文档库 最新最全的文档下载
当前位置:文档库 › 基于Matlab的秃杉种群竞争数学模型仿真分析_李骄

基于Matlab的秃杉种群竞争数学模型仿真分析_李骄

数学建模(Matlab)

数学规划作业(MatLab) 1、某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台.每季度的生产费用为()2 =+ f x ax bx (单位:元), 其中x是该季度生产的台数.若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c元.已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问:工厂应如何安排生产计划,才能既满足合同又使总费用最低.讨论a、b、c变化对计划的影响,并作出合理的解释. 解: 问题的分析和假设: 分析: 问题的关键在于由于工厂的生产能力足以满足每个季度用户的需求,但是为了使总费用最少,那么利用每个季度生产费用的不同,可用利用上个生产费用低的季度多生产来为下个季度进行准备,前提是本月节省下的费用减去总的发动机存储费用还有剩余,这样生产才有价值,才可能满足合同的同时又能使总费用最低。基本假设:1工厂的生产能力不受外界环境因素影响。2为使总费用最低,又能满足合同要求,各个季度之间的生产数量之间是有联系的。3第一季度开始时无存货。4工厂每季度的生关费用与本季度生产的发动机台数有关。5生产要按定单的数量来进行,生产的数量应和订单的数量相同,以避免生产出无用的机器。 符号规定:X1―――第一季度生产发动机的数量 X2―――第二季度生产发动机的数量

X3―――第三季度生产发动机的数量 建模: 1.三个季度发动机的总的生产量为180台。 2.每个季度的生产量和库存机器的数量之和要大于等于本季度的交货数量。 3.每个月的生产数量要符合工厂的生产能力。 4.将实际问题转化为非线性规划问题,建立非线性规划模型 目标函数 min f(x)=50(x1+x2+x3)+0.2(x12+x22+x32)+4(x1-40)+4(x1+x2-100) 整理,得 min f(x)=50(x1+x2+x3)+0.2(x12+x22+x32)+4(2x1+x2-140) 约束函数s.t x1+x2≥100; x1+x2+x3=180; 40≤x1≤100; 0≤x2≤100; 0≤x3≤100; 求解的Matlab程序代码: M-文件 fun.m: function f=fun (x); f=50*(x(1)+x(2)+x(3))+0.2*(x(1)^2+x(2)^2+x(3)^2)+4*(2*x(1) +x(2)-140)主程序fxxgh.m:

2015研究生数学建模MATLAB程序(完整版)

′ú??ò?£o % ?a?ü1y3ì?°??ò??ü??í3?? clear clc fid1=fopen('mingwen1.txt','r'); str1=fgets(fid1); fclose(fid1); fid2=fopen('jiemihou1.txt','r'); str2=fgets(fid2); fclose(fid2); % é?è¥μ¥′ê????μ?????oí±êμ?·?o? ad=find(str2==',');str2(ad)='';ad=find(str2=='.');str2(ad)='';ad=find(str2==';') ;str2(ad)=''; ad=find(str2=='''');str2(ad)='';ad=find(str2=='?');str2(ad)='';ad=find(str2=='£o');str2(ad)=''; ad=find(str2=='"');str2(ad)='';ad=find(str2=='-');str2(ad)='';ad=find(str2= ='/');str2(ad)=''; ad=find(str2==' ');str2(ad)=''; for i=0:25; ad=find(str1=='A'+i);str1(ad)='a'+i; end for i=0:25; ad=find(str2=='A'+i);str2(ad)='a'+i; end n1(1,26)=0; n2(1,26)=0; n1(1)=sum(str1=='a');n2(1)=sum(str2=='a'); n1(2)=sum(str1=='b');n2(2)=sum(str2=='b'); n1(3)=sum(str1=='c');n2(3)=sum(str2=='c'); n1(4)=sum(str1=='d');n2(4)=sum(str2=='d'); n1(5)=sum(str1=='e');n2(5)=sum(str2=='e'); n1(6)=sum(str1=='f');n2(6)=sum(str2=='f'); n1(7)=sum(str1=='g');n2(7)=sum(str2=='g'); n1(8)=sum(str1=='h');n2(8)=sum(str2=='h'); n1(9)=sum(str1=='i');n2(9)=sum(str2=='i'); n1(10)=sum(str1=='j');n2(10)=sum(str2=='j'); n1(11)=sum(str1=='k');n2(11)=sum(str2=='k'); n1(12)=sum(str1=='l');n2(12)=sum(str2=='l'); n1(13)=sum(str1=='m');n2(13)=sum(str2=='m'); n1(14)=sum(str1=='n');n2(14)=sum(str2=='n'); n1(15)=sum(str1=='o');n2(15)=sum(str2=='o');

种群相互竞争模型

数学实验设计 课题: 两种群相互竞争模型如下: ()1(11)12()2(12)12x y x t r x s n n x y y t r y s n n ? =--??? ?=--?? 其中x (t ),y(t)分别是甲乙两种群`的数量,r1,r2为它们的固有增长率,n1,n2为它们的最大容量。s1的含义是,对于供养甲的资源而言,单位数量乙(相对n2)的消耗量为单位数量甲(相对n1)消耗的s1倍,对于s2也可做相应的解释。 分析: 这里用x (t)表示甲种群在时刻t 的数量,即一定区域内的数量。y(t)表示乙种群在时刻t 的数量。假设甲种群独立生活时的增长率(固有增长率)为r1,则x (t)/ x=r1,而种群乙的存在会使甲的增长率减小,且甲种群数量的增长也会抑制本身数量的增长,即存在种间竞争。这里,我们设增长率的一部分减少量和种群乙的数量与最大容纳量的比值成正比,与s1(s1表示最大容纳量乙消耗的供养甲的资源是最大容纳量甲消耗该资源的s1倍)成正比。另一部分的减少量和种群甲的数量与甲的最大容纳量的比值成正比。则我们可以得到如下模型: x(t)=r1*x*(1-x/n1-s1*y/n2)

同样,我们可以得到乙种群在t时刻的数量表达式:y(t)=r2*y*(1-s2*x/n1-y/n2) 如果给定甲、乙种群的初始值,我们就可以知道甲、乙种群数量随时间的演变过程。 对于上述的模型,我们先设定好参数以后,就可以用所学的龙格库塔方法及MATLAB 软件求其数值解; 问题一: 设r1=r2=1,n1=n1=100,s1=0.5,s2=2, 初值x0=y0=10,计算x(t),y(t),画出它们的图形及相图(x,y),说明时间t充分大以后x(t),y(t)的变化趋势(人民今天看到的已经是自然界长期演变的结局)。 编写如下M文件: function xdot=jingzhong(t,x) r1=1;r2=1;n1=100;n2=100;s1=0.5;s2=2; xdot=diag([r1*(1-x(1)/n1-s1*x(2)/n2),r 2*(1-s2*x(1)/n1-x(2)/n2)])*x; 然后运行以下程序: ts=0:0.1:10; x0=[10,10]; [t,x]=ode45(@jingzhong,ts,x0); [t,x] plot(t,x),grid,

MATLAB及在数学建模中的应用

第1讲MATLAB及 在数学建模中的应用 ? MatLab简介及基本运算?常用计算方法 ?应用实例

一、 MatLab简介及基本运算 1.1 MatLab简介 1.2 MatLab界面 1.3 MatLab基本数学运算 1.4 MatLab绘图

1.1 MatLab简介?MATLAB名字由MATrix和 LABoratory 两词组成。20世纪七十年代后期, 美国新墨西哥大学计算机科学系主任Cleve Moler教授为减轻学生编程负担,为学生设计了一组调用LINPACK和EISPACK库程序的“通俗易用”的接口,此即用FORTRAN编写的萌芽状态的MATLAB。

?经几年的校际流传,在Little的推动下,由Little、Moler、Steve Bangert合作,于1984年成立了MathWorks公司,并把MATLAB正式推向市场。从这时起,MATLAB的内核采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能。

?1997年春,MATLAB5.0版问世,紧接着是5.1、5.2、5.3、6.0、6.1、6.5、7.0版。现今的MATLAB拥有更丰富的数据类型和结构、更友善的面向对象、更加快速精良的图形可视、更广博的数学和数据分析资源、更多的应用开发工具。 ?20世纪九十年代的时候,MATLAB已经成为国际控制界公认的标准计算软件。

?MATLAB具有用法简易、可灵活运用、程式结构强又兼具延展性。以下为其几个特色: ①可靠的数值运算和符号计算。在MATLAB环境中,有超过500种数学、统计、科学及工程方面的函 数可使用。 ②强大的绘图功能。 MATLAB可以绘制各种图形,包括二维和三维图形。 ③简单易学的语言体系。 ④为数众多的应用工具箱。

数学建模matlab例题参考及练习

数学实验与数学建模 实验报告 学院: 专业班级: 姓名: 学号: 完成时间:年月日

承 诺 书 本人承诺所呈交的数学实验与数学建模作业都是本人通过学习自行进行编程独立完成,所有结果都通过上机验证,无转载或抄袭他人,也未经他人转载或抄袭。若承诺不实,本人愿意承担一切责任。 承诺人: 年 月 日 数学实验学习体会 (每个人必须要写字数1200字以上,占总成绩的20%) 练习1 一元函数的图形 1. 画出x y arcsin =的图象. 2. 画出x y sec =在],0[π之间的图象. 3. 在同一坐标系中画出x y =,2x y =,3 x y = ,3x y =,x y =的图象. 4. 画出3 2 3 2)1()1()(x x x f + +-=的图象,并根据图象特点指出函数)(x f 的奇偶性. 5. 画出)2ln(1++=x y 及其反函数的图象. 6. 画出3 21+=x y 及其反函数的图象.

练习2 函数极限 1.计算下列函数的极限. (1) x x x 4 cos 1 2 sin 1 lim 4 - + π → . 程序: sym x; f=(1+sin(2*x))/(1-cos(4*x)); limit(f,x,pi/4) 运行结果: lx21 ans = 1 (2). 程序: sym x; f=(1+cos(x))^(3*sec(x)); limit(f,x,pi/2) 运行结果: lx22 ans = exp(3) (3) 2 2 ) 2 ( sin ln lim x x x - π π → . 程序: sym x; f=log(sin(x))/(pi-2*x)^2; limit(f,x,pi/2) 运行结果: lx23 ans = -1/8 (4) 2 1 2 lim x x e x →. 程序: x x x sec 3 2 ) cos 1( lim+ π →

数学建模章绍辉版第四章作业

第四章作业 第二题: 针对严重的交通情况,国家质量监督检验检疫局发布的国家标准,车辆驾驶人员血液中的酒精含量大于或等于20mg/100ml,小于80mg/100ml 为饮酒驾车,血液中的酒精含量大于或等于80mg/100ml 的为醉酒驾车。 下面分别考虑大李在很短时间内和较长时间内(如2个小时)喝了三瓶啤酒,多长时间内驾车就会违反新的国家标准。 1、 问题假设 大李在短时间内喝下三瓶啤酒后,酒精先从吸收室(肠胃)吸收进中心室(血液和体液),然后从中心室向体外排除,忽略喝酒的时间,根据生理学知识,假设 (1) 吸收室在初始时刻t=0时,酒精量立即为 32 D ;在任意时刻,酒精从吸收室吸收进中心室的速率(吸收室在单位时间内酒精含量的减少量)与吸收室的酒精含量成正比,比例系数为1k ; (2) 中心室的容积V 保持不变;在初始时刻t=0时,中心室的酒精含量为0;在任意时 刻,酒精从中心室向体外排除的速率(中心室在单位时间内酒精含量的减少量)与 中心室的酒精含量成正比,比例系数为2k ; (3) 在大李适度饮酒没有酒精中毒的前提下,假设1k 和2k 都是常量,与饮酒量无关。 2、 符号说明 酒精量是指纯酒精的质量,单位是毫克; 酒精含量是指纯酒精的浓度,单位是毫克/百毫升; ~t 时刻(小时) ; ()~x t 在时刻t 吸收室(肠胃)内的酒精量(毫克) ; 0~D 两瓶酒的酒精量(毫克); (t)~c 在时刻t 吸收室(血液和体液)的酒精含量(毫克/百毫升) ; 2()~c t 在时刻t 中心室(血液和体液)的酒精含量(毫克/百毫升); ~V 中心室的容积(百毫升) ; 1~k 酒精从吸收室吸收进中心室的速率系数(假设其为常数2.0079); 2~k 酒精从中心室向体外排除的速率系数(假设其为常数0.1855); 3~k 在短时间喝下三瓶酒的假设下是指短时间喝下的三瓶酒的酒精总量除以中心室体积, 即03/2D V ;而在较长时间内(2小时内)喝下三瓶酒的假设下就特指03/4D V .

种群相互竞争的Matlab程序

两种群相互竞争模型如下: 1112 2221(1)(1)dx x y r x s dt n n dy y x r y s dt n n =--=-- 其中x(t),y(t)分别为甲乙两种群的数量,1r ,2r 为它们的固有增长率,1n ,2 n 为它们的最大容量。1s 的含义是,对于供养甲的资源来说,单位数量的乙(相对2n )的消耗为单位数量甲(相对1n )消耗的1s 倍,对2s 可以作相应解释。 经过计算,该模型无解析解,故用数值方法研究,为此提出以下问题: (1) 设r1=r2=1,n1=n2=100,s1=0.5,s2=2,初值x0=y0=10,计算x(t),y(t),画出 它们的图形及图(x,y ),说明时间t 充分大了以后x(t),y(t)的变化趋 势。 (2) 改变r1,r2,n1,n2,x0,y0,但s1,s2不变(或保持s1<1,s2>1),计算并分 析所得结果,若s1=1.5(>1),s2=0.7(<1),再分析结果。由此可以得到 什么结论,请作出解释。 (3) 试验当s1=0.8,s2=0.7时会有什么结果,当s1=1.5,s2=1.7时,又会有 什么结果。 模型求解: 程序如下: fun.m: function dx=fun(t,x,r1,r2,n1,n2,s1,s2) dx=[r1*x(1)*(1-x(1)/n1-s1*x(2)/n2);r2*x(2)*(1-s2*x(1)/n1-x(2)/n2)]; p3.m: h=0.1;%所取时间点间隔 ts=[0:h:30];%时间区间 x0=[10,10];%初始条件 opt=odeset('reltol',1e-6,'abstol',1e-9);%相对误差1e-6,绝对误差1e-9 [t,x]=ode45(@fun,ts,x0,opt,1,1,100,100,0.5,2);%使用5级4阶龙格—库塔公式计算%后面的参数传给fun,分别是r1,r2,n1,n2,s1,s2 [t,x]%输出t,x(t),y(t) plot(t,x,'.-'),grid%输出x1(t), x2(t)的图形 gtext('x1(t)'),gtext(' x2(t)'),pause plot(x(:,1),x(:,2),'.-'),grid,%作相轨线 gtext('x1'),gtext('x2'); 运行结果[t,x]为: ans = 0 10.0000 10.0000 0.1000 10.8805 10.7120 0.2000 11.8235 11.4454 0.3000 12.8309 12.1962 0.4000 13.9044 12.9595 0.5000 15.0453 13.7295 ……

matlab在数学建模中的应用

Matlab在数学建模中的应用 数学建模是通过对实际问题的抽象和简化,引入一些数学符号、变量和参数,用数学语言和方法建立变量参数间的内在关系,得出一个可以近似刻画实际问题的数学模型,进而对其进行求解、模拟、分析检验的过程。它大致分为模型准备、模型假设、模型构成、模型求解、模型分析、模型检验及应用等步骤。这一过程往往需要对大量的数据进行分析、处理、加工,建立和求解复杂的数学模型,这些都是手工计算难以完成的,往往在计算机上实现。在目前用于数学建模的软件中,matlab 强大的数值计算、绘图以及多样化的工具箱功能,能够快捷、高效地解决数学建模所涉及的众多领域的问题,倍受数学建模者的青睐。 1 Matlab在数学建模中的应用 下面将联系数学建模的几个环节,结合部分实例,介绍matlab 在数学建模中的应用。 1.1 模型准备阶段 模型准备阶段往往需要对问题中的给出的大量数据或图表等进行分析,此时matlab的数据处理功能以及绘图功能都能得到很好的应用。 1.1.1 确定变量间关系 例1 已知某地连续20年的实际投资额、国民生产总值、物价指数的统计数据(见表),由这些数据建立一个投资额模型,根据对未来国民生产总值及物价指数的估计,预测未来的投资额。

表1 实际投资额、国民生产总值、物价指数的统计表 记该地区第t年的投资为z(t),国民生产总值为x(t),物价指数为y(t)。 赋值: z=[90.9 97.4 113.5 125.7 122.8 133.3 149.3 144.2 166.4 195 229.8 228.7 206.1 257.9 324.1 386.6 423 401.9 474.9 424.5]' x=[596.7 637.7 691.1 756 799 873.4 944 992.7 1077.6 1185.9 1326.4 1434.2 1549.2 1718 1918.3 2163.9 2417.8 2631.6 2954.7 3073]' y=[0.7167 0.7277 0.7436 0.7676 0.7906 0.8254 0.8679 0.9145 0.9601 1 1.0575 1.1508 1.2579 1.3234 1.4005 1.5042 1.6342 1.7842 1.9514 2.0688]' 先观察x与z之间,y与z之间的散点图 plot(x,z,'*') plot(y,z,'*') 由散点图可以看出,投资额和国民生产总值与物价指数都近似呈

matlab数学建模实例

第四周 3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

基于MATLAB的光伏电池通用数学模型

本文由qpadm贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 25 卷第 4 期 2009 年 4 月 电 力 For personal use only in study and research; not for commercial use 科 学 与 For personal use only in study and research; not for commercial use 工 程 Vol.25, No.4 Apr., 2009 11 For personal use only in study and research; not for commercial use Electric Power Science and Engineering 基于 MATLAB 的光伏电池通用数学模型 王长江 For personal use only in study and research; not for commercial use (华北电力大学电气与电子工程学院,北京 102206)摘要:针对光伏电池输出特性具有强烈的非线性,根据太阳能电池的直流物理模型,利用 MATLAB 建立了太阳能光伏阵列通用的仿真模型。利用此模型,模拟任意环境、太阳辐射强度、电池板参数、电池板串并联方式下的光伏阵列 I-V 特性。模型内部参数经过优化,较好地反应了电池实际特性。模型带有最大功率点跟踪功能,能很好地实现光伏发电系统最佳工作点的跟踪。关键词:光伏电池;MPPT;I-V 特性中图分类号:TM615 文献标识码:A 引 言 1 光伏电池特性 随着化石能源的消耗,全球都在面临能源危机,太阳能依靠其清洁、分布广泛等特点成为当今发展速度居第二位的能源 [1] 。光伏阵列由多个单体太阳能电池进行串并联封装而成,是光伏发电的能源供给中心,其 I V 特性曲线随日照强度和太阳能电池温度变化,即 I=f ( V, S, T ) 。目前而厂家通常仅为用户提供标准测试的短路电流 I sc 、开路电压 Voc、最大功率点电流 I m 、最大功率点电压 V m 值,所以如何根据已有的标准测试数据来仿真光伏阵列在不同日照、温度下的 I V,P V 特性曲线,在光伏发电系统分析研究中显得至关重要 [2] 。文献 [ 3~4 ] 介绍了一些光伏发电相关的仿真模型,但这些模型都需要已知一些特定参数,使得分析研究有一些困难。文献 [ 5 ] 介绍了经优化的光伏电池模型,但不能任意改变原始参数。文献 [ 6 ] 给出了光伏电池的原理模型,但参数选用典型值,会造成较大的误差。本文考虑工程应用因素,基于太阳能电池的物理模型,建立了适用于任何条件下的工程用光伏电池仿真模型。

种群的相互竞争模型中数值计算与结果分析

河北大学《数学模型》实验实验报告 一、实验目的 1.学会编写程序段。 2.能根据m文件的结果进行分析。 3.根据图像进行比较和分析。 二、实验要求 8-1捕鱼业的持续收获 运行下面的m文件,并把相应结果填空,即填入“_________”。 clear;clc; %无捕捞条件下单位时间的增长量:f(x)=rx(1-x/N) %捕捞条件下单位时间的捕捞量:h(x)=Ex %F(x)=f(x)-h(x)=rx(1-x/N)-Ex %捕捞情况下渔场鱼量满足的方程:x'(t)=F(x) %满足F(x)=0的点x为方程的平衡点 %求方程的平衡点 syms r x N E; %定义符号变量 Fx=r*x*(1-x/N)-E*x; %创建符号表达式 x=solve(Fx,x) %求解F(x)=0(求根) %得到两个平衡点,记为: % x0=______________ , x1=___________ x0=x(2); x1=x(1);%符号变量x的结构类型成为<2×1sym> %求F(x)的微分F'(x) syms x; %定义符号变量x的结构类型为<1×1sym> dF=diff(Fx,'x'); dF=simple(dF) %简化符号表达式 %得 F'(x)=________________ %求F'(x0)并简化 dFx0=subs(dF,x,x0); %将x=x0代入符号表达式dF dFx0=simple(dFx0) %得 F’(x0)=_______ %求F’(x1) dFx1=subs(dF,x,x1) %得 F’(x1)=________ %若 E0,故x0点稳定,x1点不稳定(根据平衡点稳定性的准则); %若 E>r,则结果正好相反。 %在渔场鱼量稳定在x0的前提下(E

多种群的数学模型

自然界的多种群模型分析 小组成员:杨宏志 09053055 曾云霖 09053057 赵恒宇 09053060 目录 摘要第3页 关键词第3页 问题重述第3页 符号说明第4页 基本假设第4页 问题分析第4页 正文第5页 总结与思考第12页 参考文献第13页 (注:正文中包括对模型的建立,模型的具体检验,模型的改进,改进模型的检验以及问题的扩展深化。) 自然界的多种群模型分析

摘要:在我们生活的大自然中,有着太多太多的秩序和规则。种群之间的你争我斗,弱肉强食也是非常激烈。种群,顾名思义就是指同一种生物的一个集合。不同种群之间的关系大致分为四种:捕食与被捕食关系,互利共生关系,相互竞争关系和寄生与寄主关系。我们这次的建模就是围绕着种群之间的关系来展开的,下面我将从这几个方面来进行分类讨论,由于寄生与寄主的关系不是很常见,关系也比较简单,在此便不再赘述。 捕食与被捕食关系:这种关系很简单,大家也能很容易地理解,通俗地解释,就是指一种生物以另一种生物为食,举个例子大家也许会更容易地理解。比如说狼和羊的关系,狼是捕食者,羊是被捕食者,狼以羊为食,是羊的天敌。 互利共生关系:指两种生物共同生活在一个区域有助于提高另一种生物的种群密度,假如其中一种生物的数量减少,也会影响另一种生物的数量,使其数量减少。比如草地和森林优势植物的根多与真菌共生形成菌根,多数有花植物依赖昆虫传粉,大部分动物的消化道也包含着微生物群落,最典型的就是大豆与根瘤菌。大豆给根瘤菌提供养分,根瘤菌给大豆提供氮元素。 相互竞争关系:有种内和种间两种竞争方式。这里是指两种共居一起,为争夺有限的营养、空间和其他共同需要而发生斗争的种间关系。竞争的结果,或对竞争双方都有抑制作用,大多数的情况是对一方有利,另一方被淘汰,一方替代另一方。举个例子,牛和羊生活在共同的一片草地上,因为这两种生物都以草为食,它们之间不存在其他关系,所以它们之间是竞争关系。 以上就是三种种群之间的关系,下面我们就从这三个方面对物种种群密度的变化进行分析。在以下的讨论中我们将建立微分方程的数学模型,对生物多种群之间各种关系进行 关键词:生物种群,数量,关系,互相作用,竞争

MATLAB及其在数学建模中的应用

Modeling and Simulation 建模与仿真, 2015, 4(3), 61-71 Published Online August 2015 in Hans. https://www.wendangku.net/doc/1b9436052.html,/journal/mos https://www.wendangku.net/doc/1b9436052.html,/10.12677/mos.2015.43008 Study of MATLAB and Its Application in Mathematical Modeling Chuanqi Qin, Ting Wang, Yuanfeng Jin School of Science, Yanbian University, Yanji Jilin Email: yfkim@https://www.wendangku.net/doc/1b9436052.html, Received: Jul. 22nd, 2015; accepted: Aug. 11th, 2015; published: Aug. 18th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/1b9436052.html,/licenses/by/4.0/ Abstract This article firstly introduces the development and the features of MATLAB software. And then the concept and the process of mathematical modeling are explained. After, the article briefly intro-duces some MATLAB solution methods of mathematical modeling problems, giving several in-stances of some methods. At the last of this article, through a relatively complete example, it fo-cuses on the application of MATLAB in mathematical modeling. It has been found that the applica-tion of MATLAB in mathematical modeling can improve the efficiency and quality of mathematical modeling, enrich the means and methods of mathematical modeling, and play a very important role in the teaching of mathematical modeling course. Keywords MATLAB, Mathematical Modeling, Mathematic Model MATLAB及其在数学建模中的应用 秦川棋,王亭,金元峰 延边大学理学院,吉林延吉 Email: yfkim@https://www.wendangku.net/doc/1b9436052.html, 收稿日期:2015年7月22日;录用日期:2015年8月11日;发布日期:2015年8月18日

MATLAB数学建模大作业

******大学 本科实验报告 课程名称:****建模与仿真 设计专题:单服务员的排队模型学生姓名:*** 学号:********** 2012年04月30日

一、实验题目和要求 实验题目: 在某商店有一个售货员,顾客陆续来到,售货员 逐个地接待顾客。当到来的顾客较多时,一部分 顾客便须排队等待,被接待后的顾客便离开商店。 设:a.顾客到来间隔时间服从参数为5分钟的指 数分布;b.对顾客的服务时间服从[3,12]上的均 匀分布;c.排队按先到先服务规则,队长无限制, 并假定一个工作日为8小时,时间以分钟为单位。 要求: 1)模拟1个工作日内完成服务的个数及顾客平均 等待时间t。 2)模拟10个工作日,求出平均每日完成服务的个 数及每日顾客的平均等待时间 3)用柱状图画出10个工作日的平均每日完成的 服务个数及每日顾客的平均等待时间。 二、程序结构图(或功能说明) 文件夹中的m文件在j取1时模拟单工作日的服务 情况,j取1到10时模拟10个工作日的服务情况。 三、程序流程图

NO YES NO i=i+1 计算第i 个顾客离开时的时刻t 计算第i+1个顾客的等待时间s 记录i 值,跳出循环 计算第i+1个顾客的等待时间s 计算第i 个顾客离开时的时刻t 构造顾客间隔时间序列(TjM ) 构造顾客所需服务时间序列(TfM ) t>480 j=1

YES NO YES NO j=j+1 i=i+1 计算第i 个顾客离开时的时刻t 计算第i+1个顾客的等待时间s 记录i 值,跳出循环 计算第i+1个顾客的等待时间s 计算第i 个顾客离开时的时刻t 构造顾客间隔时间序列(TjM ) 构造顾客所需服务时间序列(TfM ) t>480 j=1 j<10

基于MATLAB的数学建模题

1求1到20的阶乘和M文件 function p=fac(n) %fac函数由于阶乘 if n==0 p=1; else p=1; i=1; while i<=n p=p*i; i=i+1; end end clear sum=0; for i==1:20 sum=sum+fac(i) end sum (1)

(2)运行结果 2、用起泡法排数 clc clear all s=[9 8 4 2 7 10 6 1 5 3]; %要排序的数列Ls=length(s); for i=1:Ls-1 for j=1:Ls-i if s(j)>s(j+1) t=s(j); s(j)=s(j+1); s(j+1)=t; end

end end s %输出排序后结果 结果 3、matlab 有一函数 f(x,y)=x2+cos(xy)+2y ,写一程序,输入自变量的值,输出函数值. function z= yourfunc(x,y) % script for f(x,y)=x2+cos(xy)+2y % input scalar: x, y % output scalar: z % written by yourname % 10 May 2010 z=x^2+cos(x*y)+2*y;

end 运行结果 4、小球下落问题 h = zeros(11,1); h(1) = 100; for i = 2:11 h(i) = h(i-1)/2; end % 第10次反弹有多高?h(11)

% 它在第10次落地时,共经过多少米? 2*sum(h(1:10))-h(1) 结果如下 5、矩阵问题 有一个4行5列的矩阵,编程求出其最大值以及最大值所处位置clc; clear all; A = rand(4, 5); m = A(1); ind = [1 1]; for i = 1 : size(A, 1) for j = 1 : size(A, 2) if m < A(i, j)

数学建模种群相互依存模型

种群相互依存模型 1) 问题的提出 自然界中处于同一环境下两个种群相互依存而共生的现象是很普遍的。比方植物与昆虫,一方面植物为昆虫提供了食物资源,另一方面,尽管植物可以独立生存,但昆虫的授粉作用又可以提高植物的增长率。事实上,人类与人工饲养的牲畜之间也有类似的关系。 我们关心两个相互依存的种群,它们之间有着类似于在农业社会中人和牛的关系。其发展和演进有着一些什么样的定性性质呢? 2)模型假设 以)(1t x 、)(2t x 表示处于相互依存关系中甲、乙二种群在时刻t 的数量, 1. 种群数量的增长率)2,1)((=i t x i 与该种群数量)2,1)((=i t x i 成正比,同时也与有闲资源)2,1)((=i t s i 成正比; 2. 两个种群均可以独立存在,而可被其直接利用的自然资源有限,均设为“1”,)2,1(=i N i 分别表示 甲、乙二种群在单种群情况下自然资源所能承受的最大种群数量;此外,两种群的存在均可以促进另一种群的发展,我们视之为另一种群发展中可以利用的资源, )2,1(=i i σ为二折算因子,21/N σ表示一个单位数量的乙可充当种群甲的生存资源的量,12 /N σ表示一个单位数量的甲可充当种群乙的生存 资源的量; 3. )2,1(=i r i 分别表示甲、乙二种群的固有增长率。 3) 模型建立 根据模型假设,可得如下数学模型: 经化简,得: = ???-?+??=?+-??=)//1()//1(2211222222111111N x N x x r x N x N x x r x σσ 4)模型求解 与种群竞争模型相同,我们只求解模型方程的平衡点,并讨论其稳定性,从而对两种群的变化趋势作出判断。 为此,令 ???=-?+??=?+-??0)//1(0)//1(22112222211111N x N x x r N x N x x r σσ, 求得该模型的四个平衡点: )0,0(1P 、)0,(12N P 、),0(23N P 、???? ????-+??-+22121211411,11N N P σσσσσσ。 可知,只有在21的情况下,平衡点4是稳定的。此时甲、乙两种群将分别趋向于非零的有限值;否则由于二者均能独立生存又相互提供食物,将使二者均趋向无穷。 5)练习题5的解答 在种群相互依存的模型中,按以下四种情况作相轨线示意图,并解释平衡点的意义。 (1) σ1<1,σ1σ2<1 (2) σ2>1,σ1σ2>1

matlab数学建模实例

第四周3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj()for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769;if (abs(x1)<1.0e-8)x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20;k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1;end x1k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1;end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while(abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

数学建模培训作业(MATLAB编程部分)

数学建模培训作业 (MATLAB 编程部分) 1. 请使用switch 语句将百分制的学生成绩转换为五级制的成绩输出。 2. 猜数游戏:首先由计算机随机产生一个 [1,100] 之间的一个整数,然后由用户猜测所产生的这个数。根据用户猜测的情况给出不同的提示,如果猜测的数大于产生的数,则显示 “High” ,小于则显示 “ Low ” ,等于则显示 “You won !”,同时退出游戏。用户最多有 7 次机会。 3. 使用for 结构计算1+2+3+…+100。 4. 设计一个九九乘法表。 5. 使用while 结构计算1+2+3+…+100。 6. 求1!+2!+ …+10!的值。 7. 编程生成三对角矩阵。 1 10000011100000001110000000111000000011100 000001110000000111000000011100 1 1 轾犏犏犏犏犏犏犏 犏犏 犏犏犏犏犏犏犏犏臌 8. 计算分段函数的值,要求根据不同的x 输入,给出相应的结果。 223135 x x y x x ì?-???+??=í?-????+?? 110011x x x x ?-< ?> 9. 已知1 1111 1(1)435721 n n p -?+-++-- ,编程求 的近似值。 10. 输入下面的矩阵

12345678 910111213141516A 轾犏犏犏=犏犏 犏臌 编程求该矩阵的对角线元素之和,并找出最大和最小元素的值以及其所在的行、列号。 11. 求水仙花数。如果一个三位数的个位数、十位数和百位数的立方和等于该数自身, 则称该数为水仙花数。编一程序求出所有的水仙花数。 12. 给定两个实数a 、b 和一个正整数n ,计算()k a b +和()k a b -,其中n k ,,2,1 。 13. 编写函数,生成一个1!,2!,…,n!的阶乘表。 14. 编一个函数统计字符串中单词的个数。 15. 求n 阶勒让德多项式的值,其递归公式为: (,)((2* 1)**(1,) (p n x n x p n x n p n n =----- (0,) 1;(1,p x p x x == 16. 编写一个判断任意输入正整数是否为素数的函数文件,并在命令窗口调用。 17. 编写一个万年历计算程序,当输入年月日后,能够计算出该日是星期几。

相关文档
相关文档 最新文档