭代与换元 基础夯实 题型一降幂迭代法与大除法 【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________. 【练1】(1990年第一届希望杯初二第一试) 已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.

题型二 整体代入消元法 【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值. 【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值. 题型三 换元法 强化挑战 【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2. 【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()() ()()()222111111yz zx xy x y z ++++++的值. 模块二 恒等变形→因式分解与不定方程 题型一 因式分解 基础夯实 【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________. (2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________. 【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________. (2)已知15x 2-47xy +28y 2=0,求x y 的值. 强化挑战 【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c . 【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .

代数式求值方法

点击代数式求值方法 运用已知条件,求代数式的值是数学学习的重要内容之 一。它除了按常规代入求值法,还要根据题目的特点,灵活运用恰当的方法和技巧,才能达到预期的目的。下面举数例介绍常用的几种方法和技巧。 一、常值代换求值法 常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算或化简,求得代数式的值。 例1 已知ab=1,求221111b a +++的值 [解] 把ab=1代入,得 2 21111b a +++ =22b ab ab a ab ab +++ = b a a b a b +++ =1 [评注] 将待求的代数式中的常数1,用a ·b 代入是解决该问题的技巧。而运用分式的基本性质及运用法则,对代入后所得的代数式进行化简是解决该问题的保证。 二、运用“非负数的性质”求值法 该法是指运用“若几个非负数的和为零,则每一个非负数应为零”来确定代数式中的字母的值,从而达到求代数式的值

的一种方法。 例 2 若实数a 、b 满足a 2b 2+a 2+b 2-4ab+1=0,求 b a a b +之值。 [解] ∵a 2b 2+a 2+b 2-4ab+1 =(a 2b 2-2ab+1)(a 2-2ab+b 2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴???==-. 1,0ab b a 解得???==;1,1b a ? ??-=-=.1,1b a 当a=1,b=1时,b a a b +=1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 [评注] 根据已知条件提供的有价信息,对其进行恰当的分组分解,达到变形为几个非负数的和为零,这一新的“式结构”是解决本题的有效策略,解决本题要注意分类讨论的方法的运用。 三、整体代入求值法 整体代入法是将已条件不作任何变换变形,把它作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法。 例3 若x 2+x+1=0,试求x 4+2003x 2+2002x+2004的值。

代数式求值经典题型(含详细答案)

代数式求值 经典题型 【编著】黄勇权 经典题型: 1、x+x 1 =3,求代数式 x 2 -2 x 1的值。 2、已知a+b=3ab ,求代数式b 1 a 1+的值。 3、已知 x 2 -5x+1=0,求代数式x 1x +的值。 4、已知x-y=3,求代数式(x+1) 2 -2x+y (y-2x )的值。 5、已知x-y=2,xy=3,求代数式x 2 -xy 6+y 2的值。 6、已知y x =2,则x y -x 的值是多少?

7、若2y 1x 1=+,求代数式:3y xy -3x y 3xy -x ++的值。 8、已知5-x =4y-4-y 2,则代数式2x-3+4y 的值 是多少? 9、化简求值,12x x 1-x 2 ++÷)(1x 2 1+-, 其中x=13- 10、x 2-4x+1=0,求代数式:x 2 +2 x 1 的值。 【答案】 1、x+x 1 =3,求代数式:x 2 -2 x 1的值。 解:x 2 -2 x 1 =(x+x 1)(x-x 1 ) =(x+x 1 )2x 1-x )( =(x+x 1 )2 2x 12x +- =(x+x 1)4x 12x 2 2 -++ =(x+x 1)4x 1x 2 -+)( 将 x+x 1 =3 代入式中

=3×432- =35 2、已知a+b=3ab ,求代数式:b 1 a 1+的值。 解:b 1 a 1+ =ab b a + 将a+b=3ab 代入式中 =3 3、已知x 2 -5x+1=0,求代数式:x 1 x +的值。 解:因x 2 -5x+1=0, 等式两边同时除以x 则有:x 0 x 1x x 5x x 2=+- 化简得:x-5+x 1 =0 把-5移到等号的右边,得: x 1 x +=5

2代数式恒等变形

代数式的恒等变形 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫做代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,代数式的基本变形有配方、因式分解、换元、设参、拆项与逐步合并等方法。下面结合例题介绍恒等式证明中的一些常用方法与技巧. 一.设参数法 如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.如果题中的已知条件是以连比形式出现,可引入参数k ,用它表示连比的比值,以便把它们分割成几个等式. 例1.已知x y z a b b c c a == ---,求x+y+z 的值。 例2.已知 ()() 23a b b c c a a b b c c a +++==---,a ,b ,c 互不相等, 求证:8a+9b+5c=0. 二.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例3.已知x+y+z=xyz ,证明: x(1-y 2)(1-z 2)+y(1-x 2)(1-z 2)+z(1-x 2)(1-y 2)=4xyz .

分式的恒等变形(一)

分式的恒等变形(一) (1)已知2202010a a -+=,则代数式2220202403911a a a -+++的值是__________。 【答案】由已知可得12020a a + =,原式()212202012120202019a a a a =-+++=-++= (2)已知2410a a ++=,则代数式42321912192a a a a a ++++的值是__________。 【答案】由已知可得14a a +=-,22114a a +=,原式22119333211219a a a a + +===++ (3)已知4x y +=-,12xy =-,则1111 y x x y +++++的值是__________。 【答案】由已知可得2240x y +=,原式()()()()()()22 11402423411412115y x x y ++++?-+===-++-+-+ (4)已知4ab x a b = +,则2222x a x b x a x b +++--的值是__________。 【答案】由已知可得()4ab a b x =+, 原式()()()()()()()()() 222222222228222224x a x b x b x a x a b x x ab x a x b x a b x ab x a b x +-++--+-====---++-+ (5)已知612ab a b bc b c ?=??-??=?-?,则ac a c -的值是_________。 【答案】取倒数后两式相加得 14a c ac -=,所以4ac a c =- (6)解方程: ()()()()()111333669218 x x x x x x x ++=++++++ 【答案】裂项相消,111339218x x x ??-= ?++??,解得2x =

代数式求值的十种常用方法

代数式求值的十种常用方法 一、利用非负数的性质 若已知条件是几个非负数的和的形式,则可利用“若几个非负数的和为零,则每个非负数都应为零”来确定字母的值,再代入求值。目前,经常出现的非负数有,,等。 例1、若和互为相反数,则 =_______。 解:由题意知,,则且,解得 ,。因为,所以,故填37。 二、化简代入法 化简代入法是指先把所求的代数式进行化简,然后再代入求值,这是代数式求值中最常见、最基本的方法。 例2、先化简,再求值:,其中 ,。 解:原式。 当,时, 原式。 三、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到待求的代数式中去求值的一种方法。

通过整体代入,实现降次、归零、约分的目的,以便快速求得其值。 例3、已知,则=_______。 解:由,即。 所以原式 。 故填1。 四、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的值的一种方法。这是一种开放型题目,答案不唯一,在赋值时,要注意取值范围。 例4、请将式子化简后,再从0,1,2三个数中选择一个你喜欢且使原式有意义的x的值代入求值。 解:原式 。 依题意,只要就行,当时,原式或当时,原式。 五、倒数法 倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法。 例5、若的值为,则的值为

A. 1 B. –1 C. D. 解:由,取倒数得, ,即。 所以 , 则可得,故选A。 六、参数法 若已知条件以比值的形式出现,则可利用比例的性质设比值为一个参数,或利用一个字母来表示另一个字母。 例6、如果,则的值是 A. B. 1 C. D. 解:由得,。 所以原式 。

初中代数式求值练习题(供参考)

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 1文档来源为:从网络收集整理.word 版本可编辑. 代数式求值 合并同类项 化简求值 1、当x=2时,求代数式-3x 2+5x-0.5x 2+x-1的值 2、当p=3,q=3时,求代数式8p 2-7q+6q-7p 2-7的值。 3、当x=-5时,求代数式6x+2x 2-3x+2x+1的值 4、当x=2,y=-3时,求代数式4x 2+3xy-x 2-9的值 5、当m=6,n=2时,求代数式31m-23n-65n-6 1 m 的值 6、当m=5,p=31,q=-23 时,求代数 式3pq-5 4 m-4pq 的值 7、当x=-2时,求代数式 9x+6x 2-3(x-32 x 2)的值 8、当x=2 1 时,求代数式 41(-4x 2+2x-8)-(2 1 x-1)的值 9、当a=-1,b=1时,求代数式 (5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)的值 10、当a=-2,b=2时,求代数式 2(a 2b+ab 2)-2(a 2b-1)-2ab 2-2的值 11、当x=-2 1 ,y=-1时,求代 数式2x 2y+1的值 12、当x=-2时,求代数 式x+x 1 的值 13、当x=-1,y=-2时,求代数式2xy+3x 2y-6xy-4x 2y 的值 14、当m=5,p=31,q=-2 3 时,求代数式 3pq-5 4 m-4pq+m 的值 15、当m 2-mn=1,4mn-3n 2=-2时,求代数式m 2+3mn-3n 2的值 16、当x=-1,y=-2时,求代数式3-2xy+3yx 2+6xy-4x 2y 的值 17、当x 2-xy=3a,xy-y 2=-2a 时,求代数式x 2-y 2的值 18、当x=2004,y=-1时,求代数式A=x 2-xy+y 2,B=-x 2+2xy+y 2,A+B 的值 19、当a=5时,求代数式(6a+2a 2+1)-(a 2-3a)的值 20、当x=-2时,求代数式 9x+6x 2-3(x-3 2 x 2)的值 21、当x=5时,求代数式21(2x 2-6x-4)-4(-1+x+4 1 x 2)的值 22、当x=21 ,时,求代数式 (2x 2-x-1)-(x 2-x-31)+(3x 2-33 1 )的值 23、当x 2+xy=2,y 2 +xy=5时,求代数式x 2+2xy+y 2的值 24、当a-b=4,c+d=-6时,求代数式(b+c)-(a-d)的值 25、当a=2 1 ,b=1时,求代数式a 2+3ab-b 2的值 26、当a=71,b=3 14 时,求代数式 4(b+1)+4(1-a)-4(a+b)的值 27、当a=6,b=3时,求代数式 4 2 b ab 的值 28、当a=-2,b= 3 2时,求代数式 21a-2(a-31b 2)-(2 3a-31 b 2)的值 29、当a=,时,求代数式1-(2a-1)-3(a+1)的值 30、当(x+2)2+|y+1|=0时,求代数式5xy 2-[2x 2y-(2x 2y-xy 2)]的值

200道代数式的恒等变形练习题

代数式的恒等变形 1.已知x 2+y 2+z 2-2x+4y-6z+14=O ,则(x-y-z)2009= 2.设x ,y 满足(x-1)3+2004y=1002,(y-1)3+2004x=3006,则x+y= . 3.分解因式:1)()(22++-+b a b a ab = 6.已知m 、n 为整数,且满足2m 2 + n 2 +3m + n - 1 = 0. 则m + n= 9.在△ABC 中,BC=a ,AC=b ,AB=c ,且满足a 4+b 4+21 c 4=a 2c 2+b 2c 2.则△ABC 的形状是 . 10.若ax+by=7,ax 2+by 2=49,ax 3+by 3=133,ax 4+by 4=406,则()()17 199562x y xy a b ++-+= . 11.已知非零实数a 、b 、c 满足a 2+b 2+c 2=1,111111 ()()()3+++++=-a b c b c a c a b , 则a+b+c= . 12.若x ,y 是实数,且m=x 2-4xy+6y 2-4x-4y ,则m 的最小值为 .

13.已知17b a -=,2124a a +=,则b a a - 14.已知a ,b ,c 都是整数,且24a b -=, 210ab c +-=,求a b c ++= 15.实数x 、y 、z 满足:2+=y x ,012222=++z xy ,求x y z ++= 16. a 、b 、c 为三角形的三条边长,满足 ac 2+b 2c-b 3 =abc .若三角形的一个内角为100°,则三角形的另两个角之差的正弦等于 17.若a 、b 、C 为实数,222,1,3a b c a b c a b c >>++=++=,则b c +的取值范围是 18.已知xyz=1,x+y+z=2,x 2+y 2+z 2=16.则111222xy z yz x zx y ++=+++ 19.已知x 、y 为正整数,且满足2x 2+3y 2=4x 2y 2+1.则x 2+y 2= 20.已知y x z z y x x z y y x z z y x x z y -+-+=-+-+=++-+=p .则p 3+p 2+p= . 21.若正数m ,n 满足 43,+=m n = . 22.已知a+b=8,ab=c 2 +16,则a+2b+3c= . 23.已知x 、y 满足22524x y x y ++=+,则代数式xy x y +的值为 . 24.若2x y -=,224x y +=,则20042004x y +的值是 。

代数式求值的几种方法

代数式求值的几种方法-CAL-FENGHAI.-(YICAI)-Company One1

2 代数式求值的几种方法 代数式的求值问题,是初中代数基础知识与基本技能的重要内容。求代数式的值应对所给定的代数式加以具体情况具体分析,针对题设条件与所求代数式的本质特点及内在联系,灵活选用适当方法与技巧,方能使求解过程简捷、科学、合理。 一、公式法 例1 :已知a + b = 1 ,a 2 + b 2 = 2 求a 6 +b 6 的值 分析:本题若根据已知条件先求出a 、b 的值,然后代入所求式中计算,虽不失为一种思考途径,但求出的a 、b 的值均为复杂的无理数,而所求代数式中的a 、b 又均为高次幂,从而使运算非常复杂。若借助乘法公式先将所求代数式化为“a + b ”与“ab ”的结构形式,则问题的解答将简便得多。 解:由a + b = 1,有(a + b )2 =1 ,即1222=++b ab a 又a 2 + b 2 =2 ,∴a b = -2 1 ()()()()( )[]()()871 12141222121232322222223 443442266=???? ??--????????? ???-???? ??+?=+--++-+=--++=+∴b a ab b a b a b ab a b a b a b a b a b a b a

3 另外考虑a 7 + b 7 的值的求法 二、参数法 例2:若542c b a == ,求c b a c b a +--+2的值 分析:本题题设给出a 、b 、c 的三个连比式,若引入一个参数,则所求代数式的分子、分母均由三元转化为一元,从而通过化简而求解。 解:设k c b a === 5 42 ,由题意k ≠0,则a = 2k ,b = 4k ,c =5k 所以c b a c b a +--+2 = 133542544==+--+k k k k k k k k 三、倒数法 例3:已知 71 2=+-x x x ,求 1242++x x x 的值 分析:由已知式与所求式之间的结构及各自分子、分母的幂次数特点出发,本题使用“倒数法”较为简便。 解:由已知取倒数,则7112=+-x x x ,即7 81=+x x 再由未知式取倒数: 4915178111112 222224=-?? ? ??=-??? ??+=++=++x x x x x x x 所以1242++x x x = 1549 四、消元法

初一上册数学代数式求值试题

初一上册数学代数式求值试题 一、选择题( 共 12 小题 ) 1.已知m=1, n=0,则代数式m+n的值为() A. ﹣ 1 B.1 C. ﹣ 2 D.2 【考点】代数式求值 . 【分析】把m、 n 的值代入代数式进行计算即可得解. 【解答】解:当m=1, n=0时, m+n=1+0=1. 故选 B. 【点评】本题考查了代数式求值,把m、n 的值代入即可,比较 简单 . 2.已知x2﹣ 2x﹣ 8=0,则 3x2﹣ 6x﹣18 的值为 () A.54 B.6 C. ﹣ 10 D.﹣ 18 【考点】代数式求值 . 【专题】计算题. 【分析】所求式子前两项提取 3 变形后,将已知等式变形后代入 计算即可求出值 . 【解答】解:∵x2﹣ 2x﹣ 8=0,即 x2﹣2x=8,

∴ 3x2﹣ 6x﹣ 18=3(x2 ﹣ 2x)﹣ 18=24﹣ 18=6. 故选 B. 【点评】此题考查了代数式求值,利用了整体代入的思想,是一 道基本题型. 3.已知 a2+2a=1,则代数式 2a2+4a﹣ 1 的值为 () A.0B.1C. ﹣ 1D.﹣ 2 【考点】代数式求值 . 【专题】计算题. 【分析】原式前两项提取变形后,将已知等式代入计算即可求出 值. 【解答】解:∵a2+2a=1, ∴原式 =2(a2+2a) ﹣ 1=2﹣ 1=1, 故选 B 【点评】此题考查了代数式求值,利用了整体代入的思想,熟练 掌握运算法则是解本题的关键 . 4.在数学活动课上,同学们利用如图的程序进行计算,发现无论 x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的 是 () A.4, 2, 1 B.2, 1, 4 C.1, 4, 2 D.2, 4, 1

代数式的恒等变换

代数式的恒等变换方法与技巧 例:设p x =有实根的充要条件,并求出所有实根。 由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。这样可避免增根和遣根的出现。 解: 原方程等价于222(0,0 x p x x x ?-=-??-≥≥?? 2 22222(4)4448(2)441330440,0p x x p p x x x x p x ?-=??=+--?????≤≤?≤????≥??+-≤≥??? 222(4)8(2)44,043p x p p x x ?-=??-??-?≤≤≥?? 由上式知,原方程有实根,当且仅当p 满足条件 24(4)44048(2)33 p p p p --≤≤?≤≤- 这说明原方程有实根的充要条件是403p ≤≤ 。 这时,原方程有惟一实根x =。 一、分类变换 当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。分类变换方法适用于式的化简与方程(组)的化简、求解。 例1:当x 取什么样的实数值时,下列等式成立: (a =; (b 1=; (c 2=。 解: (0)m m =≥ 记方程左边为f(x), 则()f x =

1 |1|1|1 1 2 x x ≥ == ≤≤ 由此可知, 当m=时,原方程的解集为 1 [,1] 2 ; 当m∈时,解集为?; 当) m∈+∞ m =,解得2 1 (2) 4 x m =+。 即当) m∈+∞时,原方程的解集为2 1 {(2)} 4 m+。 例2:在复数范围内解方程组222 555 3, 3, 3. x y z x y z x y z ++= ? ? ++= ? ?++= ? 解:考虑数列* , n n n n a x y z n =++∈N。不难证明此数列满足递推式321 ()() n n n n a x y z a xy yz zx a xyza +++ =++-+++,其中 125 3,3 a a a ===。 利用基本恒等式,得2 12 1 ()3 2 xy yz zx a a ++=-=, 3123 11 [()] 33 xyz a a a xy yz zx a =--++=, ∴{} n a的递推式化为* 3213 1 33, 3 n n n n a a a a a n +++ =-+?∈N 由此得 432313543323 11 3349,331027 33 a a a a a a a a a a a a =-+?=---+?=- 由 5 3 a=,得 3 10273 a-=,∴ 3 3 a=。∴ 3 1 1 3 xyz a ==。 综上所述知,原方程组等价于 3, 3, 1. x y z xy yz zx xyz ++= ? ? ++= ? ?= ? 由韦达定理知,x,y,z是关于t的三次方程33 3310 t t t -+-=的三根, 此三次方程即3 123 (1)0,1 t t t t -=∴===, 这说明原方程组在复数范围内的解集为{(1,1,1)}。 注:此题还可以利用三次单位根 1 2 ω=-+的性质来解。 二、利用对称性 对称式一定是轮换式,但轮换式不一定是对称式。例如,x2y+y2z+z2x是轮换 式,但不是对称式。由轮换的特点,在解题中,为方便起见,可指定变元中x 1最大(或最小)。

相关文档
相关文档 最新文档