文档库 最新最全的文档下载
当前位置:文档库 › 2-4隐函数的求导法则.

2-4隐函数的求导法则.

2-4隐函数的求导法则.
2-4隐函数的求导法则.

·复习初等函数的求导法则,基本初等函数的求导公式.

·引入前面我们所遇到的函数都是y=f(x)的形式,这种函数的求导问题已经解决,下面我们来学习几种特殊的求导法.

·讲解新课

第四节隐函数的导数、由参数方程确定的函数的导数

一隐函数的求导法

把一个变量明显是另一个变量的函数,并可以表示为y=f(x)的形式的函数叫做显函数.把一个函数的自变量x和变量y之间的对应关系由一个二元方程F(x,y)=0所确定的函数叫做隐函数.

如4x-5y+8=0,x2+y2=R2,x+y-ey=0都是隐函数.把隐函数化成显函数的过程叫做隐函数的显化.

如将方程x+y-1=

0化成y=

隐函数的显化有时是有因难的.甚至是不可能的.

如隐函数xy=ex+y3就无法化成显函数.但在实际问题中,常常需要计算隐函数的导数.

求隐函数的导数的方法是将方程两边同时对自变量x求导,把y看成是关于x的函数,把关于y的函数应看成是关于x的复合函数.

例1 求由方程e+xy-e=0所确定的隐函数的导数y'x. y

'解:将方程两边同时对x求导,得ey'x+y+xyx=0,解得y

y'x=-y(x+ey≠0). yx+e

dy中允许dx一般地,由方程F(x,y)=0所确定的隐函数y,它的导数

含有y.

例2 求方程y5+2y-x-3x7=0所确定的隐函数y在x=0的导数dy. dxx=0

解:将方程的两边同时对x求导,得

5y4dydy+2-1-21x6=0, dxdx

dy1+21x6

所以. =4dx5y+2

当x=0时,由方程y5+2y-x-3x7=0得y=0,所以

二对数求导法

形为y=u(其中u、v都是x的函数)的函数叫做幂指函数.在求导运算中,常会遇到这样两类函数求导问题:一类是幂指函数,另一类是由一系列函数的乘、

除、乘方、开方所构成的函数。可以用对数求导法来求着两类函数的导数。所谓对数求导法,就是两边先取对数,然后利用隐函数的求导法求的结果。

例3 求函数y=xsinxvdy1=. dxx=02(x>0)的导数.

解:两边先取自然对数,得lny=sinx?lnx,

将方程两边同时对x求导,得1sinxy'=cosx?lnx+, yx

于是y'=y(cosx?lnx+sinxsinx)=xsinx(cosx?lnx+). xx

例4 求函数y=(x-4)(x-3)的导数. (x-2)(x-1)

1[ln(x-4)+ln(x-3)-ln(x-2)-ln(x-1)], 2解:先两边取对数,得lny=

方程两边对x求导,得111111y'=(+--), y2x-4x-3x-2x-1

所以y

'=1+1-1-1). x-4x-3x-2x-1

三由参数方程所确定的函数的导数

x=?(t)定理(参数方程求导法则)设函数由参数方程?所确定,如??y=f(t)

果x=?(t),y=f(t)在某区间内关于t都可导,并且dx=?'(t)≠0,那么dt

dy

由参数方程确定的函数的导数为dy=?'(t)=。

dxf'(t)dt

此公式就是由参数方程所确定的函数y对x的导数公式.

x=?(t)一般情况下,参数方程?,确定了y是x的函数.假设参数??y=f(t)

方程所确定的函数是y=F(x),那么函数y=f(t)可以看成是由函数y=F(x)和x=?(t)复合而成的函数,即y=f(t)=F[?(t)],假定 3

且y=F(x)和x=?(t)都可导,dydx≠0,于是根据复合函数的求导法则,dt

就有dy=dydx,即 dydt 。 =dtdxdtdxdt

?x=acosθdy例5 已知圆的参数方程?(a>0,θ为参数),求.dxy=asinθ?

解:∵dx=-asinθ,dy=acosθ,dθdθ

dy

∴dy=dθ=acosθ=-cotθ. dxdx-asinθ

例6 已知椭圆的参数方程为?数)求椭圆在θ=?x=acosθ (a>0,b>0,θ为参

?y=bsinθπ的切线方程. 4

dy解:∵dx=-asiθn,=bcosθ,∴dθdθ

dy.dybcoθsb==-=-coθtdxdxasiθna

d当θ=π时,椭圆上的相应点M的坐标

是x0=acosππ=

y0=bsinM处的切线斜424b率为dy=-,

dxθ=πa4

所以椭圆在点M处的切线方程

为y-b=-(x-,整理得2a2

bx+ay-2ab=0,如图所示.

练习 1 求由下列方程所确定的隐函数的导数y'x.

(1)y2-2xy+9=0,(2)x2+y2-3axy=0,(3)xy=ex+y. 2利用对数求导法求下列函数的导数.

x(1)y=x,(2)y=(x2+1)(x2-2),(3)y=x+1

. 3x-2(x+3)

3. 求下列参数方程所确定的函数的导数dy. dx

2??x=sint?x=a(t-sint)?x=1-t(1)?,(2),(3)(a为常数).

??3??y=t?y=a(1-cost)?y=t-t

四相关变化率

在一些问题中,变量x,y的变化依赖于另外的变量t,但变量x,y之间存在着某种关系,从而变化率dxdy与直接也存在一定的关系。这样,dtdt

两个相互依赖的变化率称为相关变化率。相关变化率问题是研究两个变化率之间的关系,通过其中一个来计算另一个变化率。

例7 设气体以100cm/s的常速注入球状的气球,假定气体的压力不变,那么当半径为10cm时,气球半径增加的速率是多少?

解设在时刻t时,气球的体积与半径分别为V和r,显然 3

4V=πr3,r=r(t), 3

所以V通过中间变量r与时间发生联系,是一个复合函数

V=π[r(t)]。 4

33

dVdr3=100cm/s,要求党r=10cm时的值。 dtdt

dV4dr=π?3[r(t)]2,根据复合函数求导法则,得dt3dt

2dr将已知数代入上式,得100=4π?10?, dt

dr1=所以cm/s,dt4π

1即当半径为10cm时,气球半径增加的速率是cm/s。4π根据题意,已知

例8 若水以2m/min的速度灌入高为10m,底面半径为5m的圆椎形水槽中(如图),问当水深为6m时,水位的上升速度为多少?

解设在时间为t时,水槽中水的体积为V,水面的半径为x,水槽中水的深度为y。

由题意有,3dV1=2m3/min,V=πx2y, dt3且11x5=,即x=y。因此V=πy3,212y10

dV12dydy4dV=πy=,即。dt4dtdtπy2dt将上式求导得

将dV1=2m3/min及V=πx2y代入上式得 dt3dy4?22==≈0.071(m/min)。

dtπ?369π

所以,当水深6m时,水位上升的速度为0.071m/min。

例9 一气球从离开观察员500m处离地面垂直上升,其速率为

140m/min,当气球高度为500m时,观察员视线的仰角的增加率是多少/

解设气球上升t秒后,其高度为h米,观察员视线的仰角为α,则

tanα=h, 500

其中α及h都是时间t的函数。上式两端对t求导,得

sec2t?

已知dα1dh=?。 dt500dtdh=140m/min,又当h=500米时,tan=1,sec2=2,代入上式得 dt

dα12=?140。 dt500

dα70=0.14(ard/min). 所以 dt500

即观察员视线的仰角增加率是0.14ard/min.

练习 1 一盏5m高处的路灯,照在一个距灯3m远,从5m高处落下的小球上,球的影子沿地面移动,求当球离地面3m高时,影子移动的速率?

(2 飞机在高h米处飞行的速度为a米/秒,位于航线正下方的地面上有一个探照灯跟踪飞机,问探照灯应以怎样的角速度转动才能找到飞机?(ahard/s) h2+a2t2 3 落在平静水面上的石头,产生的同心波纹。若最外一圈的半径的

2增大率总是6m/s,问2s末扰动水面面积的增大率是多少?(144πm/s)

五基本初等函数的求导公式与法则

1 基本初等函数的求导公式

(1) (C')=0, (2 ) ()'=-11'=x≠0) , (3

)2xx(4) (ax)'=axlnx, (5) (ex)'=ex

(6)(xα)'=αxα-1(α是任意实数)(7)(log1

ax)'=xlna.

(8) (lnx)'=1

x (9) (sinx)'=cosx .

(10) (cosx)'=-sinx (11) (tanx)'=sec2x

(12) (cotx)'=-csc2x (13) (secx)'=secxtanx.

(14) (cscx)'=-cscxcotx (15) (arctanx)'=1

1+x2. (16) (arccotx)'=-1 (17) (arcsinx)'=1+

x2.

(18) (arccosx)'=

2 函数的和、差、积、商的求导法则

(1)[u(x)±v(x)]'=u'(x)±v'(x)。

(2)[u(x)v(x)]'=u'(x)v(x)+u(x)v'(x)。

特别地 (Cu)'=Cu'(C为常数)。

(3)??u(x)?'u'(x)v(x)-u(x)

?v(x)??=v'(x)

v2(x)。

特别地 (C

v)'=-Cv'

v2(C为常数)。

3 复合函数的求导法则

设函数u=?(x)在点x处可导,函数y=f(u)在对应点u处也可导,则复合函数

y=f[?(x)]在点x处也可导,

且有 dydydu=?。 dxdudx

'''''上式也可写成y'x=yu?ux 或y(x)=f(u)??(x)的形式.

4 参数方程确定的函数的导数

dy

x=?(t)若参数方程?,确定了y是x的函数,则 dy= ?dxdx?y=f(t)

dt

5 反函数的求导法则

如果单调连续函数x=?(y)在点y处可导,而且?'(y)≠0,那么它的反函数y=f(x)在对应的点x处可导,且有

f'(x)=dy11=。或?'(y)dx至此,基本初等函数的导数公式全部介绍完毕,而且还给出了函数的和、差、积、商与复合函数的求导法则.由于任意初等函数都是由基本初等函数与常数经过有限次四则运算和复合而成的,所以现在可以求任意初等函数的导数.

练习求下列函数的导数.

33x2x-1sinxx(1)y=()+x5,(2)y=e,(3)y=2,(4)y=cos(3), 5

(5)y=arcsin3x,(6)y=arctan2x2,(7)y=e-tsint,

(8)y=xex,(9)y=(1+x2)arctanx,(10)y=arccos2x。 2小结 1 在隐函数及对数求导法中,要以复合函数求导法为依据展开要注意对中间变量求导后不要丢掉y'(x)因子。2 复合函数的导数在实际问题中的应用比较难,在教学中应详细的进行分析,通过多练,使学生掌握解题方法。3 根据导数的定义和求导法则,推出了所有基本初等函数的求导公式,即建立了和差积商求导法则,复合函数求导法则,反函数求导法则,这样就解决了初等函数的求导问题。

作业 P44:1,2,5

板书设计

隐函数的求导方法总结

河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(=οοy x F ,0),(≠οοy x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)(οοx f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

隐函数求导公式

第5节:隐函数的求导公式 教学目的:掌握由一个方程和方程组确定的隐函数求导公式,熟练计算隐函数的导函数。 教学重点:由一个方程确定的隐函数求导方法。 教学难点:隐函数的高阶导函数的计算。 教学方法:讲授为主,互动为辅 教学课时:2 教学内容: 一、一个方程的情形 在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经显化直接由方程 ),(y x f =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式. 隐函数存在定理 1 设函数),(y x F 在点 ),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 0))(,(≡x f x F , 其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得 ,0=??+??dx dy y F x F

由于y F 连续,且0),(00≠y x F y ,所以存在(x 0,y 0)的一个邻域,在这个邻域内0≠y F ,于是得 .y x F F dx dy -= 如果),(y x F 的二阶偏导数也都连续,我们可以把等式(2)的两端看作x 的复合函数而再一次求导,即得 dx dy F F y F F x dx y d y x y x ???? ??-??+???? ??-??= 22 .23 2222y x yy y x xy y xx y x y x yy y xy y x yz y xx F F F F F F F F F F F F F F F F F F F F +--=???? ??-----= 例 1 验证方程012 2 =-+y x 在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =,并求这函数的一阶和二阶导数在x =0的值。 解 设=),(y x F 12 2-+y x ,则y F x F y x 2,2==,02)1,0(,0)1,0(≠==y F F .因此 由定理1可知,方程012 2 =-+y x 在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =。 下面求这函数的一阶和二阶导数 y x F F dx dy -==y x -, 00 ==x dx dy ; 22dx y d =,1) (3 32222y y x y y y x x y y y x y -=+-=---='-- 10 2 2-==x dx y d 。 隐函数存在定理还可以推广到多元函数.既然一个二元方程(1)可以确定一个一元隐函

隐函数的求导方法总结

百度文库- 让每个人平等地提升自我 河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

隐函数求导法则.

1、填空题 1)已知x+y-3xy=0,则 3 3 dydx = x-yx-y 2 2 。 2) 已知x+2y+z-=0,则 ?x? y xz = 3)已知z=y,则dz= xz zy z-1 dy-zlnzdx x-1 xz-ylny 。 4)已知cos2x+cos2y+cos2z=1,则dz=- sin2xsin2z dx- sin2ysin2z dy。

5)已知z=f(xz,z-y),其中f具有一阶连续偏导数,则 dz= zf1'dx-f2'dy1-xf1'-f2' 。 分析:dz=f1'd(xz)+f2'd(z-y)=zf1'dx+xf1'dz+f2'dz-f2'dy 2、设F(y+z,xy+yz)=0,其中F具有二阶连续的偏导数,求解:方法一、 F(y+z,xy+yz)=0两边关于x求偏导得 F' ?z?x 2 2 。 -yF2'?z??z?'+F2 y+y= ?=0? ?x?x?x''??F1+yF2?z F1' ?z?? +F2' y+y?=0两边再关于x求偏导得?x?x?? 2 2 ?z ??z?z???z?z??z?z????z??z''''?y+y'''''?y+y'yF+F+F+F+Fy+y+F=012 122 2????? 11 2122?x?x?x?x?x?x?x?x?????????? ( ?z??z??z??z? ''?''''?y+yF1'+yF2'=-F-2Fy+y-F11 1222 ??? 2 ?x?x??x??x???x?? ) ?z 2 22 ?z?x 2 2 =- (

F1'+yF2' ) 3 ?' yF2? () 2 2 F11''-2yF1'F2'F12''+yF1' ()() 2 ?F22''? ? 方法二、F(y+z,xy+yz)=0两边微分得 F1'(dy+dz)+F2'(ydx+xdy+zdy+ydz)=0 dz= ?F1'?x?F2'?x -yF2'F1'+yF2' ?z dx+ -(x+z)F2'-F1' F1'+yF2' dy? ?z?x = -yF2'F1'+yF2' =F11'' ?z?y? +F12'' y+y=-F2'F11''+F1'F12'' ??x?x?F'+yF'?12 () =F21'' ?z?y? +F22'' y+y=-F2'F12''+F1'F22'' ??x?x?F'+yF'?12 ?z ()

高等数学--隐函数的求导法则

第五节 隐函数的求导法则 一、一个方程的情形 隐函数存在定理1设函数F(X, y)在点P(X 0, y o )的某一邻域内具有连续偏 导数,F(x °,y °) 0,F y (X 0, y 。) 0 ,则方程F(x,y) 0在点X 。的某一邻域内恒 能唯一确定一个连续且具有连续导数的函数 y f(x),它满足条件y o f(x o ), 并有 dy Fx dx F y ' 说明:1) 定理证明略,现仅给出求导公式的推导:将 y f(x)代入 F(x,y) 0 ,得恒等式 F(x,f(x)) 0, 等式两边对X 求导得 F _Fdy X y dx 由于F y 0于是得 dy Fx dx F y 导数: 2 d y I _ Fx . dy dx X F y y F y dx FF 2 2F F F F F 2 XX y XyXy y y X F y 例1验证方程Siny e x Xy 1 0在点(0,0)的某一邻域内能唯一确定一个 2)若F(x, y)的二阶偏导数也都连续 则按上述方法还可求隐函数的二阶 F XX F y F yX F X F Xy F y F y y F X FX F y

解设 F(X l y) Siny e x Xy 1,则 1) F X e X y , F y CoSy X 连续; 2) F(Q I Q) 0 ; 3) F y (Q I Q) 1 Q . 一个单值可导的隐函数y f(X). 隐函数存在定理还可以推广到多元函数.一般地一个二元方程 F(x, y) Q 可 以确定一个一元隐函数,而一个三元方程F(x,y,z) Q 可以确定一个二元隐函数. 隐函数存在定理2设函数F(x, y, z)在点P(X Q ) y o , Z Q )的某一邻域内具有连续 的偏导数,且 F(X Q ) y o ,Z o ) Q , F Z (X Q , y o ,Z o ) Q ,则方程 F(X ) y, Z) Q 在点(X Q l y Q ) 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数 Z f (x, y),它 满足条件Z Q f (X Q ,y o ),并有 Z F X Z F y X F Z , y F Z . 说明:定理证明略,现仅给出求导公式的推导:将Z f(x,y)代入 单值可导的隐函数y f(X) ,并求 dy x d 2y 0 , dx 2 x 因此由定理1可知,方程Siny e X Xy 1 Q 在点(Q,Q)的某一邻域内能唯一确定 dy dx X F X F y X cosy X X Q,y d 2y dx 2 X dx cosy X X 0, y Q,y (e X y )(cos y X ) (e y)( (cosy x )2 Sinyy 1)

隐函数的求导方法总结

河北地质大学 课程设计(论文) 题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确定了一个隐函数。例如,方程013=-+y x 表示一个函数,因为当变量x 在()∞+∞-,内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2 x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x 故 1=x dx dy =) 1,(!y x =1

(完整版)第五节隐函数求导法则

第五节 隐函数求导法则 教学目的:会求隐函数(包括由方程组确定的隐函数)的偏导数。 教学重点:隐函数的偏导数 教学难点:隐函数(包括由方程组确定的隐函数)的偏导数; 教学时数:2 教学内容: 一、一个方程的情形 1、 隐函数存在定理1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数, 0000(,)0,(,)0y F x y F x y '=≠, 则方程(,)0F x y =在点00(,)x y 的某一邻域内恒能唯一确定 一个连续且具有连续导数的函数()y f x =, 它满足条件()00y f x =, 并有 y x F F dx dy -=. 证明: 将()y f x =代入(,)0,F x y =得恒等式()(,)0,F x f x ≡ 等式两边对x 求导得 0=???+??dx dy y F x F , 由于y F '连续, 且00(,)0y F x y '≠, 所以存在00(,)x y 的一个邻域, 在这个邻域同0y F '≠, 于是得 y x F F dx dy -=. 例1: 验证方程22 10x y +-=在点(0,1)的某一邻域内能唯一确定一个有连续导数、当 0x =时1y =的隐函数(),y f x =并求这函数的一阶与二阶导数在0x =的值. 解: 设22 (,)1F x y x y =+-, 则2x F x '=、2y F y '=、 F (0,1)0=, F (0,1)20.y '=≠因此由定理1可知, 方程2 2 10x y +-=在点(0,1)的某一邻域内能唯一确定一个有连续导数、当 0x =时1y =的隐函数()y f x =.

隐函数求导的简单方法

·1· 数学中不等式的证明方法 王贵保 一、利用拉格朗日中值定理 1.拉格朗日中值定理:设)(x f 满足:(1)在闭区间[a , b ]上连续;(2)在开区间(a , b )内可导,则有一点∈ξ(a , b ),使得 )()()(ξf a b a f b f '=-- 2.从上式可以看出,如果能确定了)(ξf '介于某两个数m 与M 之间,则有如下形式的不等式: m ≤a b a f b f --)()(≤M 因此,欲证形如a b a f b f --)()(或构造成为a b a f b f --)()(形式的不等式,可用该方法。 例1:证明,当x >0时,有1-x e >x . 证明:由原不等式,因为x >0,可改写为x e x 1->1的形式,或改写为00--x e e x >1的形式,这里t e t f =)(,区间为[0, x ],于是可用拉格朗日中值定理证明。 令t e t f =)(,∈t [0, x ],则)(t f 满足拉格朗日中值定理的条件,于是存在∈ξ[0, x ]有 0--x e e x =ξe >1 所以,有不等式1-x e >x . 例2:证明不等式x +11<x x ln )1ln(-+<x 1 (x >0) 证明:x x ln )1ln(-+=x x x x -+-+)1(ln )1ln(这里x b +=1,x a =,于是可对t t f ln )(=在[x , 1+x ]上应用拉格朗日中值定理. 令t t f ln )(= ]1,[x x t +∈ (x >0),则)(t f 在[x , 1+x ]上满足中值定理的条件,于是有]1,[x x +∈ξ,即x <ξ<x +1,使得

隐函数极其求导法则

隐函数极其求导法则 隐函数及其求导法则 我们知道用解析法表示函数,可以有不同的形式. 若函数y可以用含自变量x的算式表示,像y=sinx,y=1+3x等,这样的函数叫显函数.前面我们所遇到的函数 大多都是显函数. 一般地,如果方程F(x,y)=0中,令x在某一区间内任取一值时,相应地总有满足此方程的y值存在,则我们就 说方程F(x,y)=0在该区间上确定了x的隐函数y. 把一个隐函数化成显函数的形式,叫做隐函数的显化。 注:有些隐函数并不是很容易化为显函数的,那么在求其导数时该如何呢? 下面让我们来解决这个问题! 隐函数的求导 若已知F(x,y)=0,求时,一般按下列步骤进行求解: a):若方程F(x,y)=0,能化为的形式,则用前面我们所学的方法进行求导; b):若方程F(x,y)=0,不能化为的形式,则是方程两边对x进行求导,并把y看成x的函数 , 用复合函数求导法则进行。 例题:已知,求 解答:此方程不易显化,故运用隐函数求导法.

两边对x进行求导, 故= 注:我们对隐函数两边对x进行求导时,一定要把变量y看成x的函数,然后对其利用复合函数求导法则进行求导。 例题:求隐函数,在x=0处的导数 解答:两边对x求导 故 当x=0时,y=0.故 有些函数在求导数时,若对其直接求导有时很不方便,像对某些幂函数进行求导时,有没有一种比较直观的方法呢? 下面我们再来学习一种求导的方法:对数求导法

积分 黎曼积分 如果函数f(X)在闭区间[a,b]上定义,而(P,ζ)是这个闭区间的一个带点分割,则和 ζ(f;p,ζ):=Σ f(ζi)ΔXi 叫做函数f在区间[a,b]上对应于带点分割(P,ζ)的积分和,其中ΔXi=Xi-X(i-1) 存在这样一个实数I,如果对于任何ε>0可以找到一个δ>0,使对区间[a,b]的任何带点分割(P,ζ),只要分化P的参数λ(P)<δ,就有|I-ζ(f;p,ζ)|<ε,则称函数f(X)在闭区间[a,b]上黎曼可积,而I就成为函数f(X)在闭区间[a,b]上的黎曼积分。 微积分 积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。 一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。 其中:[F(x) + C]' = f(x) 一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。 积分integral 从不同的问题抽象出来的两个数学概念。定积分和不定积分的统称。不定积分是为解决求导和微分的逆运算而提出的。例如:已知定义在区间I上的函数f(x),求一条曲线y=F(x),x∈I,使得它在每一点的切线斜率为F′(x)=f(x)。函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作。如果F(x)是f(x)的一个原函数,则,其中C为任意常数。例如,定积分是以平面图形的面积问题引出的。y=f(x)为定义在[a,b]上的函数,为求由x=a,x=b ,y=0和y=f(x)所围图形的面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将[a,b]分成n 等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi],记Δxi=xi-xi-1,,则pn为S的近似值,当n→+∞时,pn的极限应可作为面积S。把这一类问题的思想方法抽象出来,便得定积分的概念:对于定义在[a,b]上的函数y=f(x),作分划a=x0<x1<…<xn=b,若存在一个与分划及ζi∈[xi-1,xi]的取法都无关的常数I,使得,其中则称I为f(x)在[a,b]上的定积分,表为即称[a,b]为积分区间,f(x)为被积函数,a,b分别称为积分的上限和下限。当f(x)的原函数存在时,定积分的计算可转化为求f(x)的不定积分:这是c牛顿莱布尼兹公式。 以上讲的是传统意义上的积分也即黎曼积分。 微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。 微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。

隐函数的求导方法总结

河北地质大学课程设计(论文) 题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 .......................................................................... 错误!未指定书签。 一.隐函数的概念 .................................................. 错误!未指定书签。 二.隐函数求偏导 .................................................. 错误!未指定书签。 1.隐函数存在定理1 ................................................ 错误!未指定书签。 2.隐函数存在定理2 ................................................ 错误!未指定书签。 3.隐函数存在定理3 ................................................ 错误!未指定书签。 三.隐函数求偏导的方法 .......................................... 错误!未指定书签。 1.公式法 ................................................................... 错误!未指定书签。 2.直接法 ................................................................... 错误!未指定书签。 3.全微分法 ............................................................... 错误!未指定书签。 参考文献 .................................................................. 错误!未指定书签。 摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数偏导数方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确定了一

高等数学--隐函数的求导法则

高等数学--隐函数的 求导法则 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第五节 隐函数的求导法则 一、一个方程的情形 隐函数存在定理1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有 d d x y F y x F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入 (,)0F x y =,得恒等式 (,())0F x f x ≡, 等式两边对x 求导得 d 0d F F y x y x ??+=??, 由于0y F ≠ 于是得 d d x y F y x F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数: 22d d ()()d d x x y y F F y y x x F y F x ?? =-+-? ?? 2 2()x x y y x x x y y y y x x y y y F F F F F F F F F F F F --=- - - 22 3 2x x y x y x y y y x y F F F F F F F F -+=- .

例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单 值可导的隐函数()y f x =,并求22 d d ,00 d d y y x x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠. 因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =. d 0d y x x =0x y F x F =-= e 10,0 cos x y x y y x -=-=-==-, 22 d 0d y x x = d e ()0,0,1 d cos x y x y y x y x -=-'===-- 02 01 (e )(cos )(e )(sin 1) (cos )x x x y y y y x y y y y x =='=-''-----?-=- -3=-. 隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点 00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数 (,)z f x y =, 它满足条件000(,)z f x y =,并有 x z F z x F ?=-?,y z F z y F ?=-?.

相关文档