文档库 最新最全的文档下载
当前位置:文档库 › 如何控制兵乓球击球位置

如何控制兵乓球击球位置

如何控制兵乓球击球位置
如何控制兵乓球击球位置

如何控制兵乓球击球位置

合理的击球位置,对提高击球的准确性和动作的协调性很有帮助。以下是为大家整理的关于如何控制兵乓球击球位置,欢迎阅读!

如何控制兵乓球击球位置

击球位置不对,不但会使动作变形,而且也容易击球失误。合理的击球位置,一般指"身前击球"。尤其是攻击型选手,身前击球显得特别重要。身前击球具体一点说,就是把击球点选在身前,并在身前找好球与拍的距离(击球距离)。不同的风格和类型打法,击球距离是不同的。如以快速变化打法为主的人,回击一般来球,球与拍的距离较短。

由于球与拍距离近,不仅有利于加快击球时间,而且动作也较容易固定。以力量为主的人,球与拍的距离较长,有利于增大击球力量。因此,各种类型打法的人,总是千方百计地找好击球距离,特别是强调在身前找好击球距离,这点是十分重要的。要取合理的击球位置,必须对不同路线和落点的来球作出正确的判断,选择好击球点,迅速移动脚步。例如,当站位离台较近而对方的来球又急又长时,要及时移步后退,才易找到好的击球位置;当站位离台较远时,对方发个短球,应及时向前上步,否则就会因身体距离击球点太远而失误;回击追身球来不及移动脚步时,则需借助收腹转体,让出一点距离。

击球的最佳位置和乒乓开关控制

在击球的最佳位置上进行乒乓开关控制,对于保证击球质量具有关键的作用。这一关键,踏破铁鞋无觅处,得来全不费工夫。原来它就是“沉肩坠肘”的肘开关------乒乓开关。

1. 击球位置前世界冠军郗恩庭在揭示发球秘诀时说:“击球位置是有讲究的。我体会击球位置总有一个最佳点。在这点触球。便能产生最大的合力,这个位置随每个人的身高、力量和发球动作的不同而有所区别,但一般在腰部位置上下。”窗户纸一破,球迷就看见了在腰部的这个最佳位置,它对于提高发球质量确有重要作用。只要关注一下高手们的发球的动作,就可看到他们的击球点几乎都集中在腰部这个位置上。这是发球的最佳击球位置,而一般击球的最佳击球位置在哪里?当今奥运冠军马琳的教练吴敬平指出:“击球点的最佳位置是在身体的右前方(以右手为例),要保持最佳的击球位置就必须学好步法,保持好身体的重心,重心的高低要根据来球来决定。”队员听教练的,业余学专业的。有的球友在正反手转换实践中感觉到最佳击球点在身体正前方,用转腰方式去主动迎球、或侧身移步去把握这个最佳击球位置。实际上,每个人选择的最佳击球位置也不会千篇一律,但是总有一个共同点,即击球最优位置都选在自己身体的前方。

2. 乒乓开关从击球效果看,击球点与身体相对位置和距离、击球瞬间时空感的把握会直接关系到击球的质量。打球人都有体会,身体和击球点位置会直接影响击球的速度、方向,如果这个位置恰当,击球会既省力又力大,而且球速还快。当积极主动地迎前击球时,又会缩短回球距离,加快击球速度节奏,击球角度活、范围大、变化多,

结果自然使击球质量较高。人们通常说这样打球合理,到底合理之理在哪里?

首先,看一下取得最佳击球位置后的击球过程:身体引拍,转腰迎前,以腰带臂,收臂击球。这一过程凸现了腰的中枢功能,同时蕴含着一个离腰最近、与腰同步转动的肘关节的重要内容。肘节的英文是elbow, toggle。其中toggle 还有“乒乓开关”的意译。乒乓开关是一种由手动控制(压拨、扭转等)开与关双稳态开关。巧合的是,打乒乓球的肘关节也具有乒乓开关的作用。不论运动方式,还是控制功能,真是无巧不成书。

其次,分析一下击球过程肘运动方式。通常肘关节有三种运动形式:(1)随大臂与腰同步转动,把重心转移产生的身体力量同时传递到手臂上;(2)在大臂与小臂构成的平面内,以肘关节为轴点,打拉时小臂向大臂方向收缩,而削切时则反向伸展;(3)以小臂为轴线的内旋外旋运动。平常说的手腕翻转运动实际上是小臂的内外旋运动,不论直臂还是曲臂,肩为动力源,肘是转折点,起着中间控制作用。通常(1)(2)(3)种运动合成为一种空间曲线运动,即击球时的挥拍运动。

最后,打球合理终究要落实在打球效果上。结构决定运动,运动决定功能,从打球准备的沉肩坠肘开始,到击球过程的肘运动,实实在在决定着击球的效果。如同乒乓开关决定着开与关的双稳态一样,肘关节的运动决定着乒与乓的双稳态。打乒乓球是一项全身整体协调运动,其中肘关节的特定结构和运动特性使它具备了名副其实的乒乓

开关的控制作用。

3. 控制乒乓

专业队员有教练、有训练大纲导向;业余球迷有偶像、有乒乓网站导航。凡是心中有乒乓,谁都渴望掌握最佳击球位置、最有效击球技术和最好的击球效果,尽管专业与业余各自的标准不同。有时复杂的乒乓被简化为两点:发力与控制。在实战中,发力--控制;发力;控制,周而复始。作为缩略发力--控制的优化选择,谨将乒乓开关的认知体会推荐给网友,希望能为控制乒乓发挥应有的作用。

自动控制系统位置随动系统课程设计

摘要 随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的,主要解决有一定精度的位置跟随问题,如数控机床的刀具给进和工作台的定位控制,工业机器人的工作动作,导弹制导、火炮瞄准等。在现代计算机集成制造系统(CIMC)、柔性制造系统(FMS)等领域,位置随动系统得到越来越广泛的应用。 位置随动系统要求输出量准确跟随给定量的变化,输出响应的快速性、灵活性和准确性为位置随动系统的主要特征。 本次课程设计研究的是位置随动系统的超前校正,并对其进行分析。 关键词:随动系统超前校正相角裕度

目录 1 位置随动系统原理 (1) 1.1 位置随动系统原理图 (1) 1.2 各部分传递函数 (1) 1.3 位置随动系统结构框图 (4) 1.4 位置随动系统的信号流图 (4) 1.5 相关函数的计算 (4) 1.6 对系统进行MATLAB仿真 (5) 2 系统超前校正 (6) 2.1 校正网络设计 (6) 2.2 对校正后的系统进行Matlab仿真 (8) 3 对校正前后装置进行比较 (9) 3.1 频域分析 (9) 3.2 时域分析 (9) 4 总结及体会 (10) 参考文献 (12)

位置随动系统的超前校正 1 位置随动系统原理 1.1 位置随动系统原理图 图1-1 位置随动系统原理图 系统工作原理: 位置随动系统通常由测量元件、放大元件、伺服电动机、测速发电机、齿轮系及绳轮等组成,采用负反馈控制原理工作,其原理图如图1-1所示。 在图1-1中测量元件为由电位器Rr 和Rc 组成的桥式测量电路。负载固定在电位器Rc 的滑臂上,因此电位器Rc 的输出电压Uc 和输出位移成正比。当输入位移变化时,在电桥的两端得到偏差电压ΔU=Ur-Uc ,经放大器放大后驱动伺服电机,并通过齿轮系带动负载移动,使偏差减小。当偏差ΔU=0时,电动机停止转动,负载停止移动。此时δ=δL ,表明输出位移与输入位移相对应。测速发电机反馈与电动机速度成正比,用以增加阻尼,改善系统性能。 1.2 各部分传递函数 (1)自整角机: 作为常用的位置检测装置,将角位移或者直线位移转换成模拟电压信号的幅值或相位。自整角机作为角位移传感器,在位置随动系统中是成对使用的。与指令轴相连的是发送机,与系统输出轴相连的是接收机。 12()(()())()u t K t t K t εεθθθ=-=? (1-1) 零初始条件下,对上式求拉普拉斯变换,可求得电位器的传递函数为

位置随动系统建模与时域特性分析-自控

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目: 位置随动系统建模与时域特性分析 初始条件: 图示为一位置随动系统,测速发电机TG 与伺服电机SM 共轴,右边的电位器与负载共轴。放大器增益为Ka=40,电桥增益5K ε=,测速电机增益2t k =,Ra=6Ω,La=12mH ,J=0.006kg.m 2,C e =Cm=0.4N ?m/A ,f=0.2N ?m ?s ,i=0.1。其中,J 为折算到电机轴上的转动惯量,f 为折算到电机轴上的粘性摩擦系数,i 为减速比。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1) 求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递函数; (2) 当Ka 由0到∞变化时,用Matlab 画出其根轨迹。 (3) Ka =10时,用Matlab 画求出此时的单位阶跃响应曲线、求出超调量、峰值 时间、调节时间及稳态误差。 (4) 求出阻尼比为0.7时的Ka ,求出各种性能指标与前面的结果进行对比分析。 (5) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析计算的过 程,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处

标准书写。时间安排:

指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 1 系统建模及分析 0 1.1 各部分传递函数 0 1.1.1 电位器传感部分 ...................................................................................................... 0 1.1.2 放大器部分 .............................................................................................................. 1 1.1.3 电动机部分 .............................................................................................................. 1 1.1.4 测速发电机部分 ...................................................................................................... 2 1.1.5 减速器部分 .............................................................................................................. 2 1.2 位置随动系统建模 . (3) 1.2.1 结构图 ...................................................................................................................... 3 1.2.2 信号流图 .................................................................................................................. 3 1.3 开闭环传递函数 .. (3) 1.3.1 开环传递函数 .......................................................................................................... 3 1.3.2 闭环传递函数 . (4) 2 绘制根轨迹曲线 ...................................................................................................... 4 3 10 a K 时系统各项性能指标 .. (5) 3.1 单位阶跃响应曲线 ............................................................................................................. 6 3.2 各项性能指标计算值 (6) 4系统阻尼比为0.7时各种性能指标 (7) 4.1阻尼比为0.7时a K 值的计算 .......................................................................................... 7 4.2 性能指标对比 . (9) 5 设计心得体会 ........................................................................................................ 10 参考文献 (11)

计算机系统结构考试题库及答案

计算机系统结构试题及答案 一、选择题(50分,每题2分,正确答案可能不只一个,可单选 或复选) 1.(CPU周期、机器周期)是内存读取一条指令字的最短时间。 2.(多线程、多核)技术体现了计算机并行处理中的空间并行。 3.(冯?诺伊曼、存储程序)体系结构的计算机把程序及其操作数 据一同存储在存储器里。 4.(计算机体系结构)是机器语言程序员所看到的传统机器级所具 有的属性,其实质是确定计算机系统中软硬件的界面。 5.(控制器)的基本任务是按照程序所排的指令序列,从存储器取 出指令操作码到控制器中,对指令操作码译码分析,执行指令操作。 6.(流水线)技术体现了计算机并行处理中的时间并行。 7.(数据流)是执行周期中从内存流向运算器的信息流。 8.(指令周期)是取出并执行一条指令的时间。 9.1958年开始出现的第二代计算机,使用(晶体管)作为电子器件。 10.1960年代中期开始出现的第三代计算机,使用(小规模集成电路、 中规模集成电路)作为电子器件。 11.1970年代开始出现的第四代计算机,使用(大规模集成电路、超 大规模集成电路)作为电子器件。 12.Cache存储器在产生替换时,可以采用以下替换算法:(LFU算法、 LRU算法、随机替换)。

13.Cache的功能由(硬件)实现,因而对程序员是透明的。 14.Cache是介于CPU和(主存、内存)之间的小容量存储器,能高 速地向CPU提供指令和数据,从而加快程序的执行速度。 15.Cache由高速的(SRAM)组成。 16.CPU的基本功能包括(程序控制、操作控制、时间控制、数据加 工)。 17.CPU的控制方式通常分为:(同步控制方式、异步控制方式、联合 控制方式)反映了时序信号的定时方式。 18.CPU的联合控制方式的设计思想是:(在功能部件内部采用同步控 制方式、在功能部件之间采用异步控制方式、在硬件实现允许的情况下,尽可能多地采用异步控制方式)。 19.CPU的同步控制方式有时又称为(固定时序控制方式、无应答控 制方式)。 20.CPU的异步控制方式有时又称为(可变时序控制方式、应答控制 方式)。 21.EPROM是指(光擦可编程只读存储器)。 22.MOS半导体存储器中,(DRAM)可大幅度提高集成度,但由于(刷 新)操作,外围电路复杂,速度慢。 23.MOS半导体存储器中,(SRAM)的外围电路简单,速度(快),但 其使用的器件多,集成度不高。 24.RISC的几个要素是(一个有限的简单的指令集、CPU配备大量的 通用寄存器、强调对指令流水线的优化)。

位置随动控制系统设计与实现

位置随动控制系统设计与实现 王桂霞, 李 媛 (中国船舶重工集团公司第704研究所,上海 200031) 摘 要:计算机控制系统是保证位置随动系统功能和性能的重要部分,文中结合船用仿真 转台阐述了多机集散控制结构形式的位置随动转台的计算机控制系统方案,并以某位置随动转台为背景,对系统工程实现中的接口电路设计、电机、伺服放大器以及采样频率选取、程序设计等一系列问题进行了讨论,设计结果在位置随动试验样机中应用取得了良好效果. 关键词:位置随动;控制系统;采样频率;设计 中图分类号:T M571,TP273 文献标识码:A 文章编号:100528354(2007)1220029204 Desi gn and reali zati on of control syste m of rando m positi on WANG Gui 2Xia,L I Yuan (No .704Research I nstitute,CSI C,Shanghai 20031,China ) Abstract :The co m puter control syste m is an i m portant part of guaranteeing perfor m ance of control syste m of rando m position .Co m bining the m arine si m ulation turntable,this paper set forth the co m puter control syste m sche m e on the rando m position turntable w ith m ulti 2co m puter distributes control structure .Then taking a certain turntable of rando m position as background,it respectively discussed such key proble m s of syste m engineering re 2alization as the interface circuit design,choice of m otor ,servo am plifier and sam ple frequency and the program design .The design sche m e is applied in a rando m position proto type and gets a good result . Key words :rando m position;control syste m;sam ple frequency;design 收稿日期:2007211219 作者简介:王桂霞(19772),女,工程师,主要从事自动控制的工作位置随动控制系统设计与实现 0 引言 位置随动转台系统由机械台体和计算机控制系统两个重要部分组成,前者是实现仿真功能的基础,而后者是保证转台系统功能和性能的核心部分.转台既要满足一定的动态、静态指标要求,也要为试验提供方便的操作界面和数据采集、处理手段,计算机控制系统不仅要具有实时控制功能,而且应具备监控管理功能,因此,计算机控制系统设计就成为仿真转台设计和工程实现的重要内容. 当前在各种控制系统中计算机已得到非常广泛的应用,根据不同的情况,控制系统的结构形式各不相同,一般分为操作指示系统、直接数字控制系统(DDC )和集散控制系统(DCS )等类型,在下文中将讨论集散控制结构形式的计算机控制系统的设计问题,其中主 要包括结构设计、系统工程实现中的接口线路设计、采样频率选择、程序设计等内容,并给出设计结果. 1 结构设计 本仿真转台采用多机集散控制形式,即采用上下位机的两级式结构.图1 为集散控制系统应用于本转 图1 原理框图

实验五 步进电机单轴定位控制实验

方向信号 (a) 脉冲+方向 (b) 正脉冲+负脉冲 实验五 步进电机单轴定位控制实验 一、实验目的 1. 学习和掌握步进电机及其驱动器的操作和使用方法; 2. 学习和掌握步进电机单轴定位控制方法; 3.学习和掌握PLC 单轴定位模块的基本使用方法。 二、实验原理 步进电动机是一种将电脉冲信号转换为相应的角位移或直线位移量的机电执行元件,即步进电动机输入的是电脉冲信号,输出的是角位移或直线位置。每给一个脉冲,步进电动机转动一个角度,这个角度称为步距角。运动速度正比于脉冲频率,角位移正比于脉冲个数。 步进电动机典型控制系统框图如图1-2-9所示。 图1-2-9 步进电动机典型控制系统框图 位置控制单元可根据需要的频率和个数以及设定的加减时间控制步进电动机运动。 由于步进电动机需要正反转运动,因此定位单元的输出脉冲形式有“脉冲+方向”和“正脉冲+负脉冲”两种,它们均可控制步进电动机正反转运动。输出脉冲形式通过参数设定来选择。其脉冲形式如图1-2-10所示。 图1-2-10 定位模块的两种输出脉冲形式

PLS ) 由于步进电动机的电磁惯性和所驱动负载的机械惯性,速度不能突变,因此定位模块要控制升降频过程。步进电机升、降频过程如图1-2-11。一般情况下,S 2=S 3。 图 1-2-11 步进电机升、降频示意图 其中:f 1——设定的运行频率,应小于步进电动机的最高频率; S 1——设定的总脉冲个数; S 2——升频过程中脉冲个数,由加速时间和运行频率确定; S 3——降频过程中脉冲个数,由减速时间和运行频率确定。 步进电动机驱动器将位置定位模块的输出脉冲信号进行分配并放大后驱动步进电动机的各相绕组,依次通电而旋转。驱动器也可接受两种不同形式的脉冲信号,通过开关来选择,定位模块和驱动器的脉冲形式要相同。另外,为了提高步进电动机的低频性能,驱动器一般具有细分功能,多个脉冲步进电动机转动一步,细分系数一般为1、2、4、8、16、32等几种,通过拨码开关来设定。 步进电动机驱动生产机械的运动部件。 图1-2-12 实验系统结构框图 位置定位模块、步进电动机及驱动器种类很多,本实验中采用的是三菱FX2N 系列PLC 中的双轴定位模块FX2N-20GM ,该模块与PLC 相连,可以单独或同时控制两个步进电动机,

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

位置随动系统课程设计之令狐文艳创作

第一章位置随动系统的概述 令狐文艳 1.1 位置随动系统的概念 位置随动系统也称伺服系统,是输出量对于给定输入量的跟踪系统,它实现的是执行机构对于位置指令的准确跟踪。位置随动系统的被控量(输出量)是负载机械空间位置的线位移和角位移,当位置给定量(输入量)作任意变化时,该系统的主要任务是使输出量快速而准确地复现给定量的变化,所以位置随动系统必定是一个反馈控制系统。 位置随动系统是应用非常广泛的一类工程控制系统。它属于自动控制系统中的一类反馈闭环控制系统。随着科学技术的发展,在实际中位置随动系统的应用领域非常广泛。例如,数控机床的定位控制和加工轨迹控制,船舵的自动操纵,火炮方位的自动跟踪,宇航设备的自动驾驶,机器人的动作控制等等。随着机电一体化技术的发展,位置随动系统已成为现代工业、国防和高科技领域中不可缺少的设备,是电力拖动自动控制系统的一个重要分支。 1.2位置随动系统的特点及品质指标 位置随动系统与拖动控制系统相比都是闭环反馈控制系统,即通过对输出量和给定量的比较,组成闭环控制,这两个系统的控制原理是相同的。对于拖动调速系统而言,给定量是恒值,要求系统维持输出量恒定,所以抗扰动性能成为主要技术指标。对于随动系统而言,给定量即位置指令是经常变化的,是一个随机变量,要求输出量准确跟随给定量的变化,因而跟随性能指标即系统输出响应的快速性、灵敏性与准确性成为它的主要性能指标。位置随动系统需要实现位置反馈,所以系统结构上必定要有位置环。位置环是随动系统重要的组成部分,位置随动系统的基本特征体现在位置环上。根据给定信号与位置检测反馈信号综合比较的不同原理,位置随动系统分为模拟与数字式两类。总结后可得位置随动系统的主要特征如下:

基于plc的单轴数控运动系统

基于PLC的单轴数控运动系统 摘要 以步进电机为动力装置,使用PLC对其进行控制,滚珠丝杆作为传动装置,作为一单轴数控运动系统控制装置,对普通机床进行简易的数控化改造。 关键词单轴数控可编程控制器步进电机滚珠丝杆

目录 第一章单轴数控运动系统的应用领域及特点 (1) 1.1单轴数控运动系统的基本概念 (1) 1.2单轴数控系统的运用领域 (1) 1.3单轴数控运动系统的特点 (3) 1.3.1高速、高精密化 (3) 1.3.2高可靠性 (4) 1.3.3智能化、网络化、柔性化和集成化 (4) 第二章可编程控制器(PLC)与步进电机 (5) 2.1可编程控制器起源与特点 (6) 2.1.1可编程控制器起源 (6) 2.1.2可编程控制器的主要特点 (6) 2.2可编程控制器的语言特点和形式 (7) 2.2.1语言特点 (7) 2.2.2编程语言的形式 (8) 2.3步进电机介绍 (10) 2.4步进电机分类及特点 (11) 2.4.1步进电机分类 (11) 2.4.2步进电机特点 (11) 2.5步进电机结构及工作原理 (12) 2.5.1步进电机结构 (12) 2.5.2步进电机工作原理 (13) 2.6步进电机的PLC直接控制技术 (14) 2.6.1步进电机控制原理 (14) 2.6.2步进电机的驱动器控制 (16) 2.6.3步进电机的PLC直接控制技术 (17) 第三章PLC实现单轴数控运动系统的设计及调试 (19) 3.1设计要求 (19) 3.2步进电机PLC控制系统的硬件设计 (19) 3.3硬件选择 (20) 3.4PLC设计I/O分配 (22) 3.4.1PLC I/O分配 (22) 3.4.2步进驱动器I/O分配 (23) 3.4.3电气接口I/O分配图 (23) 3.5软件设计及调试 (25) 3.5.1PLC梯形图设计 (24) 3,5.2PLC指令编辑图 (27) 第四章PLC单轴数控的展望及未来发展方向 (29) 4.1PLC单轴数控的展望 (29) 4.2PLC单轴数控的未来发展方向 (30) 结论 (33) 致谢 (34)

单轴位置控制系统设计

1.单轴位置控制系统设计 1.1. 基本控制要求 该单元有电机带动轴运动,气泵产生气体带动气缸(用气缸模拟机械手)上下运动和吸附物块组成。电机带动轴的左移Y0和右移Y1。轨道有三个接近开关(1、2、 3)定位三个工位, 气缸由电磁阀控制进气和出气,实现气缸的上升和下降(Y2), 吸附开关X3控制吸附物块(Y3),设计有手动和自动控制部分,可以通过开关X14选择控制方式。 1.1.1.手动控制要求 通过X14开关选择手动控制方式,通过控制面板来控制,手柄控制气缸向左X16、向右X17移动,气缸的上X4和X5下通过面板旋钮控制,物块的吸附通过面板旋钮 X3控制,来完成物块在三个工位上的移动。 1.1. 2.自动控制要求 通过X14开关选择自动控制方式,按复位按钮,气缸回到工位1,按启动按钮后,气缸下降吸附物块,然后上升,再从工位1移动到工位2,再下降,释放物块回升气缸,4秒过后气缸下降吸附物块从工位2移动到工位3,再下降释放物块回升气缸,4秒后再下降吸附物块从工位3移动到工位1,下降释放物块回升气缸,工作全部完成,气缸停止在工位1。

1.2.硬件设计 1.2.1 I/O地址分配表 根据对单轴运动控制系统的分析,分配对应的I/O口,I/O地址分配表如表XO 急停按钮X11 停止按钮X1 位置1 X12 右移 X2 位置2 X13 手动 X3 位置3 X14 吸附 X5 吸附/松开X15 上移 X6 上位X16 下移 X7 下位X17 左移 X10 启动按钮 表1.2.1.1 PLC输入设备 Y4 吸附控制 Y10 上升控制 Y11 下降控制 Y2 左移控制 Y3 右移控制 Y6 启动控制 Y5 停止控制 Y7 复位控制 表1.2.2.2PLC输出设备

位置随动系统超前校正设计讲解

课程设计任务书 学生姓名: 专业班级:_____________________ 指导教师:____________ 工作单位:________________ 题目:位置随动系统的超前校正 初始条件: & = 0.12 V.s, 2 Ra=8O, La=15mH J=0.0055kg.m , C e=Cm=0.38N.m/A,f=0.22N.m.s,减速比i=0.4 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递函数; 2、求出开环系统的截至频率、相角裕度和幅值裕度,并设计超前校正装置,使得系统的相角裕 度增加10度。 3、用Matlab对校正前后的系统进行仿真分析,比较其时域相应曲线有何区别,并说明原因。 时间安排: 任务时间(天) 审题、查阅相关资料 1 分析、计算 1.5

指导教师签名:年月日 系主任(或责任教师)签名:年月日 位置随动系统的超前校正 1位置随动系统原理分析 1.1系统原理分析 工作原理:输入一定的角度弓,如果输出角度礼等于输入角度齐,则电动机不转动,系统处于平衡状态;如果兀不等于4,则电动机拖动工作机械朝所要求的方向快速偏转,直到电动机停止转动,此时系统处于与指令同步的平衡工作状态,即完成跟随。 电枢控制直流电动机的工作实质:是将输入的电能转换为机械能,也就是有输入的电枢电压u a t在电枢回路中产生电枢电流i a t,再由电流i a t与励磁磁通相互作用产生电磁转矩M m t,从而拖动负载运动。 工作过程:该系统输入量为角度信号,输出信号也为角度信号。系统的输入角度信号片与反馈来的输出角度信号入通过桥式电位器形成电压信号u;,电压信号u ;与测速电机的端电压ut相减形成误差信号u,误差信号u再经过放大器驱动伺服电机转到,经过减速器拖动负载转动。 1.2系统框图 由题目可得系统框图如图1.1所示:

位置随动系统建模与分析--自控课设教材

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 自动化学院 题 目: 位置随动系统建模与分析 初始条件: 图示为一位置随动系统,放大器增益为8=a k ,电桥增益2=εk ,测速电机增 益15.0=t k V.s ,Ω=5.7a R ,La=14.25mH ,J=0.0006kg .m 2, C e =Cm=0.4N.m/A, f=0.2N.m.s, 减速比i=10 。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等 具体要求) 1、 求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递 函数; 2、 当Ka 由0到∞变化时,用Matlab 画出其根轨迹。 3、 Ka =10时,用Matlab 画出此时的单位阶跃响应曲线、求出超调量、超调 时间、 调节时间及稳态误差。 4、 求出阻尼比为0.7时的Ka ,求出此时的性能指标与前面的结果进行对比分 析。

时间安排: 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 1 位置随动系统原理 (3) 1.1 位置随动系统原理框图 (3) 1.2 元件结构图分析 (3) 1.3 位置随动系统各元件传递函数 (5) 1.4 位置随动系统的结构框图 (5) 1.5 位置随动系统的信号流图 (6) 1.6 相关函数的计算 (6) 2根轨迹曲线 (7) 2.1参数根轨迹转换 (7) 2.2绘制根轨迹 (7) 3单位阶跃响应分析 (8) 3.1单位阶跃响应曲线 (8) 3.2单位阶跃响应的时域分析 (9) 4系统性能对比分析 (11) 4.1 新系统性能指标计算 (11) 4.2 系统性能指标对比分析 (11) 5 总结体会 (12) 参考文献 (13)

机器人抓取装置位置控制系统校正装置设计

自动控制原理课程设计题目:机器人抓取装置位置控制系统校正装置设计 专业:电气工程及其自动化 姓名: 班级:学号: 指导老师:职称:

初始条件: 一个机器人抓取装置的位置控制系统为一单位负反馈控制系统,其传递函数为()()() 15.013 0++=s s s s G ,设计一个滞后校正装置,使系统的相 角裕度?=45γ。 设计内容: 1.先手绘系统校正前的bode 图,然后再用MATLAB 做出校正前系统的bode 图,根据MATLAB 做出的bode 图求出系统的相角裕量。 2.求出校正装置的传递函数 3. 用MATLAB 做出校正后的系统的bode 图,并求出系统的相角裕量。 4.在matlab 下,用simulink 进行动态仿真,在计算机上对人工设计系统进行仿真调试,确使满足技术要求。 5.对系统的稳定性及校正后的性能说明 6.心得体会。

1频率法的串联滞后校正特性及方法 1.1特性:当一个系统的动态特性是满足要求的,为改善稳态性能,而又不影响其动态响应时,可采用此方法。具体就是增加一对靠的很近并且靠近坐标原点的零、极点,使系统的开环放大倍数提高β倍,而不影响开环对数频率特性的中、高频段特性。 1.2该方法的步骤主要有: ()1绘制出未校正系统的bode 图,求出相角裕量0γ,幅值裕量g K 。 ()2在bode 图上求出未校正系统的相角裕量εγγ+=期望处的频率 2c ω,2c ω作为校正后系统的剪切频率,ε用来补偿滞后校正网络2c ω处的 相角滞后,通常取??=15~5ε。 ()3令未校正系统在2c ω的幅值为βlg 20,由此确定滞后网络的β值。 ()4为保证滞后校正网络对系统在2c ω处的相频特性基本不受影响,可 按10 ~ 2 1 2 2 2c c ωωτ ω= =求得第二个转折频率。 ()5校正装置的传递函数为()1 1 ++= s s s G C βττ ()6画出校正后系统的bode 图,并校验性能指标 2确定未校正前系统的相角裕度 2.1先绘制系统的bode 图如下:

位置随动系统课程设计

第一章位置随动系统的概述 1.1 位置随动系统的概念 位置随动系统也称伺服系统,是输出量对于给定输入量的跟踪系统,它实现的是执行机构对于位置指令的准确跟踪。位置随动系统的被控量(输出量)是负载机械空间位置的线位移和角位移,当位置给定量(输入量)作任意变化时,该系统的主要任务是使输出量快速而准确地复现给定量的变化,所以位置随动系统必定是一个反馈控制系统。 位置随动系统是应用非常广泛的一类工程控制系统。它属于自动控制系统中的一类反馈闭环控制系统。随着科学技术的发展,在实际中位置随动系统的应用领域非常广泛。例如,数控机床的定位控制和加工轨迹控制,船舵的自动操纵,火炮方位的自动跟踪,宇航设备的自动驾驶,机器人的动作控制等等。随着机电一体化技术的发展,位置随动系统已成为现代工业、国防和高科技领域中不可缺少的设备,是电力拖动自动控制系统的一个重要分支。 1.2 位置随动系统的特点及品质指标 位置随动系统与拖动控制系统相比都是闭环反馈控制系统,即通过对输出量和给定量的比较,组成闭环控制,这两个系统的控制原理是相同的。对于拖动调速系统而言,给定量是恒值,要求系统维持输出量恒定,所以抗扰动性能成为主要技术指标。对于随动系统而言,给定量即位置指令是经常变化的,是一个随机变量,要求输出量准确跟随给定量的变化,因而跟随性能指标即系统输出响应的快速性、灵敏性与准确性成为它的主要性能指标。位置随动系统需要实现位置反馈,所以系统结构上必定要有位置环。位置环是随动系统重要的组成部分,位置随动系统的基本特征体现在位置环上。根据给定信号与位置检测反馈信号综合比较的不同原理,位置随动系统分为模拟与数字式两类。总结后可得位置随动系统的主要特征如下: 1.位置随动系统的主要功能是使输出位移快速而准确地复现给定位移。 2.必须具备一定精度的位置传感器,能准确地给出反映位移误差的电信号。 3.电压和功率放大器以及拖动系统都必须是可逆的。 4.控制系统应能满足稳态精度和动态快速响应的要求,其中快速响应中,更强调快速跟随性能。 1.3 位置随动系统的基本组成

自动控制原理课程设计题目

自动控制原理课程设计题目及要求 一、单位负反馈随动系统的开环传递函数为 1、画出未校正系统的Bode 图,分析系统是否稳定 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标 (1)静态速度误差系数K v ≥100s -1; (2)相位裕量γ≥30° (3)幅频特性曲线中穿越频率ωc ≥45rad/s 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设单位负反馈随动系统固有部分的传递函数为 1、画出未校正系统的Bode 图,分析系统是否稳定。 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标: (1)静态速度误差系数K v ≥5s -1; (2)相位裕量γ≥40° (3)幅值裕量K g ≥10dB 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 三、设单位负反馈系统的开环传递函数为 ) 2(4 )(+= s s s G k 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、设计系统的串联校正装置,要求校正后的系统满足指标: 闭环系统主导极点满足ωn =4rad/s 和ξ=0.5。 3、给出校正装置的传递函数。 4、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量Kg 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 四、设单位负反馈系统的开环传递函数为 ) 2)(1(06 .1)(++= s s s s G k 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、设计系统的串联校正装置,要求校正后的系统满足指标: (1)静态速度误差系数K v =5s -1;

单轴运动控制器设计方案

单轴运动控制器设计方案 第一章绪论 1.1 引言 单轴运动控制器,成本低,性能好,参数设计灵活,方便,能在不同位移、速度、加速度下实现步进电机精确、快速、有效的定位控制,有一定市场应用价值。目前单轴运动控制器在自动流水生产线、小型钻孔设备等生产设备上得到了较好的应用。可实现自动化操作,本设计具有很大的实用价值。 1.1.1 设计背景与意义 自20世纪80年代初期,通用运动控制器已经开始在国外多个行业应用,尤其是在微电子行业的应用更加广泛。当时运动控制器在我国的应用规模和应用围很小,国也没有厂商开发通用的运动控制器产品。目前,国的运动控制器生产厂商提供的产品大一致可以分为3类:第一类是以单片机或微处理器作为核心的运动控制器,这类运动控制器运行速度较慢,精度不高,成本相对较低。在一些只需要低速运动控制和对轨迹要求不高的轮廓控制场合应用。第二类是以专用芯片(AsIc)作为核心处理器的运动控制器,这种控制器结构比较简单,但是大多数只能输出脉冲信号,工作于开环控制方式。由于这类控制器不能提供高速连续插补,也没有前赡功能(Look a}lead),特别是对于大量的小线段连续加工的场合,如模具雕铣加工,就不能使用这类控制器。第三类是基于Pc总线的以DsP和FPGA作为核心处理器的开放式运动控制器。这类开放式运动控制器以DsP芯片作为运动控制器的核心处理器,以PC机作为信息处理平台,运动控制器以插卡形式嵌入PC 机,即“Pc+运动控制器”的模式。这样将Pc机的信息处理能力和开放式的特点与运动控制器的运动轨迹控制能力有机地结合在一起,具有信息处理能力强、开放程度高、运动轨迹控制准确、通用性好的特点。这类运动控制器充分利用了DsP 的高速数据处理功能和FPGA的超强逻辑处理能力,便于设计出功能完善、性能优越的运动控制系统。 步进电机是开环伺服系统的执行元件,它将脉冲信号转换成直线或角位移,具有较好的控制性能,其启动、停车、反转及其它任何运行方式的改变都可在少数脉冲完成,且可获得较高的控制精度,因此在经济型数控机床及自动化设备中得到了广泛的应用。目前,步进电机的控制方法是多种多样的,有传统方式的,也有采用PLC控制的,而单片机是介于工控计算机和可编程控制器之间的一种新型控制器,它控制功能强,灵活性和适应性好,成本低廉,正逐渐成为步进电机

步进电机定位控制系统设计

学生学号 课程设计 题目步进电机定位控制系统设计 学院信息工程学院 专业 班级 姓名 指导老师

2013~2014学年6月20日

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:步进电机定位控制系统设计 初始条件: 1. 具备电子电路的基础知识及查阅资料和手册的能力; 2. 熟悉ISE 仿真软件的操作与运用; 3. 掌握步进电机的工作原理。 要求完成的主要任务: 1. 设计一个基于FPGA 的4 相步进电机定位控制系统,包括步进电机方向设定 电路模块、步进电机步进移动与定位控制模块和编码输出模块。 2.撰写符合学校要求的课程设计说明书。 时间安排: 1、2014 年06月11日,布置课设具体实施计划与课程设计报告格式的要求说明。 2、2014 年06月12日至2014年06月17日,设计说明书撰写。 3、2014年06月18日,上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 摘要........................................................................................................................ I Abstract ................................................................................................................. II 1 设计目标及简介 (1) 1.1设计目标 (1) 1.2 步进电机简介 (1) 2 VHDL语言介绍 (2) 3 Quartus Ⅱ介绍 (3) 4 系统组成 (4) 4.1 四相步进电机工作原理 (4) 4.2 系统组成 (6) 5 模块设计 (7) 5.1 FPGA模块图及信号说明 (7) 5.2 系统模块构成 (7) 5.3 各模块间整体共享的电路内部传递信号 (7) 5.4 电机方向设定电路模块 (8) 5.5 步进电机步进移动与定位控制模块 (9) 5.6 编码输出模块 (9) 6 程序设计与仿真 (10) 7 仿真结果 (16) 8 实验总结 (18) 参考文献 (19)

一类位置随动系统的测速反馈控制

一类位置随动系统的测速反馈控制 1位置随动系统原理 1.1位置随动系统工作原理 图1-1位置随动系统原理图 该系统为一自整角机位置随动系统,用一对自整角机作为位置检测元件,并形成比较电路。发送自整角机的转子与给定轴相连:接收自整角机的转子与负载轴(从动轴)相连。TX 与TR 组成角差测量线路。若发送自整角机的转子离开平衡位置转过一个角度r θ,则在接收自整角机的单相绕组转子的单相绕组上将感应出一个偏差电压e u ,它是一个振幅为em u 、频率与发送自整角机激励相同的交流调制电压。即sin e em u u t ω=?在一定范围内,em u 正比于r c θθ-,即[]em e r c u k θθ=-,所以可得[]sin e e r c u k t θθω=-这就是随动系统中接收自整角机所产生的偏差电压的表达式,它是一个振幅随偏差()r c θθ-的改变而改变的交流电压。因此,e u 经过交流放大器放大,放大后的交流信号作用在两相伺服电动机两端。电动机带动负载和接收自整角机的转子旋转,实现r c θθ=,以达到跟随的目的。为了使电动机转速恒定、平稳,引入了测速负反馈。 系统的被控对象是负载轴,被控量使负载轴转角c θ,电动机是执行机构,功率放大器器信号放大作用,调制器负责将交流调制为直流电供给直流测速发电机工作电压,测速电动机是检测反馈元件。 1.2单元电路模块分析 1.2.1自整角机

自整角机是常用的位置检测装置,将角位移或者直线位移转换成模拟电压信号的幅值或相位。自整角机作为角位移传感器,在位置随动系统中是成对使用的。与指令轴相连的是发送机,与系统输出轴相连的是接收机。则自整角机的表达式为 ()[()()]()r c u t K t t K t εεθθθ=-=? 在零初始条件下,拉氏变换为()()u s K s εθ=?,则自整角机的传递函数为 1()()() u s G s K s εθ==? 自整角机的结构图如图1-2所示 图1-2 自整角机 1.2.2功率放大器 由于运算放大器具有输入阻抗很大,输出阻抗小的特点,在工程上被广泛用来作信号放大器。其输出电压与输入电压成正比,即有 ()[()()]a a f u t K u t u t =- 在零初始条件下,拉氏变换为()[()()]()a a f a u s K u s u s K u s =-=??,则传递函数为 21()()() a a u s G s K u s == 式中()a u s 为输出电压,1()u s 为输入电压,a K 为放大倍数。 图1-3 功率放大器 1.2.3两相伺服电机

自动送料装车和单轴位置控制报告分析

自动送料装车和单轴位置 控制报告分析 Prepared on 22 November 2020

河南工程学院 课程设计 报告 专业电气工程及其自动化 班级 1241 姓名雷小芳 2014年12月28日

课程设计成绩评定标准及成绩 等级: 评阅人:职称:讲师 日期: 2015 年月日

河南工程学院 课程设计报告 设计名称:电气控制与PLC技术课程设计 设计时间:自12 月 22 日至 12 月 26日, 共5 天。 设计地点:河南工程学院3#A418 设计单位:河南工程学院电气信息学院 指导教师:邓丽霞院长:徐其兴

目录

1 前言 随着社会迅速的发展,各机械产品层出不穷。控制系统的发展已经很成熟,应用范围涉及各个领域,例如:机械、汽车制造、化工、交通、军事、民用等。PLC 专为工业环境应用而设计,其显着的特点之一就是可靠性高,抗干扰能力强。PLC 的应用不但大大地提高了电气控制系统的可靠性和抗干扰能力,而且大大地简化和减少了维修维护的工作量。PLC以其可靠性高、抗干扰能力强、编程简单、使用方便、控制程序可变、体积小、质量轻、功能强和价格低廉等特点,在机械制造、冶金等领域得到了广泛的应用。在现代化工业生产中,为了提高劳动生产率,降低成本,减轻工人的劳动负担,要求整个工艺生产过程全盘自动化,这就离不开控制系统。控制系统是整个生产线的灵魂,对整个生产线起着指挥的作用。一旦控制系统出现故障,轻者影响生产线的继续进行,重者甚至发生人身安全事故,这样将给企业造成重大损失。 自动送料装车控制系统采用了PLC控制。从自动送料装车的工艺流程来看,其控制系统属于自动控制与手动控制相结合的系统,因此,此自动送料装车电气控制系统设计具有手动和自动两种工作方式。我在设计程序时采用了基本指令编程,便于各种附加功能的实现。自动送料装车是基于PLC控制系统来设计的,控制系统的每一步动作都直接作用于送料小车的运行,因此,自动送料小车性能的好坏与控制系统性能的好坏有着直接的关系。自动送料小车能否正常运行、工作效率的高低都与控制系统密不可分。 单轴位置控制系统采用了PLC控制,从单轴位置控制的工艺流程来看,其控制系统属于自动控制与手动控制相结合的系统,因此,此单轴位置控制系统设计具有手动和自动两种工作方式。手动控制可以通过硬件进行控制也可以通过编程软件控

相关文档
相关文档 最新文档