文档库 最新最全的文档下载
当前位置:文档库 › 集散控制系统学习心得

集散控制系统学习心得

集散控制系统学习心得
集散控制系统学习心得

集散控制系统课程学习报告

学院名称:电气学院

专业班级: 1

学生姓名:

学生学号:

2013年12 月

集散控制系统学习心得

通过本课程的学习,让我对集散控制系统有了初步的了解下面就本学期的学习对本课程做介绍。

一、集散控制系统(DCS)简介

DCS,即所谓的分布式控制系统,或在有些资料中称之为集散系统,是相对于集中式控制系统而言的一种新型计算机控制系统,它是在集中式控制系统的基础上发展、演变而来的。在系统功能方面,DCS和集中式控制系统的区别不大,但在系统功能的实现方法上却完全不同。

首先,DCS的骨架——系统网络,它是DCS的基础和核心。由于网络对于DCS整个系统的实时性、可靠性和扩充性,起着决定性的作用,因此各厂家都在这方面进行了精心的设计。对于DCS的系统网络来说,它必须满足实时性的要求,即在确定的时间限度内完成信息的传送。这里所说的“确定”的时间限度,是指在无论何种情况下,信息传送都能在这个时间限度内完成,而这个时间限度则是根据被控制过程的实时性要求确定的。因此,衡量系统网络性能的指标并不是网络的速率,即通常所说的每秒比特数(bps),而是系统网络的实时性,即能在多长的时间内确保所需信息的传输完成。系统网络还必须非常可靠,无论在任何情况下,网络通信都不能中断,因此多数厂家的DCS均采用双总线、环形或双重星形的网络拓扑结构。为了满足系统扩充性的要求,系统网络上可接入的最大节点数量应比实际使用的节点数量大若干倍。这样,一方面可以随时增加新的节点,另一方面也可以使系统网络运行于较轻的通信负荷状态,以确保系统的实时性和可靠性。在系统实际运行过程中,各个节点的上网和下网是随时可能发生的,特别是操作员站,这样,网络重构会经常进行,而这种操作绝对不能影响系统的正常运行,因此,系统网络应该具有很强在线网络重构功能。

其次,这是一种完全对现场I/O处理并实现直接数字控制(DOS)功能的网络节点。一般一套DCS中要设置现场I/O控制站,用以分担整个系统的I/O和控制功能。这样既可以避免由于一个站点失效造成整个系统的失效,提高系统可靠性,也可以使各站点分担数据采集和控制功能,有利于提高整个系统的性能。DCS的操作员站是处理一切与运行操作有关的人机界面(HMI-Human Machine Interface或operator interface)功能的网络节点。系统网络是DCS的工程师站,它是对DCS进行离线的配置、组态工作和在线的系统监督、控制、维护的网络节点,其主要功能是提供对DCS进行组态,配置工作的工具软件(即组态软件),并在DCS在线运行时实时地监视DCS网络上各个节点的运行情况,使系统工程师可以通过工程师站及时调整系统配置及一些系统参数的设定,使DCS随时处在最佳的工作状态之下。与集中式控制系统不同,所有的DCS都要求有系统组态功能,可以说,没有系统组态功能的系统就不能称其为DCS。

DCS自1975年问世以来,已经经历了二十多年的发展历程。在这二十多年中,DCS虽然在系统的体系结构上没有发生重大改变,但是经过不断的发展和完善,其功能和性能都得到了巨大的提高。总的来说,DCS正在向着更加开放,更加标准化,更加产品化的方向发展。作为生产过程自动化领域的计算机控制系统,传统的DCS仅仅是一个狭义的概念。如果以为DCS只是生产过程的自动化系统,那就会引出错误的结论,因为现在的计算机控制系统的含义已被大大扩展了,它不仅包括过去DCS中所包含的各种内容,还向下深入到了现场的每台测量设备、执行机构,向上发展到了生产管理,企业经营的方方面面。传统意义上的DCS现在仅仅是指生产过程控制这一部分的自动化,而工业自动化系统的概念,则应定位到企业全面解决方案,即total solution 的层次。只有从这个角度上提出问题并解决问题,才能使计算机自动化真正起到其应有的作用。

进入九十年代以后,计算机技术突飞猛进,更多新的技术被应用到了DCS之中。PLC是一种针对顺序逻辑控制发展起来的电子设备,它主要用于代替不灵活而且笨重的继电器逻

辑。现场总线技术在进入九十年代中期以后发展十分迅猛,以至于有些人已做出预测:基于现场总线的FCS将取代DCS成为控制系统的主角。

二、集散系统的特点

分散型综合控制系统(简称集散系统),是一种新型的过程控制系统。这个系统以多台微型计算机分散应用与过程控制,全部信息通过通信网络由上位计算机监控,实现最佳化控制;通过CRT装置,通信总线键盘,打印机等又能高度集中地操作,显示和报警。整个装置继承了常规模拟仪表控制系统和计算机集中控制系统的优点,并且克服了单微机控制系统危险性高度集中以及常规仪表控制功能单一,人/机联系差的缺点,它的主要特点是:1)功能齐全

集散系统可以完成从简单的单回路控制到复杂的多变量模型优化控制;可以执行从常规的PID运算到SMITH预估,三阶矩阵乘法等各种运算;可以进行连续的反馈控制,也可以进行间断的顺序控制,逻辑控制,可以实现监控,显示,打印,报警,历史数据存储等日常的全部操作要求。

2)人/机联系好,实现了集中监控和管理

操作人员通过CRT和操作键盘,可以监控全部生产装置以及整个工厂的生产情况,按预定的控制策略组成各种不同的控制回路,并调整回路的任一常数,而且还可以对机电设备进行各种控制,从而实现了真正的集中操作和监控管理。

3)系统扩展灵活

集散系统采用模块式结构,用户可根据需要方便地扩大或缩小系统的规模,或改变系统的控制级别。集散系统采用组态方法构成各种控制回路,很容易对方案进行修改。

4)安全可靠性高

由于采用了多微处理机的分散控制结构,危险性分散,系统中的关键设备采用双重或多重冗余,还设有无中断自动控制系统和完善的自诊断功能,使系统的平均无故障时间MTBF 达到105天,平均修复时间MTTR为 10-2天,整个系统的利用率A达到99。9999%。

5)安装调试简单

集散系统的各模件都安装在标准机架内,模件之间采用多芯电缆,标准化接插件连接,与过程的连接采用规格化端子板,到中控室操作站只需敷设同轴电缆进行数据传递,所以布线量大大减少,安装工作量仅为常规仪表的1/2-1/3。系统调试采用专用的调试软件,使调试时间仅为常规仪表的1/2。

6)具有良好的性能价格比

在性能上集散系统技术先进,功能齐全,可靠性高,适用于多级递阶管理控制。在价格方面,目前在国外80个控制回路的生产过程采用集散系统的投资已与采用常规仪表相当。规模越大,单位回路投资将更低。

由于集散系统具有众多的优越性,从1975年美国霍尼韦尔公司发表“TDC2000”系统后,国外各家公司生产的集散系统有几十种,下表列出了国外集散系统的概况。

厂商产品名发表日期美国霍尼韦尔公司TDC-200075.11日本横河CENTUM75.6美国福克斯波罗公司SPECTRUM79.4美国贝克曼公司MV500079.3美国贝利公司NETWORK-9080.10美国非歇尔公司PROVOX82.8美国西屋公司WDPF82.10美国罗斯蒙特公司S383.10美国霍尼韦尔公司TDC-300083.10日本横河YEWPACK-MIRX284.12美国泰勒公司MOD-30085美国福克斯波罗公司I/A SERIES87.4可以这样认为:1975-1976年是集散系统发展的第一个高潮,即集散系统的诞生时期,1976年以后,随着各种高技术的飞速发展,特别是信息处理技术和计算机网络技术的发展,这段时期集散系统的研制工作,一方面对原有系统硬件和软件采取更新措施,另一方面积极开发高一层次的信息管理系统。新系统在原有的过程控制管理层的基础上增加了第三层-综合信息管理层,更多地关心高层信息

的格式,传输,处理,存贮,共享等问题。预计综合信息管理层还会向高层发展,它将以企业网的形式加入区域计算机网或远程计算机网中。

我国使用集散系统在七十年代末八十年代初,85年进入推广应用阶段。集散系统的应用,把我国过程控制推向一个新的水平,取得较为显著的经济效益,其发展前景是十分广阔的。三。、集散系统的基本结构

集散系统的各种功能不同的控制站以满足不同的控制对象的需要,而操作站则对整个生产过程进行显示,操作和管理。各个控制站和操作站,通过高速数据通道连成网络,形成整个集散系统。所以集散系统主要由控制站,操作站,高速数据通道三大部分组成,其基本结构如图1所示。

作为自动化专业的学生,在初步学习了现场总线控制技术后,我对以后工作中可能会运用到的一些知识以及信息作了收集和整理,如下:

现场总线技术是在80年代后期发展起来的一种先进的现场工业控制技术。它集数字通信、智能仪表、微机技术、网络技术于一身,从根本上突破了传统的“点对点”式的模拟信号或数字-模拟信号控制的局限性,为真正的“分散式控制,集中式管理”提供了技术保证。现场设备互连、良好的互操作性、分散的功能模块、开放式互连网络等特点,不仅可以保证目前工业控制对数字通信的要求,而且使它与Intranet或Internet 互连构成多层次的复杂网络成为可能。

1)现场总线的特点

现场总线通讯协议的结构是根据国际标准化组织提供的ISO/OSI模型来制定的。标准ISO/OSI模型有七层框架,但根据工业控制的特点,多数数据总线协议都是采用了其中的物理层、通信层和应用层。这样可以保证实时通信,并在此基础上已经发展起来了FF、CAN、Profibus、LONworks、ControlNet等总线协议。

2)现场总线的应用

目前,CAN总线、Profibus以及LONworks在世界范围都有着非常广泛的应用。CAN总线以其可靠性、实时性等特点在工业控制场合得到广泛应用,如国际上的几大汽车生产厂商多使用该总线。但是,随着新型现场总线的性能不断改进,CAN在传输速度和传输距离方面,特别是在远程通信方面,慢慢暴露出了它的不足。但是由于它推出的较早(是进入中国市场最早的总线之一),所以在工控方面仍然占据了很大的市场。

Profibus是目前极为成熟的一种现场总线。由于它以西门子的PLC系统为控制核心,具有强大的控制功能和可靠性,所以很多大型项目都青睐Profibus。Profibus在欧洲市场占有主导地位,其三个子标准DP,FMS和PA分别在分布式控制系统的高速数据传输方面、楼宇自动化和电气传动方面、过程自动化方面具有绝对的市场。在中国,Profibus在离散控制和过程控制方面,特别是在一些重大项目中(如近期中标的三峡大坝闸门控制系统),均有广泛的应用。

LONworks具有比其他总线更显著的智能性,所以在智能楼宇、家庭自动化方面有得天独厚的优势。在我国,LONworks主要占据了这个方面的市场。

另外,FF总线和ControlNet进入市场较晚,特别是在中国市场,所占据的市场份额不大。但是它们的发展趋势极为强大,由于它们在技术上具有比其他总线更为明显的优势,所以被越来越多的用户所青睐。可以肯定的说,这两种总线在几年之后将成为市场上的主流总线。

自动控制系统课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:自动控制理论课程设计 设计题目:直线一级倒立摆控制器设计 院系:电气学院电气工程系 班级: 设计者: 学号: 指导教师: 设计时间:2016.6.6-2016.6.19 手机: 工业大学教务处

*注:此任务书由课程设计指导教师填写。

直线一级倒立摆控制器设计 摘要:采用牛顿—欧拉方法建立了直线一级倒立摆系统的数学模型。采用MATLAB 分析了系统开环时倒立摆的不稳定性,运用根轨迹法设计了控制器,增加了系统的零极点以保证系统稳定。采用固高科技所提供的控制器程序在MATLAB中进行仿真分析,将电脑与倒立摆连接进行实时控制。在MATLAB中分析了系统的动态响应与稳态指标,检验了自动控制理论的正确性和实用性。 0.引言 摆是进行控制理论研究的典型实验平台,可以分为倒立摆和顺摆。许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等,都可以通过倒立摆系统实验直观的表现出来,通过倒立摆系统实验来验证我们所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。 本次课程设计中以一阶倒立摆为被控对象,了解了用古典控制理论设计控制器(如PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,掌握MATLAB仿真软件的使用方法及控制系统的调试方法。 1.系统建模 一级倒立摆系统结构示意图和系统框图如下。其基本的工作过程是光电码盘1采集伺服小车的速度、位移信号并反馈给伺服和运动控制卡,光电码盘2采集摆杆的角度、角速度信号并反馈给运动控制卡,计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,通过皮带带动小车运动从而保持摆杆平衡。

过程控制系统实验报告

实验一过程控制系统的组成认识实验 过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接 一、过程控制实验装置简介 过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。本系统设计本着培养工程化、参数化、现代化、开放性、综合性人才为出发点。实验对象采用当今工业现场常用的对象,如水箱、锅炉等。仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS工控组态软件。对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开发,如PLC控制、DCS控制开发等。学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。同时该系统也为教师和研究生提供一个高水平的学习和研究开发的平台。 二、过程控制实验装置组成 本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。 1、被控对象 由上、下二个有机玻璃水箱和不锈钢储水箱串接,4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。 水箱:包括上、下水箱和储水箱。上、下水箱采用透明长方体有机玻璃,坚实耐用,透明度高,有利于学生直接观察液位的变化和记录结果。水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。 模拟锅炉:锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。做温度定值实验时,可用冷却循环水帮助散热。加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。 压力容器:采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。 管道:整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。 2、检测装置 (液位)差压变送器:检测上、下二个水箱的液位。其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5。输出信号:4~20mA DC。 涡轮流量传感器:测量电动调节阀支路的水流量。其型号:LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC 温度传感器:本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。经过温度传感器,可将温度信号转换为4~20mA DC电流信号。 (气体)扩散硅压力变送器:用来检测压力容器内气体的压力大小。其型号:DBYG-4000A/ST2X1,测量范围:0.6~3.5Mpa连续可调,精度:0.2,输出信号为4~20mA DC。 3、执行机构 电气转换器:型号为QZD-1000,输入信号为4~20mA DC,输出信号:20~100Ka气压信号,输出用来驱动气动调节阀。 气动薄膜小流量调节阀:用来控制压力回路流量的调节。型号为ZMAP-100,输入信号为4~20mA DC或0~5V DC,反馈信号为4~20mA DC。气源信号 压力:20~100Kpa,流通能力:0.0032。阀门控制精度:0.1%~0.3%,环境温度:-4~+200℃。 SCR移相调压模块:采用可控硅移相触发装置,输入控制信号0~5V DC或4~20mA DC 或10K电位器,输出电压变化范围:0~220V AC,用来控制电加热管加热。 水泵:型号为UPA90,流量为30升/分,扬程为8米,功率为180W。

机电控制系统课程设计

JIANG SU UNIVERSITY 机电系统综合课程设计 ——模块化生产教学系统的PLC控制系统设计 学院:机械学院 班级:机械 (卓越14002) 姓名:张文飞 学号: 3140301171 指导教师:毛卫平 2017年 6月

目录 一: MPS系统的第4站PLC控制设计 (3) 1.1第四站组成及结构 (3) 1.2 气动回路图 (3) 1.3 PLC的I/O分配表,I/O接线图(1、3、6站电气线路图) (4) 1.4 顺序流程图&梯形图 (5) 1.5 触摸屏控制画面及说明,控制、信息软元件地址表 (10) 1.6 组态王控制画面及说明 (13) 二: MPS系统的两站联网PLC控制设计 (14) 2.1 PLC和PLC之间联网通信的顺序流程图(两站)&从站梯形图 (14) 2.2 通讯软元件地址表 (14) 三:调试过程中遇到的问题及解决方法 (18) 四:设计的收获和体会 (19) 五:参考文献 (20)

一:MPS系统的第4站PLC控制设计 1.1第四站组成及结构: 由吸盘机械手、上下摆臂部件、料仓换位部件、工件推出部件、真空发生器、开关电源、可编程序控制器、按钮、I/O接口板、通讯接口板、多种类型电磁阀及气缸组成,主要完成选择要安装工件的料仓,将工件从料仓中推出,将工件安装到位。 1.吸盘机械手臂机构:机械手臂、皮带传动结构真空吸嘴组成。由上下摆臂装置带动其旋转完成吸取小工件到放小工件完成组装流程的过程。 2.上下摆臂结构:由摆臂缸(直线缸)摆臂机械装置组成。将气缸直线运动转化为手臂旋转运动。带动手臂完成组装流程。 3.仓料换位机构:由机构端头换仓缸带动仓位装置实现换位(蓝、黑工件切换)。 4.推料机构:由推料缸与机械部件载料平台组成。在手臂离开时将工件推出完成上料。 5.真空发生器:当手臂在工件上方时,真空发生器通气吸盘吸气。 5.I/O接口板:将桌面上的输入与输出信号通过电缆C1与PLC的I/O相连。 6.控制面板:完成设备启动上电等操作。(具体在按钮上有标签说明)。

运动控制系统实验报告

运动控制系统实验报告 专业班级 学号 姓名 学院名称 运动控制仿真实验报告 一、实验内容与要求 1.单闭环转速负反馈 2.转速电流双闭环负反馈

3.晶闸管相控整流双闭环直流调速系统仿真模型搭建 具体要求:针对1 2 (1)仿真各环节参数 (2)仿真模型的建立 (3)仿真结果,分为空载还是负载,有无扰动 (4)仿真结果分析 二、Simulink 环境下的仿真 1.单闭环转速负反馈 1.1转速负反馈闭环调速系统仿真各环节参数 直流电动机:额定电压N U =220V ,额定电流dN I =55A ,额定N n =1000r/min ,电动机电动 势系数e C =0.192V ·min/r 。 假定晶闸管整流装置输出电流可逆,装置的放大系数s K =44,滞后时间常数 s T =0.00167s 。 电枢回路总电阻R=1.0Ω,电枢回路电磁时间常l T =0.00167s ,电力拖动统机电时间 常数m T =0.075s 。 转速反馈系数α=0.01V ·min/r 。 对应额定转速是的给定电压 n U =10V 。

1.2仿真模型的建立 图1-1单闭环转速负反馈直流调速系统的仿真模型 PI 调节器的值定为 =0.56, = 11.43。 图1-2单闭环转速负反馈直流调速系统加入扰动负载时的仿真模型 1.3仿真结果 p K 1

图1-3空载启动不加扰动转速和电流波形 图1-4空载启动加负载扰动转速和电流波形 1.4仿真结果分析 (1)空载启动无扰动:由空载启动不加扰动转速和电流波形可知,当 =0.56, = 11.43。系统转速有较大的超调量,但快速性较好的。空载启动电流的最大值有230A 左右,而额定电流 dN I =55A ,远远超过了电动机承受的最大电流。 (1)空载启动加负载扰动:由空载启动加负载扰动转速和电流波形可知,在空载启动1S 后加负载扰动,在1S 到1.5S 时间段,转速和电流有明显的下降,但系统马上进行了调节。 p K 1

课程设计—材料分拣控制系统

材料分拣控制系统设计 自动化专业课程设计

一.设计要求 设计于东控制系统模拟自动化工业生产过程,通过传感器采集信号,利用PLC 控制器实现对电机和气缸的控制,完成对不同材料的分拣,系统的调速定位控制可进行PID控制 主要技术参数 1.电源:AC220V±10%(带保护地三芯插座) 2.气源:0.2Mpa~0.85Mpa洁净压缩空气 3.分拣容: (1)金属与非金属料块 (2)某一颜色料块 (3)金属中某一颜色料块 (4)非金属中某一颜色料块 (5)金属中某一颜色料块和非金属中某一颜色料块 建议分拣颜色为:红、黄、蓝;建议分拣材料为:铁、铝、塑料 4.外形尺寸:800X500X1100 mm 二.设计方案 实物图

图一材料分拣装置结构图(正面) 1-输送带;2-输送带驱动电机;3-料块仓库;4-分类储存滑道;5-料仓料块检测传感器;6-电感式识别传感器;7-电容式识别传感器;8-颜色识别传感器;;9-旋转编码器;10-手动操作盘 图二材料分拣装置结构图(后面)

12-气缸;13-气源过滤减压阀;14-电磁阀;15-控制器;16-端子板;17-继电器;18-功能转换开关。 材料分拣装置由料块仓库、电动输送带、自动分拣部件、控制器和手动操作盘组成,如图一和图二所示。 料块仓库是一个手动入库自动出库的部件。使用时可将料块放入仓库中,当光电传感器感测到料块时系统开始运行,即启动输送带并由出库气缸将库最底层料块推入输送带。 电动输送带是由交流减速电机驱动的皮带式水平输送装置。它将料块匀速平稳的送至自动分拣部件。 自动分拣部件由传感器、旋转编码器、微型直线气缸及滑道组成。当传感器检测到相应料块时,对应的气缸将其推入应去的滑道;当料块的材料或颜色为非分拣要求时,经旋转编码器计量后对应的气缸将其推入应去的滑道。 控制器采用PLC。它接受料仓传感器、各料块传感器、旋转编码器、气缸位置传感器的信号,根据要求分别控制输送带电机和各电磁换向阀。 手动操作盘可以通过按钮控制装置的各种动作,并实现自动运行的启动。 本装置还可以与其他装置联机运行(如本厂生产的机械手模型),构成连续性生产线模型。

集散实验报告

集散控制系统及应用实验报告 学院(部): 专业:自动化 班级:姓名:学号: 2016年12月 实验一CENTUM VP系统的认识实验

实验目的: 1.了解集散控制系统的组成和结构 2.熟悉系统规模和控制站规模 3.掌握控制站卡件型号,名称,性能以及输入输出点数 4.掌握控制站的地址设置 实验原理:集散系统实质上是一种分散型自动化系统,又称做以微处理机为基础的分散综合自动化系统。集散系统具有分散监控和集中综合管理两方面的特征,而更将"集"字放在首位,更注重于全系统信息的综合管理。80年代以来,集散系统逐渐取代常规仪表,成为工业自动化的主流。工业自动化不仅体现在工业现场,也体现在企业事务行政管理上。集散系统的发展及工业自动化的需求,导致了一个更庞大、更完善的计算机集成制造系统CIMS(Computer Integrated Manufacturing System)的诞生。 集散系统一般分为三级:过程级、监控级和管理信息级。集散系统是将分散于现场的以微机为基础的过程监测单元、过程控制单元、图文操作站及主机(上位机)集成在一起的系统。它采用了局域网技术,将多个过程监控、操作站和上位机互连在一起,使通信功能增强,信息传输速度加快,吞吐量加大,为信息的综合管理提供了基础。因为CIMS具有提高生产率、缩短生产周期等一系列极具吸引力的优点,所以已经成为未来工厂自动化的方向。 实验内容:集散型控制(Distributed Control System)是解决现代大型系统控制的有效方法,它的实质是利用计算机技术对生产过程进行集中监视、操作、管理和分散控制的一种新型控制技术,具有通用性强、系统组态灵活、控制功能完善、数据处理方便、显示操作集中、人机界面友好、安装简单规范化、调试方便、运行安全可靠等特点。在相关的工控组态软件下进行模拟设计多点传感器数据传输控制组态设计,要求界面设计合理规范,数据传输控制动作设计合理。 实验步骤:组态”的概念来自英文configuration。使用软件工具对计算机及软件的各种资源进行配置,达到使计算机或软件按照预先设置,自动执行待定任务,满足使用者要求的目的。通过软件采用非编程的操作方式,进行参数填写、图形连接和文件生成等,使得软件乃至整个系统具有某种指定的功能。 1.分布式控制系统的组态: 系统组态:组成系统的各设备间的连接 画面组态:操作站的各种画面、画面间连接 控制组态:完成各控制器、过程控制装置结构连接、参数设置等 功能块或算法 功能块或算法:控制系统结构中的基本单元。 (1)组成: 功能块是由分布式系统制造商提供的系统应用程序,由不同需功能的子程序组成,主要包括结构参数、设置参数和可调整参数。 从可组态性的要求出发,功能块的参数应具有易设置、易调整的特点。 结构参数: 功能参数——子功能、不同数据类型、多输入信号;充分利用内存、减少消耗。连接参数——功能参数与外部的连接;软连接 设置参数:系统设置参数和用户设置参数 可调整参数:运行元可调参数和工程师可调参数

【实验报告】单轴电机运动控制实验报告范文

单轴电机运动控制实验报告范文 实验一晶闸管直流调速系统电流-转速调节器调试 一.实验目的 1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。2.掌握直流调速系统主要单元部件的调试步骤和方法。 二.实验内容 1.调节器的调试 三.实验设备及仪器 1.教学实验台主控制屏。2.MEL―11组件3.MCL―18组件4.双踪示波器5.万用表 四.实验方法 1.速度调节器(ASR)的调试 按图1-5接线,DZS(零速封锁器)的扭子开关扳向“解除”。 (1)调整输出正、负限幅值“5”、“6”端接可调电容,使ASR调节器为PI 调节器,加入一定的输入电压(由MCL―18的给定提供,以下同),调整正、负限幅电位器RP1、RP2,使输出正负值等于5V。 (2)测定输入输出特性将反馈网络中的电容短接(“5”、“6”端短接),使ASR调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画 图1-5 速度调节器和电流调节器的调试接线图

出曲线。 (3)观察PI特性 拆除“5”、“6”端短接线,突加给定电压(0.1V),用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变数值。 2.电流调节器(ACR)的调试按图1-5接线。 (1)调整输出正,负限幅值 “9”、“10”端接可调电容,使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使输出正负最大值等于5V。 (2)测定输入输出特性 将反馈网络中的电容短接(“9”、“10”端短接),使调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。 (3)观察PI特性 拆除“9”、“10”端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变数值。 一.实验目的 1.了解双闭环不可逆直流调速系统的原理,组成及各主要单元部件的原理。2.熟悉电力电子及教学实验台主控制屏的结构及调试方法。3.熟悉MCL-18,MCL-33的结构及调试方法

控制系统课程设计

控制系统(1)课程设计指导书1 2012-2013学年第一学期 班级:电气定单2009级一班 指导教师:张开如 一、课程设计任务书 1.课程设计题目:双闭环直流调速系统的设计 2.课程设计主要参考资料 (1)电力拖动自动控制系统-运动控制系统,陈伯时主编,第3、4版,机械工业出版社 (2)电力电子技术(教材),王兆安,黄俊主编,机械工业出版社 (3)电力电子技术,孙树朴等编著,2000.7,中国矿业大学出版社 3.课程设计应解决主要问题 (1)推导双闭环调速系统的静特性方程式:工作段和下垂段静特性方程式; (2)计算系统的稳态参数; (3)用工程设计方法进行动态设计,确定ASR和ACR结构并选择参数(注:应考虑给定和反馈滤波); (4)画出三相全控桥式晶闸管整流电路图,计算晶闸管定额参数(电压、电流等)。 4.课程设计相关附件 这一项不填(所有相关图纸画在设计过程中的相关位置)。 5.时间安排 共四周:2012.8.27~2012.9.21。 第一、二周:2012.8.27~2012.9.7理论设计。要求:根据指导书进行设计。 第三、四周:2012.9.10~2012.9.21实验室调试(根据实验室情况,可以延期到四周后的周六或周日做实验)。 二、已知条件及控制对象的基本参数 (1)已知电动机参数为:额定功率P N=3kW,额定电压U N=220V,额定电流I N=17.5A,额定转速n N=1500r/min,电枢绕组电阻R a=1.25Ω,GD2=3.53N·m2。 (2)采用三相全控桥式晶闸管整流,整流装置内阻R rec =1.3Ω。平波电抗器电阻R L=0.3Ω。整流回路总电感L=200mH(考虑了变压器漏感等)。 (3)采用速度、电流双闭环调节。这里暂不考虑稳定性问题,设ASR和ACR均采用PI调节器,ASR 限幅输出U im*=-10V,ACR限幅输出U ctm=10V,ASR和ACR的输入电阻R o=20KΩ,最大给定U nm*=10V,调速范围D=20,静差率s=10%,堵转电流I dbl=2.1I N,临界截止电流I dcr=2I N。 (4)设计指标:电流超调量σi %≤5%,空载起动到额定转速时的转速超调量σn≤10%,空载起动到额定转速的过渡过程时间 t S≤1.5s。 三、设计要求 (1)画出双闭环调速系统的电路原理图和系统的稳态结构图(设ASR和ACR均采用PI调节器); (2)推导系统的静特性方程式:工作段和下垂段静特性方程式; (3)计算系统的稳态参数,包括:推导计算K ASR公式、推导计算K ACR公式;计算C e、n cr(临界截止电流I dcr对应的电动机转速)、电流反馈系数β、K ASR、K S和K ACR; (4)用工程设计方法进行动态设计,决定ASR和ACR结构并选择参数(注:应考虑给定和反馈滤波); (5)动态设计过程中画出双闭环调速系统的电路原理图及动态结构图; (6)画出三相全控桥式晶闸管整流电路图,计算晶闸管定额参数; (7)(此小题为选做)若选用锯齿波垂直移相相控触发电路,试画出与电流调节器输出信号和各晶闸管的连接线路图,并选择触发电路同步电压(画出晶闸管主电路及同步变压器)。 四、设计方法及步骤 1.稳态设计 (1)画系统的稳态结构图时,应先画出电路原理图,而此时的PI调节器只有两种状态:饱和-输出达到限幅植,不饱和-输出未达到限幅植。参考教材。 (2)在推导系统的静特性方程式时,注意所谓工作段是指调节器的输出未达到限幅植,此时的稳态结构图参考教材。下垂段静特性方程式是指速度调节器的输出达到限幅植,此时只有电流环起

自动控制系统实验报告

自动控制系统实验报告 学号: 班级: 姓名: 老师:

一.运动控制系统实验 实验一.硬件电路的熟悉和控制原理复习巩固 实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。 实验内容:了解运动控制实验仪的几个基本电路: 单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路) ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理) 步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构 步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。) 微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。 实验结果: 步进电机驱动技术: 控制信号接口: (1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双 脉冲控制方式时为正转脉冲信号。 (2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式 时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。 (4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。 电流设定: (1)工作电流设定: (2)静止电流设定: 静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。 (3)细分设定: (4)步进电机的转速与脉冲频率的关系 电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m) 逐点比较法的直线插补和圆弧插补: 一.直线插补原理: 如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为: 00 00Y Ye X Xe Y Y X X --= -- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)

自动控制课程设计~~~

指导教师评定成绩: 审定成绩: 重庆邮电大学 移通学院 自动控制原理课程设计报告 系部: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:2013年12 月 重庆邮电大学移通学院制

目录 一、设计题目 二、设计报告正文 摘要 关键词 设计内容 三、设计总结 四、参考文献

一、设计题目 《自动控制原理》课程设计(简明)任务书——供2011级机械设计制造及其自动化专业(4-6班)本科学生用 引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。 一设计题目:I型二阶系统的典型分析与综合设计 二系统说明: 该I型系统物理模拟结构如图所示。 系统物理模拟结构图 其中:R=1MΩ;C =1uF;R0=41R 三系统参量:系统输入信号:x(t); 系统输出信号:y(t);

四设计指标: 设定:输入为x(t)=a×1(t)(其中:a=5) 要求动态期望指标:M p﹪≤20﹪;t s≤4sec; 五基本要求: a)建立系统数学模型——传递函数; b)利用根轨迹方法分析和综合系统(学号为单数同学做); c)利用频率特性法分析和综合系统(学号为双数同学做); d)完成系统综合前后的有源物理模拟(验证)实验; 六课程设计报告: 1.按照移通学院课程设计报告格式写课程设计报告; 2.报告内容包括:课程设计的主要内容、基本原理; 3.课程设计过程中的参数计算过程、分析过程,包括: (1)课程设计计算说明书一份; (2)原系统组成结构原理图一张(自绘); (3)系统分析,综合用精确Bode图一张; (4)系统综合前后的模拟图各一张(附实验结果图); 4.提供参考资料及文献 5.排版格式完整、报告语句通顺; 6.封面装帧成册。

控制系统仿真课程设计

控制系统仿真课程设计 (2010级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2013年7月

控制系统仿真课程设计(一) ——锅炉汽包水位三冲量控制系统仿真1.1 设计目的 本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。 1.2 设计原理 锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。 常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。 图1-1 锅炉汽水系统图

在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示: (1)汽包水位在给水流量作用下的动态特性 汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为 ()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性 在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ (1.2) 常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。为此,可将给水流量信号引入,构成三冲量调节系统,如图1-2所示。图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。

控制系统课程设计大纲

控制系统课程设计大纲 课程名称:《运动控制系统》课程设计 授课单位:电气工程学院 课程类型:专业课 授课学时及学分:讲课24学时 适用对象:自动化及相近专业 先修课程:电力拖动自动控制系统、电力电子技术、自动控制原理、电子技术 一、课程设计的目的 课程设计是本课程教学中极为重要的实践性教学环节,它不但起着提高本课程教学质量、水平和检验学生对课程内容掌握程度的作用,而且还将起到从理论过渡到实践的桥梁作用。因此,必须认真组织,周密布置,积极实施,以达到下述教学目的。 (1)通过课程设计,使学生进一步巩固、深化和扩充在交直流调速及相关课程方面的基本知识、基本理论和基本技能,达到培养学生独立思考、分析和解决实际问题的能力。 (2)通过课程设计,使学生养成严谨科学、严肃认真、一丝不苟和实事求是的工作作风,达到提高学生基本素质的目的。 (3)通过课程设计,让学生独立完成一项直流或交流调速系统课题的基本设计工作,达到培养学生综合应用所学知识和实际查阅相关设计资料的能力的目的。 (4)通过课程设计,使学生熟悉设计过程,了解设计步骤,掌握设计内容,达到培养学生工程绘图和编写设计说明书能力的目的,为学生今后从事相关方面的实际工作打下良好基础。 二、课程设计的要求 (1)根据设计课题的技术指标和给定条件,在教师指导下,能够独立而正确地进行方案论证和设计计算,要求概念清楚、方案合理、方法正确、步骤完整。(2)要求学生掌握直流调速系统的设计内容、方法和步骤。 (3)要求会查阅有关参考资料和手册等。 (4)要求学会选择有关元件和参数。 (5)要求学会绘制有关电气系统图和编制元件明细表。 (6)要求学会编写设计说明书。 三课程设计的选题原则 本课程设计的选题要坚持难易适度、繁简适量的原则,避免选题过于简易或过于繁难,以防学生无事可做或无力完成。 四、课程题目及设计内容 题目一:不可逆V-M双闭环直流调速系统设计 (一) 性能指标要求: 稳态指标:系统无静差

控制系统的典型环节的模拟实验报告修订版

控制系统的典型环节的 模拟实验报告修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

课程名称:控制理论乙指导老师:成绩:实验名称:控制系统典型环节的模拟实验类型:同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.熟悉超低频扫描示波器的使用方法 2.掌握用运放组成控制系统典型环节的电子电路 3.测量典型环节的阶跃响应曲线 4.铜鼓哦是暗夜男了解典型环节中参数的变化对输出动态性能的影响 二、实验内容和原理 以运算放大器为核心元件,由其不同的RC输入网络和反馈网络组成的各种典型环节,如下图所示。

右图中可以得到: 由上式可求得有下列模拟电路组成的典型环节的传递函数及其单位阶跃响应 1.积分环节 连接电路图如下图所示 和第一个实验相同,电源为峰峰值为30V 的阶跃函数电源,运放为LM358型号运放。在这次实验中,R2并不出现在电路中,所以我们可以同时调节R1的值和C 的值来改变该传递函数的其他参量值。具体表达式为: 式中:RC T = 由表达式可以画出在阶跃函数的激励下,电路所出现的阶跃响应图像 实验要求积分环节的传递函数需要达到(1)s s G 1)(1=(2)s s G 5.01)(2= 2.比例微分环节 连接电路图如下图所示 在该电路中,实验器材和第一次实验与第二次实验不变,R2仍然固定为1M 不改变。R1与C 并联之后与运算放大器的负端相连,R2接在运放的输出端和负输入端两端,起到了负反馈调节作用。具体表达式为: 式中,12R R K = ,C R T 1= 由表达式可以画出在阶跃函数的激励下,电路所出现的阶跃响应图像

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

控制系统仿真课程设计

控制系统数字仿真课程设计 1.课程设计应达到的目的 1、通过Matlab仿真熟悉课程设计的基本流程; 2、掌握控制系统的数学建模及传递函数的构造; 3、掌握控制系统性能的根轨迹分析; 4、学会分析系统的性能指标; 2.课程设计题目及要求 设计要求 1、进行系统总体设计,画出原理框图。(按给出的形式,自行构造数学模型,构造成1 个零点,三个极点的三阶系统,主导极点是一对共轭复根) G(s)=10(s+2)/(s+1)(s2+2s+6) 2、构造系统传递函数,利用MATLAB绘画系统的开环和闭环零极点图;(分别得 到闭环和开环的零极点图)参考课本P149页例题4-30 clear; num = [10,20]; den =[1 3 8 6]; pzmap(num,den) 3、利用MATLAB绘画根轨迹图,分析系统随着根轨迹增益变化的性能。并估算超 调量=16.3%时的K值(计算得到)。参考课本P149页例题4-31 clear num=[10,20]; den=[1 3 8 6]; sys=tf(num,den); rlocus(sys) hold on jjx(sys); s=jjx(sys); [k,Wcg]=imwk(sys)

set(findobj('marker','x'),'markersize',8,'linewidth',1.5,'Color','k'); set(findobj('marker','o'),'markersize',8,'linewidth',1.5,'Color','k'); function s=jjx(sys) sys=tf(sys); num=sys.num{1}; den=sys.den{1}; p=roots(den); z=roots(num); n=length(p); m=length(z); if n>m s=(sum(p)-sum(z))/(n-m) sd=[]; if nargout<1 for i=1:n-m sd=[sd,s] end sysa=zpk([],sd,1); hold on; [r,k]=rlocus(sysa); for i=1:n-m plot(real(r(i,:)),imag(r(i,:)),'k:'); end end else disp; s=[]; end function [k,wcg]=imwk(sys) sys=tf(sys) num=sys.num{1} den=sys.den{1}; asys=allmargin(sys); wcg=asys.GMFrequency; k=asys. GainMargin;

自动控制系统课程设计

黑龙江科技大学 自动控制系统课程设计 课程名称自动控制系统课程设计 班级 学号 姓名

第一章系统工作原理 直流电机调速控制系统的原理框图如图1-1所示: 图1-1 原理框图 1.1 结构与调速原理 直流电机由定子和转子两部分组成,其间有一定的气隙。其构造的主要特点是具有一个带换向器的电枢。直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。其中电枢由电枢铁心和电枢绕组两部分组成。电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。换向器是一种机械整流部件。由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。各换向片间互相绝缘。换向器质量对运行可靠性有很大影响。 直流电机斩波调速原理是利用可控硅整流调压来达直流电机调速的目的,利用交流电相位延迟一定时间发出触发信号使可控硅导通即为斩波,斩波后的交流电经电机滤波后其平均电压随斩波相位变化而变化。为了达到控制直流电机目的,在控制回路加入了速度、电压、电流反馈环路和PID调节器来防止电机由于负载变化而引起的波动和对电机速度、电压、电流超常保护。

第二章主电路的设计与分析 2.1 主电路的各个部分电路 主电路主要环节是:整流电路、斩波电路。 图2-1 调速系统 直流脉宽调速系统的组成如图2-1所示,由主电路、控制及保护电路、信号检测电路三大部分组成。二极管整流桥把输入的交流电变为直流电,电阻R1为起动限流电阻,C1为滤波电容。可逆PWM变换器主电路系采用MOSFET所构成的H型结构形式,它是由四个功率IGBT管(VT1、VT2、VT3、VT4)和四个续流二极管(VD1、VD2、VD3、VD4)组成的双极式PWM可逆变换器,根据脉冲占空比的不同,在直流电机M上可得到正或负的直流电压。 2.1.1 整流电路 晶体二极管桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。

过程控制系统实验报告

《过程控制系统实验报告》 院-系: 专业: 年级: 学生姓名: 学号: 指导教师: 2015 年6 月

过程控制系统实验报告 部门:工学院电气工程实验教学中心实验日期:年月日 姓名学号班级成绩 实验名称实验一单容水箱液位定值控制实验学时 课程名称过程控制系统实验及课程设计教材过程控制系统 一、实验仪器与设备 A3000现场系统,任何一个控制系统,万用表 二、实验要求 1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以及震荡曲线。 2、使用比例积分控制进行流量控制,能够得到稳定曲线。设定不同的积分参数,进行 比较。 3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。设定不同的积分参数,进行比较。 三、实验原理 (1)控制系统结构 单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。 水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。被调量为水位H。使用P,PI , PID控制,看控制效果,进行比较。 控制策略使用PI、PD、PID调节。 (2)控制系统接线表 使用ADAM端口测量或控制量测量或控制量标号使用PLC端 口 锅炉液位LT101 AI0 AI0 调节阀FV101 AO0 AO0 四、实验内容与步骤 1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。 3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。 注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。 4、打开设备电源。包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。 5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。 6、启动计算机,启动组态软件,进入测试项目界面。启动调节器,设置各项参数,将调节器的手动控制切换到自动控制。 7、设置PID控制器参数,可以使用各种经验法来整定参数。这里不限制使用的方法。 五、实验结果记录及处理 六、实验心得体会: 比例控制特性:能较快克服扰动的影响,使系统稳定下来,但有余差。 比例积分特性:能消除余差,它能适用于控制通道时滞较小、负荷变化不大、被控量不允许由余差的场合。 比例微分特性:对于改善系统的动态性能指标,有显著的效果。

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

相关文档
相关文档 最新文档