文档库 最新最全的文档下载
当前位置:文档库 › 任意项级数

任意项级数

任意项级数
任意项级数

7.3 任意项级数的绝对收敛与条件收敛-习题

1.判别下列级数的敛散性,若收敛,是条件收敛还是绝对收敛? ⑴ 1 1 (1)n n ∞ -=-∑; 【解】级数 1 1 (1)n n ∞ -=-∑属于交错级数, 它满足关系1n n u u += >=(1,2,3,n =L )且lim 0n n n u →∞==, 即由莱布尼兹定理知,级数 1 1 (1)n n ∞ -=-∑收敛, 但 1 1 (1) n n ∞ -=- ∑1n ∞ ==是112p =<的P 级数,发散, 综上知,级数 1 (1)n n ∞ -=-∑条件收敛。 ⑵ 1 11 (1) 3 n n n n ∞ --=-∑; 【解】级数 1 1 1(1)3n n n n ∞ --=-∑属于交错级数, 由于 1 11 (1) 3n n n n ∞ --=-∑1 13n n n ∞ -==∑, 因为111113lim lim lim 1333 n n n n n n n n u n n u n +→∞→∞→∞-++==<, 由正项级数的比值判别法知,级数 11 3n n n ∞ -=∑收敛, 综上知,级数 1 1 1 (1)3n n n n ∞ --=-∑绝对收敛。 ⑶ 1 1 ln (1)n n n n ∞ -=-∑; 【解】级数 1 1 ln (1)n n n n ∞ -=-∑属于交错级数,

由于函数ln x y x =有2 1ln '0x y x -=>当x e >时恒成立, 知ln x y x = 当x e >时为增函数, 从而满足关系1n n u u +>(3,4,5,n =L )且1 ln lim lim lim 01 n n n n n n u n →∞→∞→∞===, 即由莱布尼兹定理知,级数 1 1 ln (1) n n n n ∞ -=-∑收敛, 但由于 1 1 ln (1) n n n n ∞ -=-∑1ln n n n ∞==∑11n n ∞=>∑,而11 n n ∞ =∑为调和级数,发散, 综上知级数 1 1 ln (1) n n n n ∞ -=-∑条件收敛。 ⑷ 1 1 1 (1)ln(1) n n n ∞ -=-+∑; 【解】级数 1 1 1 (1)ln(1) n n n ∞ -=-+∑属于交错级数, 它满足关系111 ln(1)ln(2) n n u u n n += >=++(1,2,3,n =L ) 且1 lim lim 0ln(1) n n n u n →∞ →∞==+, 即由莱布尼兹定理知,级数 1 1 1 (1)ln(1) n n n ∞ -=-+∑收敛, 但由于1lim n n n u u +→∞1 ln(1) lim 11n n n →∞+=+1lim ln(1)n n n →∞+=+1lim 1 1 n n →∞=+lim(1)n n →∞=+=∞, 且级数111n n ∞ =+∑21 n n ∞ ==∑为调和级数,发散, 即由比较判别法的极限形式知,级数 1 1 ln(1)n n ∞ =+∑发散, 综上知,级数 1 1 1 (1)ln(1) n n n ∞ -=-+∑条件收敛。

正项级数的常用审敛法和推广比值审敛法的比较

正项级数的常用审敛法和推广比值审敛法的比较 摘 要 数项级数是数的加法从有限代数和到无限和的自然推广.由于无限次相加,许多有限次相加的性质便在计算无限和时发生了改变.首先,有限次相加的结果总是客观存在的,而无限次相加则可能根本不存在有意义的结果。 这就是说,一个级数可能是收敛或发散的.因而,判断级数的敛散性问题常常被看作级数的首要问题。 在通常的微积分学教程中,审敛正项级数的敛散性有许多有效的方法,比如达朗贝尔审敛法,拉贝审敛法等,本文就达朗贝尔审敛法和拉贝审敛法与几个新审敛法进行一些适当的比较总结,另对其应用做一些举例验证。 关键词 数学分析 正项级数 推广比值审敛法 一.预备知识 1.正项级数的定义 如果级数1n n x ∞ =∑的各项都是非负实数,即0,1,2,, n x n ≥= 则称 此级数为正项级数 2..收敛定理 正项级数收敛的充分必要条件是它的部分和数列有上界。 若正项级数的部分和数列无上界,则其必发散到+∞ 例 级数22(1)(1) n n n n ∞ =??-+? ∑是正项级数。它的部分和数列的通项 21 12212ln ln ln 2ln ln 2(1)(1)11n n n k k k k k n s k k k k n ++==?++??=<- =-,若1 lim n n n U L U +→∞=,当 L<1,级数收敛,当L>1,级数发散,L=1,不能审敛。

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

复变函数项级数

§4.2 复变函数项级数 教学目的:1.理解复变函数项级数收敛的概念,掌握其收敛的常用 判别法,以及收敛复函数项级数的和函数的基本性质. 2. 能正确灵活运用相关定理判断所给级数的敛散性. 3.掌握幂级数收敛半径的计算公式、幂级数的运算性质以及幂级数和函数的解析性,能灵活正确求出所给级 数的收敛半径;能用 1 (1)1n n z z z ∞ ==<-∑将简单函数表示为级数. 教学重点:掌握阿贝尔定理以及级数收敛半径的计算方法;能用间 接法和 01 (1)1n n z z z ∞ ==<-∑求函数的幂级数展式. 教学难点:正确利用 1 (1)1n n z z z ∞ ==<-∑求函数的幂级数展式. 教学方法:启发式讲授与指导练习相结合 教学过程: §4.2.1 复变函数项级数 设{()n f z }是定义在平面点集E 上的一列复变函数,(书上为其中各项在区域D 内有定义,)则式子: 12()()()n f z f z f z ++++L L 称为E 上的复函数项级数,记为 1 ()n n f z ∞ =∑. 【定义】※设1 ()n n f z ∞ =∑是定义在E 上的复函数项级数, ()S z 是E

的一个复函数,如果对E 内的某一点0z ,极限 00lim ()() n n S z S z →∞ =存在,则称复变函数项级数在0z 收敛.若对E 上的每一点z E ∈,都有级数 1 ()n n f z ∞ =∑收敛, 则它的和一定是一个z 的函数()S z ,则称 1 ()n n f z ∞ =∑在E 上收敛于()S z ,此时()S z 也称为1 ()n n f z ∞ =∑在E 上的 和函数.记为1 ()()n n S z f z ∞ == ∑或者()lim ()n n S z S z →∞ =, {}()n S z 称为 1 ()n n f z ∞ =∑的部分和函数列. §4.2.2 幂级数 1.【幂级数的定义】通常把形如: 20 010200 () ()()n n n C z z C C z z C z z ∞ =-=+-+-∑ 0()n n C z z ++-+L L 的复函数项级数称为(一般)幂级数, 其中0C ,1C ,L n C ,L .和0z 都 是复常数, 分别称为幂级数 () n n n C z z ∞ =-∑的系数与中心点. 若00z =, 则幂级数0 () n n n C z z ∞ =-∑可简化为 n n n c z ∞ =∑(标准幂级

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

数学分析12.3一般项级数

第十二章 数项级数 2 一般项级数 一、交错级数 概念:若级数各项符号正负相间,即 u 1-u 2+u 3-u 4+…+(-1)n+1u n +…(u n >0, n=1,2,…),则称它为交错级数. 定理12.11:(莱布尼茨判别法)若交错级数∑∞ =+1n n 1n u (-1)满足: (1)数列{u n }单调递减;(2)∞ n lim +→u n =0,则该级数收敛. 证:交错级数的部分和数列{S n }的奇数项和偶数项分别为: S 2m-1=u 1-(u 2-u 3)-…-(u 2m-2-u 2m-1),S 2m =(u 1-u 2)+(u 3-u 4)…+(u 2m-1-u 2m ). 由条件(1)知上述两式括号内的数皆非负,从而 数列{S 2m-1}递减,数列{S 2m }递增. 又由条件(2)知 0

条件收敛级数. 定理12.12:绝对收敛级数一定收敛. 证:若级数|u 1|+|u 2|+…+|u n |+…收敛,由柯西收敛准则知, 对任意ε>0,总存在正数N ,使得对n>N 和任意正整数r ,有 |u n+1|+|u n+2|+…+|u n+r |<ε,∴|u n+1+u n+2+…+u n+r |<ε, ∴u 1+u 2+…+u n +…收敛. 得证! 例1:证明:级数∑! n a n 收敛. 证:∵n 1n ∞n u u lim ++→=1n a lim ∞n ++→=0<1,∴原级数绝对收敛. 性质1:级数的重排:正整数列{1,2,…,n,…}到它自身的一一映射 f:n →k(n)称为正整数列的重排,相应地对数列{u n }按映射F:u n →u k(n)所得到的数列{u k(n)}称原数列的重排;同样的,级数∑∞ =1n k(n)u 也是级数∑∞ =1 n n u 的重排. 记v n =u k(n),即∑∞ =1 n k(n)u =v 1+v 2+…+v n +…. 定理12.13:若级数∑n u 绝对收敛,且其和等于S ,则任意重排后所得到的级数∑n v 也绝对收敛,且有相同的和数. 证:不妨设∑n u 为正项级数,用S n 表示它的第n 个部分和, 记T m =v 1+v 2+…+v m 表示级数∑n v 的第m 个部分和.

数学分析 数项级数

第十二章数项级数 教学目的:1.明确认识级数是研究函数的一个重要工具;2.明确认识无穷级数的收敛问题是如何化归为部分和数列收敛问题的;3.理解并掌握收敛的几种判别法,记住一些特殊而常用的级数收敛判别法及敛散性。 教学重点难点:本章的重点是级数敛散性的概念和正项级数敛散性的判别;难点是一般级数敛散性的判别法。 教学时数:18学时 § 1 级数的收敛性 一.概念: 1.级数:级数,无穷级数 ; 通项 ( 一般项 , 第项 ), 前项部分和等概念 ( 与中学的有关概念联系 ). 级数常简记为 . 2.级数的敛散性与和 : 介绍从有限和入手, 引出无限和的极限思 想 . 以在中学学过的无穷等比级数为蓝本 , 定义敛散性、级数的 和、余和以及求和等概念 . 例1讨论几何级数的敛散性.(这是一个重要例题!)解时, . 级数收敛 ; 时, 级数发散 ;

时, , , 级数发散 ; 时, , , 级数发散 . ( 注意从 综上, 几何级数当且仅当时收敛, 且和为 0开始 ). 例2讨论级数的敛散性. 解(利用拆项求和的方法) 例3讨论级数的敛散性. 解设, , = , . , . 例4 讨论级数的敛散性.

解, . 级数发散. 3.级数与数列的关系 : }, 收敛 {}收敛; 对应部分和数列{ }, 对应级数, 对该级数, 有=. 对每个数列{ }收敛级数收敛. 于是,数列{ 可见 , 级数与数列是同一问题的两种不同形式 . 4. 级数与无穷积分的关系 : , 其中. 无穷积分可化为级数 ; 对每个级数, 定义函数 , 易见有 =.即级数可化为无穷积分. 综上所述 , 级数和无穷积分可以互化 , 它们有平行的理论和结果 . 可以用其中的一个研究另一个 . 级数收敛的充要条件——Cauchy准则:把部分和数列{} 二. 收敛的Cauchy准则翻译成级数的语言,就得到级数收敛的Cauchy准则 . 和N, Th ( Cauchy准则 ) 收敛

(完整版)无穷级数整理

无穷级数整理 一、数项级数 (一)数项级数的基本性质 1.收敛的必要条件:收敛级数的一般项必趋于0. 2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛) 3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散. 4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变. 5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法 (1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数 ∑∞ =1 n n u 和 ∑∞ =1 n n v 之间自某项以后成立着关系: 存在常数0>c ,使),2,1(Λ=≤n cv u n n ,那么 (i )当级数 ∑∞ =1n n v 收敛时,级数 ∑∞ =1n n u 亦收敛; (ii )当级数 ∑∞ =1 n n u 发散时,级数 ∑∞ =1 n n v 亦发散. 推论:设两个正项级数 ∑∞ =1 n n u 和∑∞ =1 n n v ,且自某项以后有 n n n n v v u u 1 1++≤,那么 (i )当级数 ∑∞ =1n n v 收敛时,级数 ∑∞ =1n n u 亦收敛; (ii )当级数 ∑∞ =1 n n u 发散时,级数 ∑∞ =1 n n v 亦发散. (3)比较判别法的极限形式(比阶法):给定两个正项级数 ∑∞ =1 n n u 和∑∞ =1 n n v , 若0lim >=∞→l v u n n n , 那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数 ∑∞ =1 n n v 收敛时,级数 ∑∞ =1 n n u 亦收敛;若∞=l ,则当级数 ∑∞ =1 n n u 发 散时,级数 ∑∞ =1 n n v 亦发散.

第十二讲函数列与函数项级数

第十二讲函数列与函数项级数 12 . 1 函数列与函数项级数的收敛与一致收敛 一、函数列 (一)函数列的收敛与一致收敛 1 .逐点收敛 函数列(){}I x x f n ∈,,若对I x ∈?,数列(){}x f n 都收敛,则称函数列在区间 I 上逐点收敛,记 ()()I x x f x f n n ∈=∞ →,lim ,称()x f 为(){}x f n 的极限函数.简记为 ()()()I x n x f x f n ∈∞→→, 2 .逐点收敛的N -ε定义 对I x ∈? ,及 0>?ε,()0,>=?εx N N ,当N n > 时,恒有()()ε<-x f x f n 3 .一致收敛 若函数列(){}x f n 与函数()x f 都定义在区间 I 上,对 0,0>?>?N ε,当N n > 时,对一切I x ∈恒有()()ε<-x f x f n ,则称函数列(){}x f n 在区间 I 上一致收敛于()x f .记为()()()I x n x f x f n ∈∞→?, . 4 .非一致收敛 00>?ε,对N n N >?>?0,0,及I x ∈?0,使得 ()()0000ε≥-x f x f n 例 12 . 1 证明()n n x x f =在[]1,0逐点收敛,但不一致收敛. 证明:当[]1,0∈x 时,()0lim lim ==∞ →∞ →n x n n x x f ,当1=x 时,()11lim =∞ →n n f ,即极限函数 为()[)???=∈=1 ,11,0,0x x x f .但 ()x f n 非一致收敛,事实上,取031 0>=ε。对0>?N ,取 N N n >+=10,取()1,02101 0∈? ? ? ??=n x · 此时()()00002100ε>==-n x x f x f n , 即()()()[]1,0,∈∞→≠>x n x f x f n 5 .一致收敛的柯西准则 函数列(){}x f n 在 I 上一致收敛?对 0,0>?>?N ε,当 n , m > N 时,对一切I x ∈,

任意项级数敛散性判断练习及 答案

任意项级数敛散性判断 下列级数是否收敛,说明是绝对收敛还是条件收敛 1、 () ∑ ∞ =--1 1 11n n n 2、 ()∑∞=--1131n n n n 3、 () ∑∞=+121sin n n na 4、 ()()011>-∑∞=a na n n n 5、 ∑∞=??? ?? +2ln 1sin n n n π 6、 Λ+-+-+- 332210 3 211032110321 7、 ()()()∑∞=+-+-+11 2 212 12121n n n n n 8、 ()() [] ()01111 >-+-∑∞=-p n n p n n

答 解:1、() ∑ ∞ =--1 1 11n n n 取绝对值 ()∑ ∑∞=∞ =-=-1 11 1 1n n n n n >∞ ( 2 1 =p 的p 级数) 而原级数是交错级数 且: 01lim 1 111==<+=∞ →+n u n n u n n n 由莱布尼兹定理,原级数收敛。所以是条件收敛。 2、()∑∞ =--113 1n n n n 13111lim 313 31lim lim 11<=??? ??+=+=∞→-∞→+∞→n n n u u n n n n n n n

绝对值级数 ()∞<-∑∞ =-113 1n n n n 所以原级数绝对收敛 3、() ∑∞ =+12 1sin n n na ()() 22111sin +≤+n n na () ∑∞ =+1211n n 是p=2 的p 级数。收敛! 所以由比较判别法,原级数绝对收敛 4、() ()011>-∑ ∞ =a na n n n ()111lim lim 11<=+=+∞ →+∞→a a n na u u n n n n n a>1 时原级数绝对收敛 0

函数列与函数项级数

第十三章 函数列与函数项级数 §1 一致收敛性 (一) 教学目的: 掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (二) 教学内容: 函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法. 基本要求: 1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致 收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法. (三) 教学建议: (1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项 级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法. ———————————————————— 一 函数列及其一致收敛性 对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。 使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。 若函数列})({x f n 在数集E D ?上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值

数项级数教案

第十二章 数 项 级 数 教学目的:(1)理解敛散性概念、级数收敛的性质,熟练求一些级数的和;(2)熟练利用正项级数的收敛原理,比较判别法,Cauchy 、D`Alembert 判别法及其极限形式,积分判别法判别正项级数的敛散性;(3)理解Leibniz 级数,熟练利用Leibniz 级数,Abel 、Dirichlet 判别法判别一般级数的敛散性。 教学重点:上、下极限及其性质,数项级数及其敛散性概念,级数的基本性质,正项级数的判别法,任意项级数的判别法。 教学难点:判别法的应用。 主要教学方法:充分利用教材,采用启发式的课堂教学与讨论相结合的形式组织教学,注意讲授课时与习题课课时的分配,精讲多练,保证必要的习题量。同时,充分利用多媒体辅助教学,注重物理知识背景、几何意义的介绍和数学方法的应用,提高教学效果。 §1 级数的收敛性 1. 级数概念 在初等数学中,我们知道:任意有限个实数n u u u ,,,21 相加,其结果仍是一个实数,在本章将讨论——无限多个实数相加——级数——所可能出现的情形及特征。如 +++++n 2 1 21212132 从直观上可知,其和为1。 又如, +-++-+)1(1)1(1。 其和无意义; 若将其改写为: +-+-+-)11()11()11( 则其和为:0; 若写为: ++-++-+]1)1[(]1)1[(1 则和为:1。(其结果完全不同)。 问题:无限多个实数相加是否存在和; 如果存在,和等于什么。 定义1 给定一个数列{}n u ,将它的各项依次用加号“+”连接起来的表达式 +++++n u u u u 321 (1) 称为数项级数或无穷级数(简称级数),其中n u 称为级数(1)的通项。 级数(1)简记为:∑∞ =1 n n u ,或 ∑n u 。 2. 级数的收敛性

正项级数收敛及其应用公式版

公式为正常公式,不是图片版 正项级数收敛性判别法的比较及其应用 一、引言 数学分析作为数学专业的重要基础课程。级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等。而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断。正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍。 二、预备知识 1、正项级数收敛的充要条件 部分和数列{}n S有界,即存在某正数M,对0>n?,有n SN都有 n n v u≤, 那么 (1)若级数∑∞ =1 n n v收敛,则级数∑∞ =1 n n u也收敛; (2)若级数∑∞ =1 n n u发散,则级数∑∞ =1 n n v也发散; 即∑∞ =1 n n u和∑∞ =1 n n v同时收敛或同时发散。 比较判别法的极限形式: 设∑∞ =1 n n u和∑∞ =1 n n v是两个正项级数。若l v u n n n = +∞ → lim,则 (1)当时,∑∞ =1 n n u与∑∞ =1 n n v同时收敛或同时发散;

(2)当0=l 且级数∑∞ =1 n n v 收敛时,∑∞ =1 n n u 也收敛; (3)当∞→l 且∑∞=1 n n v 发散时,∑∞ =1 n n u 也发散。 2.2 比值判别法 设∑∞ =1n n u 为正项级数,若从某一项起成立着 11 ,成立不等式q u u n n ≤+1 ,则级数∑∞ =1i n u 收敛; (2)若对一切0N n >,成立不等式11 ≥+n n u u ,则级数∑∞=1 i n u 发散。 比值判别法的极限形式: 若∑∞ =1 n n u 为正项级数,则 (1) 当1lim ,成立不等式1,成立不等式1≥n n u ,则级数∑∞ =1 i n u 收敛 根式判别法的极限形式: 设∑∞ =1 n n u 是正项级数,且l u n n n =+∞ →lim ,则 (1)当1l 时,级数∑∞ =1 n n u 发散; (3)当1=l 时,级数的敛散性进一步判断。

数项级数和函数项级数及其收敛性的判定

学号 数项级数和函数项级数及其收敛性的判定 学院名称:数学与信息科学学院 专业名称:数学与应用数学 年级班别: 姓名: 指导教师: 2012年5月

数项级数和函数项级数及其收敛性的判定 摘要 本文主要对数项级数中的正项级数与函数项级数收敛性判定进行研究,总结了正项级数和函数项级数一致收敛的部分判别法,并且介绍两种特别判别法:导数判别法和对数判别法。 关键词:数项级数;正项级数;函数项级数;一致收敛性;导数判别法;对数判别法. Several series and Function of series and the judgment of their convergence Abstract In this paper, the author mainly discusses two series: Several series of positive series and Function of series. Summarizing the positive series and function of the part of the uniform convergence series discriminant method .And it presents two special discriminant method: derivative discriminant method and logarithmic discriminant method. Keywords Several series; Positive series; Function of series; uniform convergence; derivative discriminant method; logarithmic discriminant method 前 言 在数学分析中,数项级数和函数级数是全部级数理论的基础,而且数项级数中的正项级数和函数级数是基本的,同时也是十分重要的两类级数。判别正项级数和函数级数的敛散性是研究级数的主要问题,并且在实际中的应用也比较广泛,如正项级数的求和问题等。所以探讨正项级数和函数级数敛散性的判别法对于研究级数以及对于整个数学分析的学习与理解都有重要的作用。 1 正项级数及其收敛性 一系列无穷多个数123,,,,, n u u u u 写成和式 123n u u u u +++ + 就称为无穷级数,记为1 n n u ∞ =∑。如果()0,1,2,3, n u n ≥=,那么无穷级数1 n n u ∞ =∑,就称为正项 级数。

数项级数经典例题大全

第十二章 数项级数 1 讨论几何级数 ∑∞ =0 n n q 的敛散性. 解 当1||q 时, , =n S 级数发散 ; 当1=q 时, +∞ →+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, () n n S )1(121 -+= , ) (∞→n , 级数发散 . 综上, 几何级数 ∑∞ =0n n q 当且仅当 1||

4、 讨论级数∑ ∞ =-1352n n n 的敛散性. 解 52 , 5 252352? >?=>-n S n n n n n →∞+, ) (∞→n . 级数发散. 5、 证明2-p 级数 ∑∞ =121 n n 收敛 . 证 显然满足收敛的必要条件.令 21 n u n = , 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++p k p k p n n n n p n n k n k n k n u u u 112 2 1 ,1 11))(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 | ∑=+p k k n u 1 |不失真地放大成只含n 而不含p 的式子, 令其小于ε,确定N . 6、 判断级数∑∞ =1 1 s i n n n n 的敛散性. (验证 0→/n u . 级数判敛时应首先验证是否满足收敛的必要 条件) 7、 证明调和级数∑ ∞ =11n n 发散. 证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{ n S }发散.利用不等式 n n n ln 1 1 211 )1ln(+<+++ <+ . 即得+∞→n S , ) (∞→n . ) 注: 此例为 →n u 但级数发散的例子. 8、 考查级数 ∑∞ =+-1 2 11 n n n 的敛散性 .

任意项级数收敛性判别法

十五. 任意项级数收敛性判别法 判断∑a n 收敛性的线索: 1°a n 是否→0; 2°是否绝对收敛; 3°是否条件收敛. 绝对收敛判别方法: 对∑| a n | 用正项级数判别法. 注意∑|a n |发散时一般不能得到 ∑a n 发散, 但|n n a a 1+|或n n a ||≥1时∑| a n |和∑a n 都发散. a n 为连乘积时用检比法,和Raabe 法, a n 为n 次幂时考虑检根法和检比法, a n 单调时考虑积分法. 以上方法困难时考虑比较法(找a n 的阶或比较级数)、级数运算、收敛原理、定义、Cauchy 准则. Leibniz 判别法 若a n ↓0, 则交错级数∑(-1)n +1a n 收敛, 其和s < a 1, 余项| R n | < a n +1. 证 s 2n = (a 1 - a 2 ) + (a 3 - a 4 ) + … + (a 2n -1 - a 2n ), s 2n +1 = a 1 - (a 2 - a 3 ) - … - (a 2n - a 2n +1) = s 2n + a 2n +1, 故s 2n ↑, s 2n +1↓, 且0 < s 2n < s 2n +1< a 1 , lim s 2n 与lim s 2n +1存在, lim (s 2n +1- s 2n ) = 0. 因此?s = lim s n , 且s < a 1. 又, | R n | = | (-1) n (a n +1 - a n +2 + a n +3 - … ) = a n +1 - a n +2 + a n +3 - … < a n +1. Abel 变换 a 1 b 1 + a 2 b 2 + … + a n b n = s 1 b 1 + (s 2 - s 1 ) b 2 + … + (s n - s n -1)b n = s 1 (b 1 - b 2 ) + … + s n -1 (b n -1 - b n ) + s n b n =∑-=+-1 11)(n k k k k b b s + s n b n , 其中s n = a 1 + a 2 +…+ a n . 利用Abel 变换, 把∑a n b n 的收敛问题化为∑s n (b n - b n +1)与{s n b n }的收敛问题. Di 法 {s n }有界, b n ↓0 (或↑0)?∑a n b n 收敛. (对积分:?t a f 有界,g ↓0??b a fg 收敛.) A 法 ∑a n 收敛, {b n }单调有界?∑a n a n 收敛. (积分:?b a f 收敛, g 单调有界??b a fg 收 敛.) 证 D 法: 设 | s n |≤M , 则s n b n ↓0,∑-=+-111|)(|n k k k k b b s ≤M ∑=n k 1(b k - b k +1) = M (b 1 - b n )≤ Mb 1, 故∑s n (b n - b n +1)绝对收敛. A 法: 设s n →s , | s n |≤M , b n ↓b , 则s n b n →sb ,∑-=+-111|)(|n k k k k b b s ≤M (b 1 - b n )≤M (b 1 - b ). 注1. 用这三个判别法(L 法是D 法的特例)不能判断发散性. 当然, 如果已经用前面的方法得到∑| a n |发散, 用这三个方法就能判断∑a n 的条件收敛性, 但不能由此而误认为它们是条件收敛判别法 注2. 用D 法证A 法: ∑a n 收敛?{s n }有界; {b n }减、有界??b 使b n ↓b ? b n - b ↓0. 由D 法, ∑a n (b n -b )收敛, 而∑ba n 收敛, 故∑a n b n 收敛. 类似地可证上册p.276.10. *级数与广义积分 给定∑a n , 定义阶梯函数f :[1,∞)为f (x ) = a n (n ≤x 0时?t a f 关于t 增,?b a f =b t →lim ?t a f = I ?? b n ?[a , b ), b n →b : lim ?n b a f = I . 特别地, 有

数项级数的性质及其应用

数项级数的性质及其应用 数学学院数学与应用数学(师范)专业 2008级孟野 指导教师 摘要: 级数是数学分析中的一个重要组成部分,而数项级数是则是一类特殊的级数,它是级数论的基础。本文首先对数项级数的内容加以整理和归纳,给出了正项级数、交错级数等几种数项级数的分类以及他们的内容和相关性质、定理,接着举例说明了这些数项级数在极限中的应用。最后,对数项级数相关内容进行了变形和推广。 关键词:数项级数;正项级数;幂级数;极限; Abstract:The series is an important part of mathematical analysis, and the several series is a special kind of series is a series on the basis of. Firstly, organize and summarized the contents of a number of series, a series of positive terms, alternating series, several series classification and their content and nature of the theorem, and then illustrates these numbers series in the limit. . Finally, a number of series-related content, the deformation and promotion. Key words:A number of series; series of positive terms; power series; limit; 1 引言 数项级数是数学分析中很重要的一部分内容。数项级数的理论实际上只是极限的另一种表现形式,这种表现形式是研究许多实际问题及进行数值计算的一种必不可少的工具]1[。数项级数不仅包括常数项级数与函数项级数两部分;同时,又可分为正项级数、交错级数和任意项级数三部分。函数项级数则可分为幂级数和傅里叶级数。本文则是对数项级数加以整理和归纳,在正项级数、交错级数、任意项

正项级数收敛的判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε+++++ +< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质:

相关文档