文档库 最新最全的文档下载
当前位置:文档库 › 线性控制系统工程课后习题答案Solution of module 1

线性控制系统工程课后习题答案Solution of module 1

线性控制系统工程课后习题答案Solution of module 1
线性控制系统工程课后习题答案Solution of module 1

Solution of module 1

1.3 The system in Fig. P1.3 shows an operator attempting to maintain the speed of a conveyor carrying manufactured parts through a spray booth. When more boxes are placed on the conveyor, it slows down, while fewer boxes allow it to speed up.

(a) Draw a block diagram of the system indicating the principal elements

(b) Redesign an automatic control system without any operator.

图P1-3b人工控制闭环系统控制框图

图 P1-3C 自动控制闭环系统控制框图

Fig P1-1(b) Block Diagram of Manual Closed Loop Control

(V oltage) Measurement

Fig P1-3(c) Block Diagram of Automatic Control System

华南理工大学线性系统理论考博试题answer

一、 1、 求脉冲响应函数 系统脉冲响应为: ...)4()3()2()1()(+-+-+-+-=t t t t t g f δδδδ ∑∞ =-=1 )(i i t δ 传递函数为: s s i i s s f f e e e e t g L s g --∞ =---=?==∑1)())(()(0 2、 已知)sin(t r π=,求输出响应 系统响应; ?? ?=?≤≤-?-=other n n t n t t y 0 3.2.1212) sin()( π 3、 判断系统是否BIBO 稳定?若是请证明,若不是请举例论证结论 不是BIBO 稳定,令系统输入为: )()(t t y ε=,则系统输出在∞→t 时,趋于无 穷 4、 上述系统可否用频域法求取结论 不能,系统的传递函数不是有理分式 二、已知系统: bu Ax x += ,其中k ξξξ 21,为k 个特征向量,k

)(2211k k At At e b e ξξξ??++??+???=? k At k At At e e e ξξξ???++???+???= 2211 k t k t t k e e e ξξξλλλ???++???+???= 221121 []????? ?? ???????????????=t k t t k k e e e λλλξξξ 21212 1(k λλλ 21为特征向量对应的特征 根) τ τ τ d e bb e T A t T A ?0 [][ ] ????? ? ?????????????????? ??????????????=?k k t k k d e e e e e e k k ξξξτξξξτ λτλτ λτλτλτλ 2121 0212 1212 1 因而有: n k d e bb e rank T A t T A <≤?)(0 ττ τ 系统不可控 2、 举例说明该系统不完全能控 略 3、 若该系统能控模态稳定,不能控模态不稳定,试问系统初始状态满足什么条件系统状态 最终趋向于0?并说明理由。 (不懂) 三、下图中,u 为电流源,y 为a ,b 两点间的电压,R =1Ω,C = 1F R R a b y

线性系统理论历年考题

说明: 姚老师是从07还是08年教这门课的,之前的考题有多少参考价值不敢保证,也只能供大家参考了,重点的复习还是以课件为主,把平时讲的课件内容复习好了,考试不会有问题(来自上届的经验)。 祝大家考试顺利! (这个文档内部交流用,并感谢董俊青和兰天同学,若有不足请大家见谅。) 2008级综合大题 []4001021100101 1 2x x u y x ???? ????=-+????????-????= 1 能否通过状态反馈设计将系统特征值配置到平面任意位置? 2 控规范分解求上述方程的不可简约形式? 3 求方程的传递函数; 4 验证系统是否渐近稳定、BIBO 稳定、李氏稳定; 5 可能通过状态反馈将不可简约方程特征值配置到-2,-3?若能,确定K ,若不能,请说明理由; 6 能否为系统不可简约方程设计全阶状态观测器,使其特征值为-4,-5; 7画出不可简约方程带有状态观测器的状态反馈系统结构图。 参考解答: 1. 判断能控性:能控矩阵2 14161 24,() 2.0 0M B AB A B rank M ?? ?? ??==-=???????? 系统不完全可控,不能任意配置极点。

2 按可控规范型分解 取M 的前两列,并加1与其线性无关列构成1 1 401200 1P -?? ??=-?????? ,求得120331 1066 00 1P ?? ????? ?=-????????? ? 进行变换[] 1 1 20831112,0,2 2 26000 1 A PAP B PB c cP --? ? ?? ???? ????=-====???? ??????????? ? 所以系统不可简约实现为[]08112022x x u y x ?????=+???????????=? 3. 1 2(1)(1)2(1)()()(4)(2)(1) (4)(2) s s s G s c sI A B s s s s s --+-=-= = -++-+ 4. det()(4)(2)(1)sI A s s s -=-++, 系统有一极点4,位于复平面的右部,故不是渐近稳定。 1 2(1)()()(4)(2) s G s c sI A B s s --=-= -+,极点为4,-2,存在位于右半平面的极点,故系统不 是BIBO 稳定。 系统发散,不是李氏稳定。 5. 可以。令11 228,12T k k k k A Bk k +???? =+=??? ??? ?? 则特征方程[]2 112()det ()(2)28f s sI A Bk s k s k k =-+=-++-- 期望特征方程* 2 ()(2)(3)56f s s s s s =++=++

线性系统理论多年考题和答案

2008级综合大题 []400102110010112x x u y x ????????=-+????????-????=& 1 能否通过状态反馈设计将系统特征值配置到平面任意位置? 2 控规范分解求上述方程的不可简约形式? 3 求方程的传递函数; 4 验证系统是否渐近稳定、BIBO 稳定、李氏稳定;(各种稳定之间的关系和判定方法!) 5 可能通过状态反馈将不可简约方程特征值配置到-2,-3?若能,确定K ,若不能,请说明理由; 6 能否为系统不可简约方程设计全阶状态观测器,使其特征值为-4,-5; 7画出不可简约方程带有状态观测器的状态反馈系统结构图。 参考解答: 1. 判断能控性:能控矩阵21416124,() 2.000M B AB A B rank M ?? ????==-=???? ???? 系统不完全 可控,不能任意配置极点。 2 按可控规范型分解 取M 的前两列,并加1与其线性无关列构成1140120001P -????=-??????,求得1203311066 001P ?? ?? ?? ??=-?????? ???? 进行变换[]11 20831112,0,22260001A PAP B PB c cP --? ??????? ????=-====???? ???????? ????

所以系统不可简约实现为[]08112022x x u y x ?????=+?????????? ?=? & 3. 12(1)(1)2(1) ()()(4)(2)(1)(4)(2) s s s G s c sI A B s s s s s --+-=-= =-++-+ 4. det()(4)(2)(1)sI A s s s -=-++,系统有一极点4,位于复平面的右部,故不是渐近稳定。 12(1) ()()(4)(2) s G s c sI A B s s --=-= -+,极点为4,-2,存在位于右半平面的极点,故系统不 是BIBO 稳定。 系统发散,不是李氏稳定。 5. 可以。令11228,12T k k k k A Bk k +???? =+=???????? 则特征方程[]2 112()det ()(2)28f s sI A Bk s k s k k =-+=-++-- 期望特征方程*2 ()(2)(3)56f s s s s s =++=++ 比较上两式求得:728T k -?? =??-?? 6. 可以。设12l L l ??=????,则11222821222l l A LC l l --?? -=? ?--?? 特征方程2 2121()(222)1628f s s l l s l l =+-++-- 期望特征方程*2 ()(4)(5)920f s s s s s =++=++ 比较得:103136L ???? =????????

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

《线性代数》期末复习要点

《线性代数》期末复习要点 第一章行列式 1、行列式的计算(略) 2、Cramer法则:系数行列式D≠0,则方程租有唯一解。 齐次方程租有非零解,则D=0。 3、V andermonde行列式。(略) 第二章矩阵 1、矩阵的计算(略) 2、对称矩阵:A∧T=A。反称矩阵A∧T=-A。 3、矩阵可逆,则|A|≠0。 4、分块矩阵(略) 5、初等变换与初等矩阵(略) 6、m×n阶矩阵A,B等价,则当且仅当存在m阶可逆矩阵P和n阶可逆矩阵Q使PAQ=B。 7、(1)可逆矩阵一定满秩,即r=n。(2)若A的一个r阶子式不等于零,则r(A)≥r,若A的r+1阶子式都为零,则r(A)≤r。 8、矩阵秩的不等式:(1)r(AB)≤min{r(A),r(B)}。(2)A,B分别为m×n阶和n×k 阶矩阵,r(AB)≥r(A)+r(B)-n。特别的,当AB=0时,r(A)+r(B)≤n。(3)A,B 均为m×n阶矩阵,则r(A+B)≤r(A)+r(B)。 第三章n维向量空间 1、线性相关:(1)k1,k2,kn不全为0且能使kiα1+k2α2+……+knαn=0成立,则α1,α2,……,αn线性相关。(2)至少一个向量是其余向量的线性组合。(3)含零向量的向量组是线性相关的。(4)n维向量中的两个向量组T1={α1,α2,α3,……,αr},T2={β1,β2,β3,……βs},若T1可由T2线性表示,且r>s,则T1线性相关。若T1可由T2线性表示但T1线性无关,则r≤s。(5)n+1个n维向量一定线性相关。 2、(1)零向量自身线性相关。非零向量自身线性无关。(2)向量组中一部分线性相关,则整体线性相关,若向量组整体线性无关,则向量组的一部分线性无关。 3、向量组的任意极大线性无关组都与之等价,向量组的任意两个极大线性无关组都等价。 4、矩阵的秩等于其行(列)向量组的秩。 5、向量空间的基与维数,空间向量的坐标(略) 6、基变换和坐标变换:{α1,α2,α3,……,αr},{β1,β2,β3,……βs r}是向量空间V的两组基,若有r维方阵C,使[β1,β2,β3,……βs]=[α1,α2,α3,……,αr]C,则称C为从基{α1,α2,α3,……,αr}到基{β1,β2,β3,……βs}的过渡矩阵(基变换矩阵)。则坐标变换X=CY。 7、内积:(1)交换性(α,β)=(β,α)。(2)线性性:(α1+α2,β)=(α1,β)+(α2,β)。(kα,β)=k(α,β)。(3)非负性。(4)Cauchy-Schwarz不等式P99。 向量的长度,向量间夹角的余弦P99。 8、标准正交向量组,Gram-Schmidt正交化方法。P103,104。▲重点记忆。 第四章线性方程组 1、线性方程组及其表示(略) 2、m×n型线性方程AX=b。(1)有解的充要条件是系数矩阵的秩和增广矩阵的秩相同。(2)有唯一解的充要条件是系数矩阵的秩和增广矩阵的秩相同,都为n。 3、Gauss消元法。(略) 4、齐次线性方程和非齐次方程组解的结构。基础解系与通解。(略) 5、AX=b解空间的维数dimN(A)=n-r(A)。 m×n型线性方程AX=0有非零解的充要条件是r(A)<n。

线性代数期末考线代题

一、填空题(每空3分,共15分) (1).设三阶矩阵????? ??---=111111111A ,???? ? ??--=150421321B ,则=B A T . (2).设A 为3阶方阵, 且A 的行列式8 1= A ,*A 为A 的伴随矩阵, 则 *183A A --=___________ . (3).设A 为n 阶方阵,且0=AX 有非零解,则A 必有特征值 . (4).设R 3上的线性变换A 在标准基下的矩阵为???? ? ??=23020111k A ,而 )1,2,3(-=β,若A )4,5,0(-=β,则 k = . (5)设正交矩阵Q =?????? ? ? ?-22220001 22220,则=-1Q . 二、计算行列式(16分) (1). 设41213201 12134321 --=A ,求,44434241M M M M +++其中ij M 为A 中 的元素ij a 的余子式。

(2).n n a a a a a a a a a a a a a a a D +++=+ 0001211,其中 .021≠n a a a .

三、(10分)已知矩阵???? ? ??=111011001A ,????? ??=011101110B ,且矩阵X 满足 E BXA AXB BXB AXA ++=+,其中E 为三阶单位矩阵,求矩阵X. 四、(12分) 设B A B A +,, 为n 阶矩阵,且AB B A =+,证明:(1)E A -可逆,E 为n 阶单位矩阵;(2) BA AB =.

五、(12分)设T 1)0,1,1(=α, T 2)1,1,0(=α, T 3)1,0,1(=α为R 3的一组基, T 1)0,0,1(=β,T 2)0,1,1(=β,T 3)1,1,1(=β为R 3的另一组基,(1)求由基321,,βββ到基321,,ααα的过渡矩阵P ; (2)在3R 中是否有在基321,,ααα和基321,,βββ下坐标相同的向量?若有,试求出这样的向量. 六、(10分) 已知T 1)3,2,0,1(=α, T 2)5,3,1,1(=α, T 3)1,2,1,1(+-=a α, T 4)8,4,2,1(+=a α,T )5,3,1,1(+=b β.问b a ,为何值时向量β不能由向量组4321,,,αααα线性表示.

线性系统理论试卷

湘潭大学研究生考试试题 考试科目:线性系统理论/现代控制理论考生人数:20考试形式:闭卷 适用专业: 双控单控/电传 适用年级:一年级 试卷类型: A 类 一、给定多项式矩阵如下: 22121()1 2s s s s D s s s ?? ?????? ++++= ++ 1. 计算矩阵的行次数,判断系统是否行既约? 2. 计算矩阵的列次数,判断系统是否列既约? 3. 寻找单模矩阵,将多项式矩阵()D s 化为史密斯型。 二、设系统的传递函数矩阵为右MFD 1()()N s D s -,其中: 210 ()21s D s s s s ? ? ????? ? -= +-+,()11N s s s ???? =-+ 试判断{}(),()N s D s 是否右互质;如果不是右互质,试通过初等运算找出其最大右公因子。 三、给定()G s 的一个左MFD 为: 1 210 1 0()112 1s s G s s s s -? ? ?? ?????????? ? ? -+= +-+ 试判断这个MFD 是否是最小阶的;如果不是,求出其最小阶MFD 。 四、确定下列传递函数矩阵的一个不可简约左MFD : 21 1 0()102 2s s s G s s s s s ????????? ? ?? += +++ 五、给定系统的传递函数矩阵为

22 3 (1)(2)(1)(2)()31(1)(2) (2)s s s s s s G s s s s s s ???? ?? ??????? ? +++++= +++++ 试计算出相应的评价值,并写出其史密斯--麦克米伦型。 六、给定传递函数矩阵如下: 2 2221156()1253 43s s s s s G s s s s s ???? ?? ??? ? ?? +-++= ++++ 试定出其零、极点,并计算出其结构指数。 七、给定系统的传递函数矩阵如下: 2 2211 154()14 3 712s s s s G s s s s s ???? ?? ??? ? ?? +-++= ++++ 试求出一个控制器型实现。 八、确定下列传递函数矩阵()G s 的一个不可简约的PMD 2 2 141()143 32s s s s G s s s s s ?? ?? ?? ??? ??? ++-= ++++ 九、给定系统的传递函数矩阵如下: 1 2 2 430 11()221 21s s s s G s s s s s -?????? ??????? ?? ? ++-+= +++ 试设计一个状态反馈K,使得状态反馈系数的极点为: 12λ*=-, 23λ*=-, 4,5 42j λ* =-±

空军工程大学博士研究生入学试题[001]

空军工程大学2016年博士研究生入学试题 考试科目:线性系统理论(A卷)科目代码3003 说明:答题时必须答在配发的空白答题纸上,答题可不抄题,但必须写清题号,写在试题上不给分;考生不得在试题及试卷上做任何其它标记,否则试卷作废,试题必须同试卷一起交回。 一、填空题(每空2分,共20分) (1)状态变量组数学上表征为一个极大变量组。(2)线性系统时域运动分析的核心在于揭示系统状态相对于和 的演化规律。 (3)系统完全能控和系统完全互为等价关系。 (4)系统的稳定性可分为稳定性和稳定性,其中,前者又被称为“BIBO稳定性”。 (5)对连续时间线性时不变系统,系统则必定为BIBO稳定,反之则未必。 (6)控制系统的综合归结为。 (7)一般来说,反馈的类型可分为和。 二、计算题(每小题5分,共15分) (1)确定微分方程3523 &&&&&&的一个状态空间描述。 y y y y u +-+=

(2)计算下列状态空间描述的传递函数G(s) 140321[10]x x u y x ????=+????--????=& (3)化以下线性系统为约当标准型 010341[20]x x u y x ????=+????--???? =& 三、(15分)假设系统状态方程如下 112201230x x u x x ????????=+????????--? ???????&&1 [20]y x = 请: (1)计算状态转移矩阵 (2)求解状态方程的解 (3)判断系统的能控能观性 四、(15分)利用Lyapunov 稳定性判据,分析如下系统的稳定性。 (1) 22121122221212() ()x x cx x x x x cx x x =++=-++&& (2)

线性代数期末考试试卷

学院: 专业: 班级: 装姓名: 线学号: 2009-2010-2线性代数期末试卷(本科A)考试方式:闭卷统考考试时间:2010.6.5 ? 一、单项选择题(每小题3分,共15分) 1.下列行列式的值不一定为零的是()。 A.n阶行列式中,零的个数多于2n n -个;B.行列式中每行元素之和为a;C.行列式中两行元素完全相同; D.行列式中两行元素成比例。 2.若A是( ),则A不一定为方阵。 A.初等矩阵; B.对称矩阵; C.可逆矩阵的转置矩阵; D.线性方程组的系数矩阵。3.若A、B均为n阶方阵,则有( )。 A.()()() {} max R A B R A R B +≥; B.()()() {} min R A B R A R B +≤; C.()()() R A B R A R B +>+;D.()()() R A B R A R B +≤+。 4.下列条件不是向量组 12 . n ααα ???线性无关的必要条件的是()。 A. 12 . n ααα ???都不是零向量; B. 12 . n ααα ???中任意两个都不成比例; C. 12 . n ααα ???中至少有一个向量可由其它向量线性表示; D. 12 . n ααα ???中任一部分线性无关。 5.下列条件中不是n阶方阵A可逆的充要条件的是( )。 A.0 A≠;B.() R A n =; C.A是正定矩阵; D.A等价于n阶单位矩阵。 题 号 一二 三四五总分: 总分人: 复核人: 11 12 8 得 分 签 名 得分

二、填空题(每小题3分,共15分) 6. 123 2122330 31332 x x x x x x x x x --- ---= +- 的根的个数为个。7. 20102009 100110100 001012010 010101001 - ?????? ? ??? -= ? ??? ? ??? - ?????? 。8. 010 100 002 A x ?? ? =- ? ? ?? ,当时,矩阵A为正交矩阵。 9.设A为5阶方阵,且()3 R A=,则()* R A=。 10.设三阶方阵A的特征值为1、2、2,则1 4A E --=。 三、计算题(每小题10分,共50分) 11.计算行列式 ab ac ae bd cd de bf cf ef - - - 。

线性代数期末试题ABC三卷及答案

《线性代数》课程试题A 卷 一、选择题(每空格3 分 共 30 分) 1.设行列式11 1213 21 22233132 331a a a a a a a a a =,则11 111213212122 23313132 33 332332332a a a a a a a a a a a a ------=( ). A 6 B -6 C 18 D -18 2.设A 为3阶方阵,且|A |=2,则|2A -1|=( ). A -4 B -1 C 1 D 4 3.设A 、B 均为n 阶方阵,则必有 ( ). A A B A B +=+ B AB BA = C AB BA = D T T AB A B = 4.已知向量组123410000,1,0,20010αααα???????? ? ? ? ?==== ? ? ? ? ? ? ? ????????? , 下列选项为该向量组的一个极大无关组的是 ( ). A 12,αα B 23,αα C 123,,ααα D 1234,,,αααα 5.设A 是n m ?矩阵,齐次线性方程组Ax =0有非零解的充要条件是 ( ). A ()r A n = B ()r A n < C 0A = D m n > 6.设向量组4321,,,αααα线性相关,则向量组中( ). A 必有一个向量可以表为其余向量的线性组合 B 必有两个向量可以表为其余向量的线性组合 C 必有三个向量可以表为其余向量的线性组合

D 每一个向量都可以表为其余向量的线性组合 7.设3阶实对称矩阵A 的特征值为λ1=λ2=0,λ3=2,则秩(A )=( ). A 0 B 1 C 2 D 3 8.设A 与B 是两个相似n 阶矩阵,则下列说法错误的是( ). A ||||A B = B 秩(A )=秩(B ) C 存在可逆阵P ,使1P AP B -= D E A E B λλ-=- 9.下列向量中与(1,1,1)α=-正交的向量是( ). A 1(1,1,1)α= B 2(1,1,1)α=- C 3(1,1,1)α=- D 4(0,1,1)α=- 10.二次型正定的充要条件是为实对称阵)(A Ax x T =f ( ). A A 可逆 B |A |>0 C A 的特征值之和大于0 D A 的特征值全部大于0 二、填空题(每小题3分 共30) 11.五阶行列式的展开式共有 项. 12.行列式3 1 7 045 211 --中元素32a 的余子式32M = 13.四阶行列式 0 004 003002001000 的值是 14.矩阵??????-0132?? ? ???-31中的元素21c = 15.若A ,B 为n 阶矩阵,则))((B A B A -+=

线性代数期末复习题

线性代数期末复习题 一、判断下列各题是否正确 1. 矩阵A 、B 的积AB =0,则A =0或B =0。 ( ) 2. 设A 为一任意矩阵,则A +A T ,AA T 均为对称矩阵。 ( ) 3. 设对矩阵A 施行初等变换得到矩阵B ,且已知秩(A)=r ,秩(B)=s,则r = s 。( ) 4. A 、B 均为n 阶可逆矩阵,则(AB)*= A *B * 。 ( ) 5. 设n 阶方阵A 、B 、C 满足关系式ABC =E ,则BCA =E 。 ( ) 6. 设A 、B 为n 阶方阵,则,(A -1 B -1)T =(A T B T )-1 。 ( ) 7. 等价的矩阵的秩相等。 ( ) 8. 若矩阵P T AP 为对称矩阵,则A 为对称矩阵。 ( ) 9.在4阶行列式中,项a 13a 34a 42a 21带正号。 ( ) 10. A * 是n 阶方阵A 的伴随矩阵,则 (2 A)* = 2 A * ( ) 11.在5阶行列式中,设a ij 为第i 行第j 列元素,A ij 为a ij 的代数余子式。则, a 31A 41+a 32A 42+a 33A 43+ a 34A 44+ a 35A 45=0 ( ) 12.若A *是n 阶方阵A 的伴随矩阵,则,|A *| = |A|n-1。 ( ) 13.若A 、B 是同阶方阵,则(A +B )2 =A 2+2AB +B 2 。 ( ) 14. 等价的向量组的秩相等。 ( ) 15. A *是n 阶方阵A 的伴随矩阵,则A *A =A A *= |A| E 。 ( ) 16.在4阶行列式中,项a 12a 34a 43a 21带负号。 ( ) 17. 若 n 阶矩阵A 可逆,则A 的n 个列向量线性相关 ( ) 18. 若矩阵A 、B 相似,则矩阵A 、B 合同。 ( ) 19. 实二次型f (x 1, x 2, x 3) =2 322x x + 是半正定二次型。 ( ) 20. 已知三阶矩阵A 的三个特征值是 -1,1,2,则|A| = -2 ( ) 21设A 是4×5矩阵,秩(A )=3,则A 中的3阶子式都不为0 ( ) 22若矩阵A 、B 合同,则矩阵A 、B 相似。 ( ) 23.设A 、B 为n 阶可逆方阵,则 (AB)-1 = A -1 B -1 。 ( ) 24.. 若A 为对称矩阵,则P T AP 为对称矩阵。 ( ) 25.在5阶行列式中,设a ij 为第i 行第j 列元素,A ij 为a ij 的代数余子式。则 a 51A 51+a 52A 52+a 53A 53+ a 54A 54+ a 55A 55=0 ( ) 26.若矩阵A 中所有t 阶子全为式0,则秩(A )≤t 。 ( ) 27.n 维零向量是任何一组n 维向量的线性组合。 ( ) 28.正交矩阵的行列式等于1或 -1 。 ( ) 29.任一实对称矩阵一定能与对角矩阵相似。 ( ) 30.实二次型f(x 1,x 2,x 3)=2 322x x + 是正定二次型。 ( ) 31若一个向量组线性相关,则该向量组的任一部分组都线性相关。 ( ) 32若向量α与β正交,则对任意实数a 、b, a α与b β也正交 ( ) 33若矩阵A 满足A T = A -1 ,则矩阵A 为正交矩阵 ( ) 34.若矩阵A 、B 相似,则矩阵A 、B 等价 ( ) 35.n 阶矩阵A 非奇异的充要条件是A 的行向量都是非零向量。 ( ) 36.若λ1和λ2分别是n 阶矩阵A 、B 的特征值,则λ1 +λ2是n 阶矩阵A+B 的 特征值, ( ) 37.二次型f(x 1,x 2,x 3) =(x 1+x 2)2 + (x 2-x 3) 2 + (x 3+x 1) 2的秩为2 ( )

北航线性系统理论完整版答案

1-1 证明:由矩阵 可知A 的特征多项式为 n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a A I ++++++=+++++=+++=++=+= -+λλλλλλλλλλ λλλλλ λλλλ λλλλ1-3-32-21-11-3-31 22 -2-1-n 1 3-n 2-n 2 1 -1n 1 2-n 1-n 12-n 1-n n 1- )1(-)1(- 0 0 0 1- )1(-)1(- 0 0 0 1- 1 0 1- 0 0 0 1- 若i λ是A 的特征值,则 所以[] T i i 1-n i 2 1 λλλ 是属于i λ的特征向量。 1-7 解:由于()τ τ--t e t g =,,可知当τ≤-=-=αα ββαβαt u t u P u Q P 而()()?? ?+>+≤-=???>≤=βαβαβααβαβ t 0 t t 0 t t u t u Q u P Q ,故u P Q u Q P αββα≠,所以系统是时变的。 又因为()()()()()?? ?>≤=???>≤=ααααα,,T T t u t u P u P P T T min t 0 min t t 0 t 而()()()()()()() ?? ?>≤=???>≤=ααααα,,,,T T t u T T t u P u P P P T T T min t 0 min t min t 0 min t ,故()()u P P P u P P T T T αα=,所以系统具有因果性。 1-11 解:由题设可知,()τ-t g 随τ变化的图如下所示。

《线性系统理论》试卷及答案

C 2 《线性系统理论》试卷及答案 1、(20分)如图所示RLC 网络,若e(t)为系统输入变量r(t),电阻R 2两端的电压为输出量y(t),选定状态变量为 x 1(t)=v 1(t),x 2(t)=v 2(t),x 3(t)=i(t) 要求列写出系统的状态空间描述。 2、(15分)求出下面的输入输出描述的一个状态空间描述。 y (4)+4y (3)+3y (2)+7y (1)+3y=u (3)+ 2u (1)+ 3u 3、(15分)计算下列线性系统的传递函数。 [] 210X 13101X y -????=+???? -????= 4、(10分)分析下列系统的能控性。 0111X X u a b ? ???? =+???? -???? 5、(10分)分析下列系统的能观性。 []1110a X X y X b ? ??==-???? 6、(15分)判断下列系统的原点平衡状态x e 是否大范围渐近稳定。 122 2112 3x x x x x x ==-- 7、(15分)已知系统的状态方程为 221012000401X X u ? --???? ????=-+????????-???? 试确定一个状态反馈阵K ,使闭环极点配置为λ1*=-2、λ2*=-3、λ3*=-4。

答案: 1、(20分)如图所示RLC 网络,若e(t)为系统输入变量r(t),电阻R 2两端的电压为输出量y(t),选定状态变量为 x 1(t)=v 1(t),x 2(t)=v 2(t),x 3(t)=i(t) 要求列写出系统的状态空间描述。 列出向量表示形式 解出解出解出r x x x L R x x x r x L R x x x x x x C R x x x C x C x r x R x L L L L ???? ??????+????? ???????????????? ?--=??????????+--=-=+=+==++1321113211 31 11 32122222112211333113000x y x x L

线性代数期末考试重点

《线性代数》的主要知识点 第一部分 行列式 概念: 1. n 阶行列式展开式的特点:①共有n!项,正负各半; ②每项有n 个元素相乘,且覆盖所有的行与列; ③每一项的符号为(列)行)ττ+-()1( 2. 元素的余子式以及代数余子式 ij j i ij M )1(A +-= 3. 行列式的性质 计算方法: 1. 对角线法则 2. 行列式的按行(列)展开 (另有异乘变零定理) 第二部分 矩阵 1. 矩阵的乘积 注意:①不满足交换率(一般情况下B A A B ≠) ②不满足消去率 (由AB=AC 不能得出B=C ) ③由AB=0不能得出A=0或B=0 ④若AB=BA ,则称A 与B 是可换矩阵 2.矩阵的转置 满足的法则:T T T B A )B A (+=+,T T T T T A B AB kA kA ==)(,)( 3.矩阵的多项式 设n n x a x a a x +++=Λ10)(?,A 为n 阶方阵,则 n n A a A a E a A +++=Λ10)(?称为A 的n 次多项式。 对与对角矩阵有关的多项式有结论如下: (1)如果 1-Λ=P P A ,则n n A a A a E a A +++=Λ10)(? 11110---Λ++Λ+=P Pa P Pa EP Pa n n Λ= 1)(-ΛP P ? (2)若),,(21n a a a diag Λ=Λ,则))(),(),(()(21n a a a diag ????Λ=Λ 4.逆矩阵:n 阶矩阵A,B ,若E BA AB ==,则A,B 互为逆矩阵。 n 阶矩阵A 可逆0A ≠?; n A r =?)( (或表示为n A R =)()即A 为满秩矩阵; ?A 与E 等价; ?A 可以表示成若干个初等矩阵的乘积; ?A 的列(行)向量组线性无关; ?A 的所有的特征值均不等于零

现代控制理论试卷答案与解析

现代控制理论试卷作业 一.图为R-L-C 电路,设u 为控制量,电感L 上的支路电流 11121222121212010Y x U R R R R Y x R R R R R R ????????????=+????????-????+++???????? 和电容C 上的电压2x 为状态变量,电容C 上的电压2x 为输出量,试求:网络的状态方程和输出方程(注意指明参考 方向)。 解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件,故有独立变量。 以电感L 上的电流和电容两端的电压为状态变量,即令:12,L c i x u x ==,由基尔霍夫电压定律可得电压方程为: 从上述两式可解出1x ?,2x ? ,即可得到状态空间表达式如下: ??????21y y =????????++-211212110R R R R R R R ??????21x x +u R R R ????????+2120 二、考虑下列系统: (a )给出这个系统状态变量的实现; (b )可以选出参数K (或a )的某个值,使得这个实现或者丧失能控性,或者丧失能观性,或者同时消失。 解:(a )模拟结构图如下: 则可得系统的状态空间表达式: (b ) 因为 3023A -??=??? 0013 k k a -??-??-? 110b ????=?????? 所以:当1a =时,该系统不能控;当1a ≠时,该系统能控。 又因为:[2C = 1 ]0 所以:当0k =或1a =时,该系统不能观;当0k ≠且1a ≠时,该系统能观。 综上可知:当1a =时或0k =且1a =时,该系统既不能控也不能观。 三、已知系统. Ax x =?的状态转移矩阵为: (1)试确定矩阵A ,并验证At e 确为上式。

线性系统理论试卷

《线性系统理论基础》考试试卷 A 卷 考试说明:考试时间:95分钟考试形式(开卷/闭卷/其它):闭卷 适用专业:自动化 承诺人:学号:班号: 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。注:本试卷共 6 大题,共 14 页,满分100分,考试时必须使用卷后附加的统一答题纸和草稿纸。请将答案统一写在答题纸上,如因答案写在其他位置而造成的成绩缺失由考生自己负责。 一、(20分)建立下列系统的状态空间模型: 1.已知图1所示的质量-弹簧-阻尼器系统,其中质量 1kg m=,弹性系数为2 k=,阻尼为3 f=。以外力u为控制输入,以位移y和速度y 作为输出建立状态空间模型。 2.已知图2所示的由两个基本模块反馈连接的 线性系统,写出其状态空间模型。 二、(20分)给定线性系统 [] 011 , 11 650 x x u y x - ???? =+=- ???? - ???? 1.将系统化为对角标准型。 2.求系统在输入t u e- =下的零初态响应() x t和输出响应() y t。3.分别画出原系统和对角标准型系统的结构框图。 图 2

三、(20分)给定如下线性系统 []31 001030000011000012200 2x x u y x -???? ????-????=+????? ???-????= 1. 将系统进行能控能观测子空间分解. 2. 写出其最小实现(即能控能观子系统)的状态空间表达式。 四、(10分)给定线性系统如下 11226129x x x x -??????=??????-? ????? 1. 求该系统的平衡点。 2. 选择形为22 12()V x ax bx =+的李亚普诺夫函数判断系统平衡点是否渐近稳定。 五、(10分)给定线性系统如下 1122010002x x u x x -????????=+?????? ?????? ???? 和二次型性能指标{}22 112 J x ru dx ∞= +?0, 1.确定最优线性状态反馈控制u kx =使得系统的性能指标J 达到最小。 2.讨论权值r 的大小对控制增益k 的影响。 六、(20分)给定单输入单输出系统的状态空间模型 []031,01100x x u y x ????=+=????-???? 1.设计状态反馈控制u kx =-使得闭环系统的期望极点为1,22j3λ=-±;

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

信息光学习题答案

信息光学习题答案 第一章 线性系统分析 1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dx d x g = (2)()();?=dx x f x g (3)()();x f x g = (4)()()()[];2 ? ∞ ∞ --= αααd x h f x g (5) ()()απξααd j f ?∞ ∞ --2exp 解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。 1.2 证明)()ex p()(2x comb x j x comb x comb +=?? ? ??π 证明:左边=∑∑∑∞ -∞ =∞-∞=∞-∞=-=??? ???-=??? ??-=??? ??n n n n x n x n x x comb )2(2)2(2122δδδ ∑∑∑∑∑∑∞ -∞ =∞ -∞ =∞ -∞=∞ -∞=∞ -∞ =∞ -∞ =--+-= -+-=-+-= +=n n n n n n n n x n x n x jn n x n x x j n x x j x comb x comb ) () 1()() ()exp()() ()exp()()exp()()(δδδπδδπδπ右边 当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞ -∞ =-n n x )2(2δ 所以当n 为偶数时,左右两边相等。 1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式 0)(,) () ()]([1 ≠''-=∑ =i n i i i x h x h x x x h δδ 式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。于是 )() ()(sin x comb n x x n =-=∑∞ -∞ =π δπ ππδ

相关文档
相关文档 最新文档