文档库 最新最全的文档下载
当前位置:文档库 › 计数原理概率随机变量及其分布列

计数原理概率随机变量及其分布列

计数原理概率随机变量及其分布列
计数原理概率随机变量及其分布列

第十章计数原理、概率、随机变量及其分布列

第一节分类加法计数原理与分步乘法

计数原理

考纲要求:1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.

[基础真题体验]

考查角度[计数原理]

1.(2012·北京高考)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()

A.24B.18C.12D.6

【解析】当选0时,先从1,3,5中选2个数字有C23种方法,然后从选中的2个数字中选1个排在末位有C12种方法,剩余1个数字排在首位,共有C23C12=6(种)方法;当选2时,先从1,3,5中选2个数字有C23种方法,然后从选中的2个数字中选1个排在末位有C12种方法,其余2个数字全排列,共有C23C12A22=12(种)方法.依分类加法计数原理知共有6+12=18(个)奇数.

【答案】 B

2.(2014·福建高考)用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取,“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()

A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5

B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5

C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)

D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)

【解析】 由题意可知:5个无区别的红球取出若干球可表示为1+a +a 2+a 3+a 4+a 5;5个无区别的蓝球都取出或都不取出可表示为1+b 5;5个有区别的黑球取出若干球可表示为(1+c )(1+c )(1+c )(1+c )(1+c )=(1+c )5.由乘法原理可得所有取法可表示为(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5.故选A.

【答案】 A

[命题规律预测]

考向一 分类加法计数原理

[典例剖析]

【例1】 (1)椭圆x 2m +y 2

n =1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.

(2)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位老师不能在本班监考,则监考的方法有( )

A .8种

B .9种

C .10种

D .11种 【思路点拨】 (1)以m 的值为标准分类,分5类分别求解. (2)以其中一位老师所监的班级不同分类,也可画树状图.

【解析】(1)第1类:m=1时,使n>m,n有6种选择;

第2类:m=2时,使n>m,n有5种选择;

第3类:m=3时,使n>m,n有4种选择;

第4类:m=4时,使n>m,n有3种选择;

第5类:m=5时,使n>m,n有2种选择.

由分类加法计数原理,符合条件的椭圆共有20个.

(2)法一设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法.同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).

法二班级按a、b、c、d的顺序依次排列,为避免重复或遗漏现象,教师的监考顺序可用“树形图”表示如下:

BA—D—CD—A—CC—D—A CA—D—BD—B—AD—A—B DA—B—CC—B—AC—A—B

∴共有9种不同的监考方法.

【答案】(1)20(2)B

1.分类加法计数原理的特点

(1)根据问题的特点能确定一个适合于它的分类标准.

(2)完成这件事的任何一种方法必须属于某一类.

2.使用分类加法计数原理遵循的原则

有时分类的划分标准有多个,但不论是以哪一个为标准都应遵循“标准要明确,不重不漏”的原则.

[对点练习]

在所有的两位数中,个位数字大于十位数字的两位数共有()

A.50个B.45个C.36个D.35个

【解析】根据题意,十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.

由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).

【答案】 C

考向二分步乘法计数原理

[典例剖析]

【例2】(1)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有()

A.10种 B.25种C.52种 D.24种

(2)4张卡片的正、反面分别写有0与1,2与3,4与5,6与7,将其中3张卡片排放在一起,可组成多少个不同的三位数?

【思路点拨】(1)分四步,每一步有2种不同走法,结合乘法原理求解.

(2)分三个步骤完成,注意首位数字不能为0.

【解析】(1)从一层到五层共走四段楼梯,而每段楼梯都有2种不同的走法,由分步乘法计数原理可得,共有2×2×2×2=24种不同走法.

【答案】 D

(2)分三个步骤:

第一步:百位有8-1=7种放法;

第二步:十位有6种放法;

第三步:个位有4种放法.

根据分步乘法计数原理,可以组成7×6×4=168(个)数.

1.分步乘法计数原理的实质

分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.

2.使用分步乘法计数原理的关注点

(1)明确题目中的“完成这件事”是什么,确定完成这件事需要几个步骤,且每步都是独立的.

(2)将完成这件事划分成几个步骤来完成,各步骤之间有一定的连续性,只有当所有步骤都完成了,整个事件才算完成,这是分步的基础,也是关键.从计数上来看,各步的方法数的积就是完成事件的方法总数.

[对点练习]

一景区的参观路线如图10-1-1,若要全部参观该景区并路线不重复,则不同的参观路线共有________条.

图10-1-1

【解析】由于该景区共有6条不同的路,且要求全部参观该景区并路线不重复,故共有6×4×2

=48条不同的参观路线.

【答案】48

考向三两个计数原理的综合应用

[典例剖析]

【例3】如图10-1-2所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.

图10-1-2

【思路点拨】染色问题是常见的计数应用问题,可从选颜色、选顶点进行分类、分步,从不同角度解决问题.

解法一可分为两大步进行:先将四棱锥一侧面三顶点染色;然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论.由题设,四棱锥S-ABCD的顶点S,A,B所染的颜色互不相同,它们共有5×4×3=60种染色方法.

当S,A,B染好时,不妨设其颜色分别为1,2,3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.可见,当S,A,B 已染好时,C,D还有7种染法,故不同的染色方法有60×7=420种.

法二:以S,A,B,C,D顺序分步染色:

第一步,S点染色,有5种方法;

第二步,A点染色,与S在同一条棱上,有4种方法;

第三步,B点染色,与S,A分别在同一条棱上,有3种方法;

第四步,C点染色,也有3种方法,但考虑到D点与S,A,C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S,B也不同色,所以C点有2种染色方法,D点也有2种染色方法.

由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420种.

法三:按所用颜色种数分类:

第一类,5种颜色全用,共有A55种不同的方法;

第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;

第三类,只用3种颜色,则A与C,B与D必定同色,共有A35种不同的方法.

由分类加法计数原理,得不同的染色方法共有A55+2×A45+A35=420种.

(1)解决涂色问题,一定要分清所给的颜色是否用完,并选择恰当的涂色顺序.

(2)切实选择好分类标准,分清哪些可以同色,哪些不同色.

[对点练习]

(2014·烟台模拟)如图10-1-3所示,一个地区分为5个行政区域,现给该地区的地图涂色,要求相邻区域不得使用同一种颜色,现有4种颜色可供选择,则涂色方法共有________种.

图10-1-3

【解析】因为区域1与其他4个区域都相邻,首先考虑区域1,有4种涂法,然后再按区域2,4同色和不同色,分为两类:

第1类,区域2,4同色,有3种涂法,此时区域3,5均有2种涂法,共有4×3×2×2=48种涂法;

第2类,区域2,4不同色,先涂区域2,有3种方法,再涂区域4,有2种方法,此时区域3,5都只有1种涂法,共有4×3×2×1×1=24种涂法.

根据分类加法计数原理,共有48+24=72种满足条件的涂色方法.

【答案】72

思想方法20 分类讨论思想在计数原理中的应用

分类加法计数原理体现了分类讨论思想在计数原理中的应用.解决此类问题的关键是确定分类标准,做到不重复、不遗漏.

[典例剖析]

【典例】设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()

A.50种B.49种C.48种D.47种

【解析】根据题意,B中最小的数大于A中最大的数,则集合A,B中没有相同的元素,且都不

是空集,按A中元素分情况讨论,分别计算其选法种数,进而相加即可.

第1 类,当A中最大的数是1时,A是{1},B可以是{2,3,4,5}的非空子集,即有24-1=15种选法;

第2类,当A中最大的数是2时,A可以是{2}或{1,2},B可以是{3,4,5}的非空子集,即有2×(23-1)=14种选法;

第3类,当A中最大的数是3时,A可以是{3},{1,3},{2,3},{1,2,3},B可以是{4,5}的非空子集,即有4×(22-1)=12种选法;

第4类,当A中最大的数是4时,A可以是{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},B是{5},即有8×1=8种选法.

综上可知,共有15+14+12+8=49种不同的选择方法.

【答案】 B

[对点练习]

如图10-1-4所示,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.

图10-1-4

【解析】区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C 与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×4+5×4×3×3=260种涂色方法.【答案】260

课堂达标训练

1.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是() A.2 160B.720C.240D.120

【解析】分步来完成此事.第1张有10种分法;第2张有9种分法;第3张有8种分法,共有10×9×8=720种分法.

【答案】 B

2.(2014·汕头模拟)如图10-1-5所示,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为()

图10-1-5

A.400 B.460

C.480 D.496

【解析】从A开始,有6种方法,B有5种,C有4种,D,A同色1种,D,A不同色3种,则有6×5×4×(1+3)=480种不同涂法.

【答案】 C

3.已知集合M∈{1,-2,3},N∈{-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是()

A.18 B.10 C.16 D.14

【解析】M中的元素作点的横坐标,N中的元素作点的纵坐标,在第一象限的点共有2×2个,在第二象限的点共有1×2个.N中的元素作点的横坐标,M中的元素作点的纵坐标,在第一象限的点共有2×2个,在第二象限的点共有2×2个.故所求不同的点的个数是2×2+1×2+2×2+2×2=14(个).

4.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个(用数字作答). 【解析】 法一 用2,3组成四位数共有2×2×2×2=16(个),其中不出现2或不出现3的共2个,因此满足条件的四位数共有16-2=14(个).

法二 满足条件的四位数可分为三类:第一类含有一个2,三个3,共有4个;第二类含有三个2,

一个3共有4个;第三类含有二个2,二个3共有C 24=6(个),因此满足条件的四位数共有2×4+C 2

4=14(个).

【答案】 14

课时提升练(五十五) 分类加法计数原理与分步乘法计数原理

一、选择题

1.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )

A .56

B .65 C.5×6×5×4×3×2

2

D.6×5×4×3×2

【解析】 由分步乘法计数原理得5×5×5×5×5×5=56. 【答案】 A

2.三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又被踢回给甲,则不同的传递方式共有( )

A .6种

B .8种

C .10种

D .16种

【解析】 如下图,甲第一次传给乙时有5种方法,同理,甲传给丙也可以推出5种情况,综上有10种传法.

3.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B、C、D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3、5、6、8、9中选择,其他号码只想在1、3、6、9中选择,则他的车牌号码可选的所有可能情况有()

A.180种 B.360种

C.720种 D.960种

【解析】按照车主的要求,从左到右第一个号码有5种选法,第二位号码有3种选法,其余三位号码各有4种选法.

因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).

【答案】 D

4.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有() A.60种 B.63种C.65种 D.66种

【解析】先找出和为偶数的各种情况,再利用分类加法计数原理求解.满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C45=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C25·C24=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的取法共有5+60+1=66(种).【答案】 D

5.(2013·四川高考)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a -lg b的不同值的个数是()

A.9 B.10 C.18 D.20

【解析】从1,3,5,7,9这五个数中每次取出两个不同数的排列个数为A25=20,但lg 1-lg 3=lg 3-lg 9,lg 3-lg 1=lg 9-lg 3,所以不同值的个数为20-2=18,故选C.

【答案】 C

6.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P?Q.把满足上述条件的一对有序

整数对(x,y)作为一个点的坐标,则这样的点的个数是()

A.9 B.14 C.15 D.21

【解析】∵P={x,1},Q={y,1,2},且P?Q,∴x∈{y,1,2}.

∴当x=2时,y=3,4,5,6,7,8,9,共有7种情况;

当x=y时,x=3,4,5,6,7,8,9,共有7种情况.

共有7+7=14种情况.即这样的点的个数为14.

【答案】 B

7.(2014·济南模拟)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()

A.40 B.16 C.13 D.10

【解析】分两类情况讨论:

第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;

第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.

根据分类加法计数原理知,共可以确定8+5=13个不同的平面.

【答案】 C

8.(2014·杭州模拟)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()

A.60 B.48 C.36 D.24

【解析】长方体的6个表面构成的“平行线面组”个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.

【答案】 B

9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()

A.20种 B.30种C.40种 D.60种

【解析】分三类:甲在周一,共有A24种排法;

甲在周二,共有A23种排法;甲在周三,共有A22种排法;

∴A24+A23+A22=20.

【答案】 A

10.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()

A.240 B.204 C.729 D.920

【解析】若a2=2,则“凸数”为120与121,共1×2=2个,若a2=3,则“凸数”共2×3=6个,若a2=4,满足条件的“凸数”有3×4=12个,…,若a2=9,满足条件的“凸数”有8×9=72个.∴所有凸数有2+6+12+20+30+42+56+72=240(个).

【答案】 A

11.已知a,b∈{0,1,2,…,9},若满足|a-b|≤1,则称a,b“心有灵犀”,则a,b“心有灵犀”的情形的种数为()

A.9 B.16 C.20 D.28

【解析】当a为0时,b只能取0,1两个数;当a为9时,b只能取8,9两个数;当a为其他数时,b都可以取3个数.故共有28种情形.

【答案】 D

12.用0,1,2,3,4,5六个数字组成无重复数字的四位数,若把每位数字比其左邻的数字小的数叫做“渐降数”,则上述四位数中“渐降数”的个数为()

A.14 B.15 C.16 D.17

【解析】由题意知,只需找出组成“渐降数”的四个数字即可,等价于从六个数字中去掉两个数字.

从前向后先取0,有0与1,0与2,0与3,0与4,0与5,共5种情况;

再取1,有1与2,1与3,1与4,1与5,共4种情况;

依次向后分别有3,2,1种情况.

根据分类加法计数原理,满足条件的“渐降数”共有1+2+3+4+5=15个.

【答案】 B

二、填空题

13.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}中的元素,又点P到原点的距离|OP|≥5.则这样的点P的个数为________.

【解析】依题意可知:

当a=1时,b=5,6两种情况;

当a=2时,b=5,6两种情况;

当a=3时,b=4,5,6三种情况;

当a=4时,b=3,5,6三种情况;

当a=5或6,b各有5种情况.

所以共有2+2+3+3+5+5=20种情况.

【答案】20

14.(2014·沈阳模拟)一生产过程有四道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有________种.

【解析】按甲先分类,再分步.

①若甲在第一道工序,则第四道工序只能是丙,其余两道工序的按排方法有4×3=12种;

②若乙在第一道工序,则第四道工序从甲、丙两人中选一人,有2种方法,其余两道工序有4×3

=12种方法,所以共有12×2=24种方法.

综上可知,共有的安排方法有12+24=36种.

【答案】36

15.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数有________种.

【解析】分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.

故共有7×8×9=504种不同的插法.

【答案】504

图10-1-6

16.如图10-1-6所示,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数有________种.

【解析】可依次种A、B、C、D四块,当C与A种同一种花时,有4×3×1×3=36(种)种法;当C与A所种花不同时,有4×3×2×2=48(种)种法,由分类加法计数原理,不同的种法总数为36+48=84.

【答案】84

第二节排列与组合

考纲要求:1.理解排列、组合的概念.2.能利用计数原理推导排列数公式、组合数公式.3.能解决简单的实际问题.

[基础真题体验]

考查角度[排列问题]

1.(2012·课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()

A.12种B.10种C.9种D.8种

【解析】分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C12=2(种)选派方法;

第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6(种)选派方法.由分步乘法计数原理得不同的选派方案共有2×6=12(种).

【答案】 A

2.(2014·重庆高考)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()

A.72 B.120

C.144 D.168

【解析】先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法,故共有36+36+48=120(种)安排方法.

【答案】 B

3.(2014·北京高考)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.

【解析】将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有A22A44种方法,将产品A,B,C捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有A22A33种方法.于是符合题意的排法共有A22A44-A22A33=36(种).

【答案】36

考查角度[组合问题]

4.(2014·大纲全国卷)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()

A.60种 B.70种C.75种 D.150种

【解析】由题意知,选2名男医生、1名女医生的方法有C26C15=75(种).

【答案】 C

[命题规律预测]

考向一排列应用题

[典例剖析]

【例1】六人按下列要求站一排,分别有多少种不同的站法?

(1)甲不站两端;

(2)甲、乙必须相邻;

(3)甲、乙不相邻;

(4)甲、乙之间恰间隔两人;

(5)甲、乙站在两端;

(6)甲不站左端,乙不站右端.

【思路点拨】在与不在问题用直接法或间接法;相邻问题用捆绑法;不相邻问题用插空法.【解】(1)法一:要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A14种站法,然后其余5人在另外5个位置上作全排列,有A55种站法,根据分步乘法计数原理,共有站法A14·A55=480种.法二:若对甲没有限制条件共有A66种站法,甲在两端共有2A55种站法,从总数中减去这两种情况的排列数即得所求的站法数为A66-2A55=480种.

(2)法一:先把甲、乙作为一个“整体”,看作一个人,有A55种站法,再把甲、乙进行全排列,有A22种站法,根据分步乘法计数原理,共有A55·A22=240种站法.

法二:先把甲、乙以外的4个人作全排列,有A44种站法,再在5个空当中选出一个供甲、乙放入,有A15种方法,最后让甲、乙作全排列,有A22种方法,共有A44·A15·A22=240种站法.

(3)法一:(直接法)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有A44种站法;第二步再将甲、乙排在4人形成的5个空当(含两端)中,有A25种方法,故共有站法A44·A25=480种.

法二:(间接法)6个人全排列有A66种站法,由(2)知甲、乙相邻有A55·A22=240种站法,所以不相邻的站法有A66-A55·A22=720-240=480种.

(4)法一:先让甲、乙以外的4个人作全排列,有A44种方法,然后将甲、乙按条件插入站队,有3A22种站法,故共有A44·(3A22)=144种站法.

法二:先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有A24种,然后把甲、乙及中间2人看作一个“大”元素与余下2人作全排列有A33种方法,最后对甲、乙进行排列,有A22种方法,故共有A24·A33·A22=144种站法.

(5)首先考虑特殊元素,甲、乙先站两端,有A22种方法,再让其他4人在中间位置作全排列,有A44种方法,根据分步乘法计数原理,共有A22·A44=48种站法.

(6)法一:甲在左端的站法有A55种,乙在右端的站法有A55种,且甲在左端而乙在右端的站法有A44种,共有A66-2A55+A44=504种站法.

法二:以元素甲分类可分为两类:第一类,甲站右端有A55种站法;第二类,甲在中间4个位置之一,而乙不在右端有A14·A14·A44种站法.故共有A55+A14·A14·A44=504种站法.

求解排列问题的主要方法:

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

随机变量及其分布小结与复习

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

随机变量及分布列习题

随机变量及分布列 1.已知随机变量() 20,X N σ~,若(2)P X a <=,则(2)P X >的值为( ) A. 12a - B. 2 a C. 1a - D. 12a + 2.已知随机变量 ,若 ,则的值为( ) A. 0.4 B. 0.2 C. 0.1 D. 0.6 3.已知 ,,则的值为( ) A. 10 B. 7 C. 3 D. 6 4.集装箱有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球 号码之积是4的倍数,则获奖.若有4人参与摸奖,恰好有3人获奖的概率是( ) A. B. C. D. 5.甲袋中放有大小和形状相同的小球若干,其中标号为0的小球为1个,标号为1的小球2个,标号为2 的小球2个.从袋中任取两个球,已知其中一个的标号是1,则另一个标号也是1的概率为__________. 6.设随机变量服从正态分布, ,则__________. 7.某人通过普通话二级测试的概率是,他连线测试3次,那么其中恰有1次通过的概率是( ) A. B. C. D. 8.从1,2,3,4,5,6,7中任取两个不同的数,事件为“取到的两个数的和为偶数”,事件为“取到的两个 数均为奇数”,则( ) A. B. C. D. 9.班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机 抽取一个容量为8的样本进行分析. (Ⅰ)如果按性别比例分层抽样,求样本中男生、女生人数分别是多少; (Ⅱ)随机抽取8位同学,数学成绩由低到高依次为:6065707580859095,,,,,,,; 物理成绩由低到高依次为:7277808488909395,,,,,,,,若规定90分(含90分)以上为优秀,记ξ为这8位同学中数学和物理分数均为优秀的人数,求ξ的分布列和数学期望.

随机变量及其分布函数

随机变量及其分布函数 将随机事件以数量来标识,即用随机变量描述随机现象的研究方法,它是定义在样本空间上具有某种可预测性的实值函数。 分布函数则完整的表述了随机变量。 一、 随机变量与分布函数 (1) 随机变量: 取值依赖于某个随机试验的结果(样本空间),并随着试验结果不同而变化的变量,称之为随机变量。 分布函数: [1] 定义: 设X 是一个随机变量,对任意实数x ,记作 (){}F x P X x ≤=,称()F x 为随机变量X 的分 布函数,又称随机变量X 服从分布()F x ,显然,函数 ()F x 的定义域为(),-∞+∞,值域为[0,1]。 [2] 性质: ?()F x 单调非降。 ?()0F -∞=、()1F +∞=。 ?()(0)F x F x =+,即()F x 一定是右连续的。 ?对于任意两个实数a b <, {}()()P a X b F b F a <≤=- ?对于任意实数0x ,

00 0{}()()P X x F x F x ==-- ?000{}1{}1()P X x P X x F x >=-≤=- ?000{}{)lim }(x x P X x P X x x F →- =≤<=- ?000{}1{}1()P X x P X x F x ≥=-<=-- 二、 离散型随机变量与连续型随机变量 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布律,表格表示形式如下: [2] 性质: ?0i p ≥ ? 1 1n i i p ==∑ ?分布函数()i i x x F x p ==∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有:

第二章__随机变量及其概率分布_考试模拟题答案范文

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case In the following,X and Y are discrete random variables. 1.Joint distribution(joint p.m.f.): ?De?nition:f(x,y)=P(X=x,Y=y) ?Properties:(1)f(x,y)≥0,(2) x,y f(x,y)=1 ?Representation:The most natural representation of a joint discrete distribution is as a distribution matrix,with rows and columns indexed by x and y,and the xy-entry being f(x,y).This is analogous to the representation of ordinary discrete distributions as a single-row table.As in the one-dimensional case,the entries in a distribution matrix must be nonnegative and add up to1. 2.Marginal distributions:The distributions of X and Y,when considered separately. ?De?nition: ?f X(x)=P(X=x)= y f(x,y) ?f Y(y)=P(Y=y)= x f(x,y) ?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y) can be obtained from the distribution matrix as the row sums and column sums of the entries.These sums can be entered in the“margins”of the matrix as an additional column and row. ?Expectation and variance:μX,μY,σ2 X ,σ2 Y denote the(ordinary)expectations and variances of X and Y,computed as usual:μX= x xf X(x),etc. https://www.wendangku.net/doc/119195469.html,putations with joint distributions: ?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))= (x,y)∈R f(x,y). ?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))= x,y u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)= x,y xf(x,y). 4.Covariance and correlation: ?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance of X and Y),ρ=ρ(X,Y)=Cov(X,Y) σXσY (Correlation of X and Y) ?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1 ?Relation to variance:Var(X)=Cov(X,X) ?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).) 1

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

随机变量及其概率分布

第二章 随机变量及其概率分布 【内容提要】 一、随机变量及其分布函数 设()X X ω=是定义于随机试验E 的样本空间Ω上的实值函数,且x R ?∈, {}()X x ωω≤是随 机事件,则称()X X ω=为随机变量,而称()()()F x P X x ω=≤为其概率分布函数。 随机变量()X X ω=的概率分布函数()()()F x P X x ω=≤具有如下性质: ⑴.非负性: x R ?∈,有0()1F x ≤≤; ⑵.规范性: ()0,()1F F -∞=+∞=; ⑶.单调性: 若12x x ≤,则12()()F x F x ≤; ⑷.右连续性: x R ?∈,有(0)()F x F x +=。 二、离散型随机变量 1.离散型随机变量及其概率分布律 若随机变量()X X ω=只取一些离散值12n x x x -∞<<=其中而。 三、连续型随机变量

随机变量及其分布列.几类典型的随机分布

随机变量及其分布列.几类典型的随机分布 1. 离散型随机变量及其分布列 ⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y 表示. 如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列 将离散型随机变量X 所有可能的取值i x 与该取值对应的概率i p (1,2,,)i n =列表表示: X X 的分布列. 2.几类典型的随机分布 ⑴两点分布 如果随机变量X 其中01p <<,1q p =-X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. 两点分布又称01-以这种分布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件 ()n N ≤, 这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为 C C ()C m n m M N M n N P X m --==(0m l ≤≤,l 为n 和M 中较小的一个). 我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参

数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列. ⑶二项分布 1.独立重复试验 如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为 ()C (1)k k n k n n P k p p -=-(0,1,2,,)k n =. 2.二项分布 若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立 重复试验中,事件A 恰好发生k 次的概率是()C k k n k n P X k p q -==,其中0,1,2,,k n =.于是得到X 的分布列 由式 00111 0()C C C C n n n k k n k n n n n n n q p p q p q p q p q --+=++++ 各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . 二项分布的均值与方差: 若离散型随机变量X 服从参数为n 和p 的二项分布,则 ()E X np =,()D x npq =(1)q p =-. ⑷正态分布 1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时, 直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为 X 的概率密度曲线. 曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布 ⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从 正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为 22 ()2()x f x μσ--= ,x ∈R ,其中μ,σ是参数,且0σ>, μ-∞<<+∞. 式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.

随机变量及其分布公式

随机变量及其分布 一,离散型随机变量 1,试验:凡是对现象的观察或为此而进行的实验,都称之为试验。 2,随机试验:一个试验如果满足(1)试验可以在相同的情形下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果,那么,这个试验就叫做随机试验。 3,随机变量:随着试验结果变化而变化的变量称为随机变量,随机变量常用字母ηξ,,,Y X 表示。例如抛筛子、掷硬币 4,离散型随机变量:如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量 二,离散型随机变量的分布列 要掌握一个离散型随机变量X 的取值规律,必须知道: 1,X 所有可能取的值n x x x ,,,21 ; 2,X 取每一个值i x 的概率n p p p ,,,21 分布列 : 我们称这个表为离散型随机变量X 的概率分布,或称为离散型随机变量X 的分布列。 3,离散型随机变量的分布列性质: (1)*,0N i p i ∈≥;(2)1321=++++n p p p p 三,两点分布与超几何分布 1,两点分布 若随机变量X 的分布列为 则称X 的分布列为两点分布列。 如果随机变量X 的分布列为 两点分布列,就称X 服从两点分布,并称)1(==x P p 为成功概率 2,超几何分布: 一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}k X =发生的概率为 n N k n M N k M C C C k x P --==)((m k ,2,1,0=),其中{}*,,,,,,m in N N M n N M N n n M m ∈≤≤=且,称 为超几何分布列,如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布 四,独立重复试验与二项分布 1,独立重复试验:一般的,在相同条件下重复做的n 次试验称为n 次独立重复试验。 2,独立重复试验事件A 恰有k 次发生的概率: 一般的,如果在1次实验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率 =)(k P n k n k k n p p C --)1(,(n k ,2,1,0=)

第二章随机变量及其函数的概率分布

第二章 随机变量及其函数的概率分布 §2.1 随机变量与分布函数 §2.2 离散型随机变量及其概率分布 一、 填空题 1. 某射手每次命中目标的概率为0.8,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,) 2.0()8.0(33=-k C k k k ; 2. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 0.0902 ; 3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ?? ? ??≥<≤-<=1 ,110 ,10 ,0)(x x p x x F ; 4. 已知随机变量X 的概率分布:P(X =1)=0.2, P(X =2)=0.3, P(X =3)=0.5, 则其分布 函数)(x F = 0 10.2 120.5 231 3x x x x =λ==则且,0),,2,1()(b k b k X P k 为(B ) (A) λ>0的任意实数; (B) ;11+=b λ (C) λ=b +1; (D) 1 1 -=b λ. 三、 计算下列各题 1. 袋中有10个球,分别编号为1~10,从中任取5个球,令X 表示取出5个球的最大号码,试求X 的分布列。 解 X 的可能取值为5,6,7,8,9,10 且10,9,8,7,6,5 ,)(5 10 41 ===-k C C k X P k 所以X 的分布列为

概率论与数理统计随机变量及其分布问题

随机变量及其分布问题 1、假设随机变量X 的绝对值不大于1,1(1),8P X =-= 1 (1).4 P X ==在事件(11)X -<<出现的条件下,X 在(1,1)-内的任一子区间上取值的条件概率与该子区间的长度成正比。试求X 的分布函数()()F x P X x =≤ 解:当1x <-时,()0F x =。 当1x =-时,()()(1)(1)F x P X x P X P x x =≤=≤-+-<≤ 1 (1)8 P X x = +-<≤ 而 5(11)1(1)(1)8 P X P X P X -<<=-=--==, 因此 (1)(1,11)P X x P X x X -<≤=-<≤-<< (11)(111)P X P X x X =-<<-<<-<< 5155 8216 x x ++=?= , 于是,得 5155 ()8216 x x F x ++=?= 当1x ≥-时,()1F x =。 故所求分布函数为 0, 1 55(), 11161, 1 x x F x x x <-??+? =-≤≤??≥?? 评述 分由函数可以完整地描述任何类型随机变量的取值规律,这里的随机变量包括离散 型、连续型和混合型在类。 2、一汽车沿一街道行驶,需要通过三个均设有红绿号灯的路口,每个路口的信号灯为红或绿与其他路口的信号灯为红或绿相互独立,且红、绿两 种信号显示的时间相等。以X 表示该汽车遇到红灯前已通过的路口的个数,求X 的概率分布。 解 设i A =“汽车在第i 个路口首次遇到红灯”(i =1,2,3)。依题意,1A ,2A ,3A 相互独立。X 的可能取值是0,1,2,3。于是,得X 的概率分布为 11 (0)(),2 P X P A ===

随机变量的概率分布

随机变量的概率分布 一、填空题 1.某射手射击所得环数X 的概率分布为 解析 P (X >7)=P (X =8)+P (X =9)+P (X =10)=0.28+0.29+0.22=0.79. 答案 0.79 2.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于________. 解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1, 得P (X =0)=1 3. 答案 1 3 3.(优质试题·常州期末)设X 是一个离散型随机变量,其概率分布为: 则q 的值为________解析 由概率分布的性质知??? ?? 2-3q ≥0, q 2 ≥0, 13+2-3q +q 2 =1, 解得q =32-33 6. 答案 32-33 6 4.设离散型随机变量X 的概率分布为

解析由概率分布的性质,知 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 由Y=2,即|X-2|=2,得X=4或X=0, ∴P(Y=2)=P(X=4或X=0) =P(X=4)+P(X=0) =0.3+0.2=0.5. 答案0.5 5.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则“放回5个红球”事件可以表示为________. 解析“放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 答案ξ=6 6.(优质试题·南通调研)从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是________. 解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布 问题,故所求概率为P=C23C14 C37= 12 35. 答案12 35 7.已知随机变量X只能取三个值x1,x2,x3,其概率依次成等差数列,则公差d 的取值范围是________. 解析设X取x1,x2,x3时的概率分辊为a-b,a,a+d,则(a-d)+a+(a

概率、随机变量及分布列(一)

概率、随机变量及分布列(一) 一.知识回顾: 1.随机事件的概率 (1)随机事件的概率范围:0≤P (A )≤1;必然事件的概率为____;不可能事件的概率为___. (2)古典概型的概率:P (A )=_________. (3)几何概型的概率:P (A )=__________. 2.离散型随机变量的分布列:设离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表 为离散型随机变量(1)①p i ______0,i =1,2,…,n ;②∑n i =1p i =_____ (2)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的____________. 3.离散型随机变量的数字特征: (1)E (X )=__________________________为X 的均值或数学期望(简称期望). (2)D (X )=____________________________________叫做随机变量X 的方差. 性质 : ①E (aX +b )=aE (X )+b ,②D (aX +b )=a 2D (X ); 4.特殊分布 (1)二点分布:如果随机变量X 的分布列为 其中0

自考概率论与数理统计多维随机变量及其概率分布

第三章多维随机变量及其概率分布 内容介绍 本章讨论多维随机变量的问题,重点讨论二维随机变量及其概率分布。 考点分析 内容讲解 §3.1多维随机变量的概念 1. 维随机变量的概念: 个随机变量,,…,构成的整体=(,,…,)称为一个维随机变量, 称为的第个分量(). 2.二维随机变量分布函数的概念: 设(,)为一个二维随机变量,记 ,,, 称二元函数为二维随机变量(,)的联合分布函数,或称为(,)的分布函数. 记函数= =, 则称函数和为二维随机变量(,)的两个分量和的边缘分布函数. 3. 二维随机变量分布函数的性质: (1)是变量(或)的不减函数;

(2)01,对任意给定的,;对任意给定的,; ,; (3)关于和关于均右连续,即. (4)对任意给定的,有 . 例题1. P62 【例3-1】判断二元函数是不是某二维随机变量的分布函数。【答疑编号12030101】

解:我们取, = 1-1-1+0=-1<0,不满足第4条性质,所以不是。 4.二维离散型随机变量 (1)定义:若二维随机变量(X,Y)只取有限多对或可列无穷多对(),(=1,2,…),则称(X,Y)为二维离散型随机变量. (2)分布律: ① 设二维随机变量(X,Y)的所有可能取值为(),(=1,2,…),(X,Y)的各个可能取值的概率为 ,(=1,2,…), 称,(=1,2,…)为(X,Y)的分布律. (X,Y)的分布律还可以写成如下列表形式

②(X,Y)分布律的性质 [1] ,(=1,2,…); [2] 例题2. P62 【例3-2】设(X,Y)的分布律为 求a的值。 【答疑编号12030102】 解:

随机变量及其概率分布、超几何分布

随机变量及其概率分布、超几何分布 沙市五中高三数学组 一、填空题(每小题6分,共48分) 1.设X 则q的值为________ 2.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X,则X的所有可能取值个数为________. 3.已知随机变量ξ的分布列为P(ξ=k)=a 2k ,k=1,2,3,4.则P(2<ξ≤4) =________. 5.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,若P(X=k)=C4 7 C6 8 C10 15 ,则k=________. 6

7.某电子管正品率为34,次品率为1 4 ,现对该批电子管有放回地进行测试, 设第ξ次首次测到正品,则P (ξ=3)=______. 8.如图所示,A 、B 两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P (ξ≥8)=_______. 二、解答题(共42分) 9.(12分)袋中有同样的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量ξ为此时已摸球的次数,求随机变量ξ的概率分布. 10.(14分)设离散型随机变量ξ的分布列P ? ? ???ξ=k 5=ak ,k =1,2,3,4,5. (1)求常数a 的值;(2)求P ? ? ???ξ≥35; (3)求P ? ????1 10 <ξ<710. 11.(16分)某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验,设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品. (1)用ξ表示抽检的6件产品中二等品的件数,求ξ的概率分布; (2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率.

相关文档
相关文档 最新文档