文档库 最新最全的文档下载
当前位置:文档库 › we6800-2c光栅类型、原理、辨向原理、细分技术

we6800-2c光栅类型、原理、辨向原理、细分技术

we6800-2c光栅类型、原理、辨向原理、细分技术
we6800-2c光栅类型、原理、辨向原理、细分技术

111

1、点阵式全像立体光栅

是一种新型的立体表现方式,(也叫矩阵立体光栅)它的材料、观看、制作不同于柱镜立体光栅材料和狭缝立体光栅材料,制作出来的图象可以从上下、左右看。

2、柱镜光栅:表面有槽;

狭缝光栅:表面光滑,配合灯光效果极佳。有颜色。柱镜光栅种类繁多主要有板材和模材两大类,其成像原理为弧面透镜折射反射成像原理。1光栅尺的构造和种类光栅尺包括标尺光栅和指示光栅,它是用真空镀膜的方法光刻上均匀密集线纹的透明玻璃片或长条形金属镜面。

对于长光栅,这些线纹相互平行,各线纹之间距离相等,我们称此距离为栅距。对于圆光栅,这些线纹是等栅距角的向心条纹。栅距和栅距角是决定光栅光学性质的基本参数。常见的长光栅的线纹密度为25,50,100,125,250条/mm。对于圆光栅,若直径为70mm,一周内刻线100-768条;若直径为110mm,一周内刻线达600-1024条,甚至更高。同一个光栅元件,其标尺光栅和指示光栅的线纹密度必须相同。

222]

光栅的结构和类型

光册主要由标尺光栅和光栅读数头两部分组成。通常,标尺光栅固定在活动部件上,如机床的上作台或耸钉卜。光栅读数头则安装在固定部件L、川机床的底限L。当活动部件移动时,读数头和标尺光栅也就阳之做相对的移动。

333

光栅尺:其实起到的作用是对刀具和工件的坐标起一个检测的作用,在数控机床中常用来观察其是否走刀有误差,以起到一个补偿刀具的运动的误差的补偿作用,其实就象人眼睛看到我切割偏没偏的作用,然后可以给手起到一个是否要调整我是否要改变用力的标准。

一、位移传感器基本原理

光栅位移传感器的工作原理,是由一对光栅副中的主光栅(即标尺光栅)和副光栅(即指示光栅)进行相对位移时,在光的干涉与衍射共同作用下产生黑白相间(或明暗相间)的规则条纹图形,称之为莫尔条纹。经过光电器件转换使黑白(或明暗)相同的条纹转换成正弦波变化的电信号,再经过放大器放大,整形电路整形后,得到两路相差为90°的正弦波或方波,送入光栅数显表计数显示。444

1、辨向原理在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个光电元件测定莫尔条纹信号确定不了位移方向。为了辨向,需要有π/2相位差的两个莫尔条纹信号。如图2,在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01和u02,经过整形后得到两个方波信号u01’和u02’。光栅正向移动时u01超前u02 90度,反向移动时u02超前u01 90度,故通过电路辨相可确定光栅运动方向。

555、

2、细分技术随着对测量精度要求的提高,以栅距为单位已不能满足要求,需要采取适当的措施对莫尔条纹进行细分。所谓细分就是在莫尔条纹信号变化一个周期内,发出若干个脉冲,以减少脉冲当量。如一个周期内发出n个脉冲,则可使测量精度提高n倍,而每个脉冲相当于原来栅距的1/n。由于细分后计数脉冲频率提高了n倍,因此也称n倍频。通常用的有两种细分方法:其一、直接细分。在相差1/4莫尔条纹间距的位置上安放两个光电元件,可得到两个相位差90o的电信号,用反相器反相后就得到四个依次相差90o的交流信号。同样,在两莫尔条纹间放置四个依次相距1/4条纹间距的光电元件,也可获得四个相位差90o的交流信号,实现四倍频细分其二、电路细分。

666

三、单片机与接口电路

为实现可逆计数和提高测量速度,系统采用了193可逆计数器。假设工作平台运行速度为v,光栅传感器栅距为d,细分数为N,则计数脉冲的频率为:

(2) 若v=1m/s,d=20μm,N=20,则f=1MHz,对应计数时间间隔为1,显然对于8031单片机系统的响应为2μs是不能胜任的。经可逆计数器分频后,可大大地提高测量速度。

由于193是4位二进制输出,为与单片机接口,把两片193采用了级联的方式,这样最多可计255个脉冲,若再来脉冲,进位端或借位端将输出一个脉冲送到单片机T0、T1端计数,保证送到8031的信号不丢失。

本系统长度最大可测几米(由光栅实际长度决定),最小分辨率为μm级,需要7个显示数据。正向运行时不显示符号,反向运行时需显示"-"号,所以连同符号位,共需8个显示块。为了符全人们应用习惯,显示块选用共阴极LED。

为实现测量系统的智能化,设置了一个2×8方式键盘矩阵,其中包括0~9共10个数字键和6个功能键:L/A长度/角度转称功能键;+/-符号转换功能键;ΔT温度误差修正功能键;EXE执行键;ENT预置键CE(清零键)。键盘、显示器与单片机之间通过一个接口芯片8155来连接。其中,8155的PA口设置辚基本输出方式,作为8位LED显示的段码线;PB口设为输出方式,作为8位LED 的位选线;PC口设为输入方式,作为键盘的行扫描线。PB口侠选线每次选通1位显示,每次显示1ms,由于人眼视觉惰性,可产生8位显示块同时显示现象。由于从前置电路74LS54出来的脉冲经过2片193分频后,直接进入8031的仅为大于255的"大"数,而小于255的"小"数是由两片193输出通过I/O接口输入到8031内部处理,这个I/O接口芯片是通过扩展一片8255实现的。其中,8255PB口设为基本输入方式,PB0-PB3作为1#193输入,PB4~PB7作为2#193输入。PA口、PC口的低位设为输出,作为系统并行BCD码输出。由于8031单片机无内ROM,应外扩展一片2732(4k EPROM)。只用PSEN片选,不必增加地址译码。为锁存8031P0口输入的地址信号,在8031和2732之间需加一片74LS373地址锁存器。

光栅传感器工作原理

光栅传感器工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、光栅传感器的基本原理 光栅传感器是根据莫尔条纹原理制成的一种计量光栅,多用于位移测量及与位移相关的物理量,如速度、加速度、振动、质量、表面轮廓等方面的测量。光栅传感器的基本结构如图1所示: 图1 光栅传感器的基本结构 光栅传感器由光源、透镜、光栅副(主光栅和指示光栅)和光电接收元件组成如图1所示,当标尺光栅相对于指示光栅移动时,形成亮暗交替变化的莫尔条纹。利用光电接收元件将莫尔条纹亮暗变化的光信号,转换成电脉冲信号,并用数字显示,便可测量出标尺光栅的移动距离。 光栅传感器光源:钨丝灯泡的输出功率较大,工作范围较宽为-40℃到 +130℃,但是它与光电元件相组合的转换效率低。在机械振动和冲击条件下工作时,使用寿命将降低。因此必须定期更换照明灯泡以防止由于灯泡失效而造成的失误。半导体发光器件转换效率高,响应快速。如砷化镓发光二极管,与硅光敏三极管相结合,转换效率最高可达30%左右。砷化镓发光二极管的脉冲响应速度约为几十ns,可以使光源工作在触发状态,从而减小功耗和热耗散。 光栅副:如图2所示为透射光栅,它是一个长光栅,在一块长方形的光学玻璃上均匀地刻上许多条纹,形成规则的明暗线条。图中a为刻线宽度,b为可惜案件的缝隙宽度,a+b=W称为光栅的栅距或光栅常数。通常情况下, a=b=W/2,也可以做成a:b=1.1:0.9,刻线密度一般为每毫米10,25,50,100线。

图2 透射光栅 指示光栅一般比主光栅短得多,通常刻有与主光栅同样密度的线纹。 光电元件包括有光电池和光敏三极管等部分。在采用固态光源时,需要选用敏感波长与光源相接近的光敏元件,以获得高的转换效率。在光敏元件的输出端,常接有放大器,通过放大器得到足够的信号输出以防干扰的影响。二、莫尔条纹形成的原理 把光栅常数相等的主光栅和指示光栅相对叠合在一起(片间留有很小的间隙),并使两者栅线之间保持很小的夹角θ,于是在近于垂直栅线的方向上出现明暗相间的条纹,如图3所示。在a-a’线上,两光栅的栅线彼此重合,光线从缝隙中通过,形成亮带;在b-b’线上,两光栅的栅线彼此错开,形成暗带。这种明暗相见的条纹称为莫尔条纹。莫尔条纹方向与刻线方向垂直,故又称做横向莫尔条纹。

光栅尺的定义及应用

光栅尺定义: 光栅尺通过摩尔条纹原理,通过光电转换,以数字方式表示线性位移量地高精度位移传感器.光栅线位移传感器主要应用于直线移动导轨机构,可实现移动量地精确显示和自动控制,广泛应用于金属切削机床加工量地数字显示和加工中心位置环地控制.该产品已形成系列,供不同规格地各类机床选用,量程从毫米至米,覆盖几乎全部金属切削机床地行程. 威海三丰电子有限公司生产数显光栅尺,数控光栅尺,直线光栅尺,电子尺,位移传感器,机床数显,数显改造,数控改造,机床改造,数显装置,数显传感器,数显表,磁栅尺,数显尺,旧机床数显改造,可按客户需求定制,价格优惠!电话:资料个人收集整理,勿做商业用途 现代地自动控制系统中已广泛地采用光电传感器(如光栅尺)来解决轴地线位移、转速或转角地监测和控制问题. 适用以下领域: 加工用地设备:车床、铣床、镗床、磨床、电火花机、线切割等 测量用地仪器:投影机、影像测量仪、工具显微镜等 也可对数控机床上刀具运动地误差起补偿作用资料个人收集整理,勿做商业用途 光栅尺:测量范围:~ 测量准确度:±μ~±μ 测量基准:光栅周期μ地光学玻璃尺 光学测量系统:透射式红外线光测量系统,红外线波长 反应速度:() () 读数头滑动系统:垂直式五轴承 输出讯号: 讯号传达周期:μ 供应电压:± 采用最高优质地材料制造出耐油、高弹性及抗老化胶封.由工程师精心设计出最佳地闭合角度和最适中地软硬度,保证最佳地密封性能和最少地磨擦阻力.读数头滑动部分结构采用已被验证为最可靠耐用地五轴承设计,保证光学感应系统能长期稳定地在光栅尺上畅顺滑行. 读数头滑动部分结构采用已被验证为最可靠耐用地五轴承设计,保证光学感应系统能长期稳定地在光栅尺上畅顺滑行. 弹簧地几何设计经过精确详细地力学模型分析,并采用高级地德国制弹簧钢材制造.确保光学感应系统就是在高速地移动情况下,仍能紧贴在光栅尺上无跳动地滑行. 所有轴承均采用日本规格高精度轴承,保证滑行畅顺,跳动量低,可靠耐用. 采用美国公司地高效能红外线发光管为光源.讯号强而稳定,可靠性极高资料个人收集整理,勿做商业用途 光栅尺相关介绍

传感器及其工作原理 说课稿 教案

传感器及其工作原理 【三维目标】 1.知识与技能: (1)、了解什么是传感器,知道非电学量转化为电学量的技术意义; (2)、知道传感器中常见的三种敏感元件光敏电阻、热敏电阻和霍尔元件及其它们的工作原理。 (3)、了解传感器的应用。 2.过程与方法: 通过对实验的观察、思考和探究,让学生在了解传感器、熟悉传感器工作原理的同时,经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践 能力和创新思维能力。 3.情感、态度与价值观 (1)、体会传感器在生活、生产、科技领域的种种益处,激发学生的学习兴趣,拓展学生的知识视野,并加强物理与STS的联系。 (2)、通过动手实验,培养学生实事求是的科学态度、团队合作精神和创新意识。【教学重点】:理解并掌握传感器的三种常见敏感元件的工作原理。 【教学难点】:分析并设计传感器的应用电路。 【教学方法】:实验、探究、讨论 【教学用具】:干簧管,磁铁,光敏电阻、热敏电阻演示仪、传感器简单应用实验盒、万用表。 【教学过程】 一、引入新课 准备知识:从上世纪八十年代起,国际上出现了“传感器热”,传感器在当今科技发展中有着十分重要的地位。本课的设计思路是通过对实验的观察、思考和探究,了解什么是传感器,传感器是如何将非电学量转换成电学量的,传感器在生产、生活中有哪些具体应用,为学生利用传感器制作简单的自控装置作一铺垫。教学时力避深奥的理论,侧重于联系实际,让学生感受传感器的巨大作用,进而提高学生的学习兴趣,培养学生热爱科学的情感和崇尚科学的精神。 今天我们生活中常用的电视、空调的遥控器是如何实现远距离操纵的?楼梯上的电灯如何能人来就开,人走就熄的?工业生产中所用的自动报警器、恒温烘箱是如何工作的?“非典”病毒肆虐华夏大地时,机场、车站、港口又是如何实现快速而准确的体温检测的?所有这些,都离不开一个核心,那就是本堂课将要学习的传感器。 二、新课教学 1.什么是传感器 演示实验1:如图1所示,小盒子的侧面露出一个小灯泡,盒外没有开关,当把磁铁放到盒子上面,灯泡就会发光,把磁铁移开,灯泡熄灭。

(整理)光栅尺工作原理

1 光栅尺工作原理 光栅位移传感器的工作原理,是由一对光栅副中的主光栅(即标尺光栅)和副光栅(即指示光栅)进行相对位移时,在光的干涉与衍射共同作用下产生黑白相间(或明暗相间)的规则条纹图形,称之为莫尔条纹。经过光电器件转换使黑白(或明暗)相同的条纹转换成正弦波变化的电信号,再经过放大器放大,整形电路整形后,得到两路相差为90o的正弦波或方波,送入光栅数显表计数显示。 二、工作原理 常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。图4-9是其工作原理图。当使指示光栅上的线纹与标尺光栅上的线纹成一角度来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个 区域出现暗带。这些与光栅线纹几乎垂直,相间出现的亮、暗带就是莫尔条纹。莫尔条纹具有以下性质:

(1) 当用平行光束照射光栅时,透过莫尔条纹的光强度分布近似于余弦函数。 (2) 若用W表示莫尔条纹的宽度,d表示光栅的栅距,θ表示两光栅尺线纹的夹角,则它们之间的几何关系为W=d/sin当角很小时,上式可近似写W=d/θ 若取d=0.01mm,θ=0.01rad,则由上式可得W=1mm。这说明,无需复杂的光学系统和电子系统,利用光的干涉现象,就能把光栅的栅距转换成放大100倍的莫尔条纹的宽度。这种放大作用是光栅的一个重要特点。 (3) 由于莫尔条纹是由若干条光栅线纹共同干涉形成的,所以莫尔条纹对光栅个别线纹之间的栅距误差具有平均效应,能消除光栅栅距不均匀所造成的影响。 (4) 莫尔条纹的移动与两光栅尺之间的相对移动相对应。两光栅尺相对移动一个栅距d,莫尔条纹便相应移动一个莫尔条纹宽度W,其方向与两光栅尺相对移动的方向垂直,且当两光栅尺相对移动的方向改变时,莫尔条纹移动的方向也随之改变。 根据上述莫尔条纹的特性,假如我们在莫尔条纹移动的方向上开4个观察窗口A,B,C,D,且使这4个窗口两两相距1/4莫尔条纹宽度,即W/4。由上述讨论可知,当两光栅尺相对移动时,莫尔条纹随之移动,从4个观察窗口A,B,C,D可以得到4个在相位

光电传感器工作原理

光电传感器工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

工作原理 摘要: 光电传感器是利用光电子应用技术,将光信号转换成电信号从而检测被测目标的一种装置。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,体积小。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温和气体成分等;也可用来检测能转换成光量的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度和加速度,以及物体形状、工作状态等。光电式传感器具有非接触,响应快,性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 关键字:光电元件、检测技术、传感器、应用 一、光电传感器工作原理 光电式传感器的物理基础是光电效应,即半导体材料的许多电学特性都因受到光的照射而发生变化。光电效应通常分为两大类,即外光电效应和内光电效应。外光电效应是指物质吸收光子并激发出自由电子的行为。当金属表面在特定的光辐照作用下,金属会吸收光子并发射电子,发射出来的电子叫做光电子。光的波长需小于某一临界值 (相等于光的频率高于某一临界值)时方能发射电子,其临界值即极限频率和极限波长。由E =hn-W如果入射光子的能量hn大于逸出功W,那么有些光电子在脱离金属表面后还有剩余的能量,也就是说有些光电子具有一定的动能。因为不同的电子脱离某种金属所需的功不一样, 所以它们就吸收了光子的能量并从这种金属逸出之后剩余的动能也不一样。由于逸出功W是使电子脱离金属所要做功的最小值,所以如果用E 表示动能最大的光电子所具有的动能,那么就有下面的关系式E =hn-W (其中,h表示普兰克常量,n表示入射光的频率),这个关系式通常叫做爱因斯坦光电效应方程。

光栅尺工作原理

光栅尺位移传感器原理简介及维护注意事项 一、光栅尺是什么? 轨道旁边的黄色金属条,与其对 应部位,在移载台底部装有光读 头 定义: 光栅尺位移传感器(简称光栅尺),是利用光栅的光学原理工作的测量反馈装置。 光栅尺位移传感器经常应用于机床与现在加工中心以及测量仪器等方面,可用作 直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大, 检测精度高,响应速度快的特点。 二、光栅尺的分类、构造 1)分类: 光栅尺位移传感器按照制造方法和光学原理的不同,分为透射光栅和反射光栅。 ●透射光栅指的玻璃光栅. ●反射光栅指的钢带光栅 2)结构: 光栅尺位移传感器是由标尺光栅和光栅读数头两部分组成。标尺光栅一般固定在机 床活动部件上,光栅读数头装在机床固定部件上,指示光栅装在光栅读数头中。下图所示的 就是光栅尺位移传感器的结构。

三、光栅尺的工作原理? 常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。(关于莫尔条纹的原理,可参考相关文献) 简单的说:光读头通过检测莫尔条纹个数,来“读取”光栅刻度,然后再根据驱动电路的作用,计算出光栅尺的位移和速度。 莫尔条纹 四、光栅尺的维护 1)尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅尺传感器壳体内部。 2)定期检查各安装联接螺钉是否松动、定期使用干燥的洁净布擦拭表。 3)光栅尺位移传感器严禁剧烈震动及摔打、踩踏,以免破坏光栅尺,如光栅尺断裂,光

栅尺传感器即失效了。 4)不要自行拆开光栅尺位移传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅尺传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。 5)应注意防止油污及水污染、硬物划伤光栅尺面,以免破坏光栅尺线条纹分布,引起测量误差。 6)光栅尺位移传感器应尽量避免在有严重腐蚀作用的环境中工作,以免腐蚀光栅铬层及光栅尺表面,破坏光栅尺质量。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注!)

光栅尺的应用与原理

光栅尺的应用与原理 光栅尺的结构是由有刻有窄的等间距的线纹标尺光栅和读数头组成,读数头是由刻有与标尺光栅光刻密度相同好的指示光栅、光学系统和光路原件等组成。标尺光栅与尺度光栅与一定间距平行放置,并且他们的刻度线相互倾斜一定角度@,标尺光栅固定不动,指示光栅沿着垂直线条纹方向运动,光线照在标尺光栅上放射或者投射在指示光栅并发生光的衍射,产生明暗相间的莫尔条纹,光电探测器检测莫尔条纹的宽度变化并将其转换成电信号输出给控制装置。 莫尔条纹的特点: 1.莫尔条纹的移动与光栅栅距之间的移动关系,光栅移动一个条纹,莫尔条纹正好移动一 个条纹。 2.莫尔条纹的放大作用:B=W/(2SIN2/2)=W/2 主要的元件:发光LED, 标尺光栅,指示光栅,光电探测器。 光栅的选用:选用光栅要综合考虑一下几个要素: 1.考虑被测物理量的性质,要根据呗测量的行程和精度要求选择量程和精度,根据被测量 的最大速度确定光栅尺的最大移动速度以及是否需要基准标记和相位开关传感器,要什么形式的光栅。 2.根据控制器可以控制的信号的类型选择光栅输出类型,还要考虑接口的硬件匹配。 3.根据工作条件确定光栅尺应具备在何种环境下工作的能力 4.根据被测的物体考虑安装方案。考虑到空间,方向等问题。 5.设计电缆的长度 6.价格和服务 7.市场的方便,型号的选择。 光栅的主要技术参数: 分辨率:表征的测量精度,有5.0um ,1.0um ,0.5um ,0.1um 输出波形:方波和正弦波两种。 按控制的形式:数字量和模拟量,要与控制器匹配。 测量周期:没测一次所需的时间 测量长度:可以应许的测量范围 测量方式:绝对值和识字增量坐标 使用温度:5----45度 供电电源:一般为+5+5%,电流大小为120mA 最大移动速度:要大于要求值 最小时钟频率:要保证控制器的频率高于要求值。 安装: 把光栅尺贴在平台的固定部分上。安装要用专用工具,保证光栅的安装合付要求(水平度、垂直度)。 读数头要安装在平台的移动部分上。在安装光栅尺时要先安装光栅尺,然后根据光栅尺安装读数头。保证读头与光栅尺的距离2—3mm,

光电传感器工作原理

工作原理 摘要: 光电传感器是利用光电子应用技术,将光信号转换成电信号从而检测被测目标的一种装置。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,体积小。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温和气体成分等;也可用来检测能转换成光量的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度和加速度,以及物体形状、工作状态等。光电式传感器具有非接触,响应快,性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 关键字:光电元件、检测技术、传感器、应用 一、光电传感器工作原理 光电式传感器的物理基础是光电效应,即半导体材料的许多电学特性都因受到光的照射而发生变化。光电效应通常分为两大类,即外光电效应和内光电效应。外光电效应是指物质吸收光子并激发出自由电子的行为。当金属表面在特定的光辐照作用下,金属会吸收光子并发射电子,发射出来的电子叫做光电子。光的波长需小于某一临界值(相等于光的频率高于某一临界值)时方能发射电子,其临界值即极限频率和极限波长。由E =hn-W如果入射光子的能量hn大于逸出功W,那么有些光电子在脱离金属表面后还有剩余的能量,也就是说有些光电子具有一定的动能。因为不同的电子脱离某种金属所需的功不一样,所以它们就吸收了光子的能量并从这种金属逸出之后剩余的动能也不一样。由于逸出功W是使电子脱离金属所要做功的最小值,所以如果用 E 表示动能最大的光电子所具有的动能,那么就有下面的关系式E =hn-W (其中,h表示普兰克常量,n表示入射光的频率),这个关系式通常叫做爱因斯坦光电效应方程。 如

光电传感器原理(精辟)

光电传感器原理 2007年05月21日星期一13:44

1.光电传感器原理 光电传感器是指能够将可见光转换成某种电量的传感器。光敏二极管是最常见的光传感器。光敏二极管的外型与一般二极管一样,只是它的管壳上开有一个嵌着玻璃的窗口,以便于光线射入,为增加受光面积,PN结的面积做得较大,光敏二极管工作在反向偏置的工作状态下,并与负载电阻相串联,当无光照时,它与普通二极管一样,反向电流很小(<μA),称为光敏二极管的暗电流;当有光照时,载流子被激发,产生电子-空穴,称为光电载流子。在外电场的作用下,光电载流子参于导电,形成比暗电流大得多的反向电流,该反向电流称为光电流。光电流的大小与光照强度成正比,于是在负载电阻上就能得到随光照强度变化而变化的电信号。 光敏三极管除了具有光敏二极管能将光信号转换成电信号的功能外,还有对电信号放大的功能。光敏三级管的外型与一般三极管相差不大,一般光敏三极管只引出两个极——发射极和集电极,基极不引出,管壳同样开窗口,以便光线射入。为增大光照,基区面积做得很大,发射区较小,入射光主要被基区吸收。工作时集电结反偏,发射结正偏。在无光照时管子流过的电流为暗电流Iceo=(1+β)Icbo(很小),比一般三极管的穿透电流还小;当有光照时,激发大量的电子-空穴对,使得基极产生的电流Ib增大,此刻流过管子的电流称为光电流,集电极电流Ic=(1+β)Ib,可见光电三极管要比光电二极管具有更高的灵敏度 2.光电传感器应用 光电传感器是一种小型电子设备,它可以检测出其接收到的光强的变化。早期的用来检测 物体有无的光电传感器是一种小的金属圆柱形设备,发射器带一个校准镜头,将光聚焦射向接收器,接收器出电缆将这套装置接到一个真空管放大器上。在金属圆筒内有一个小的白炽 灯做为光源。这些小而坚固的白炽灯传感器就是今天光电传感器的雏形。 LED(发光二极管) 发光二极管最早出现在19世纪60年代,现在我们可以经常在电气和电子设备上看到这些二极管做为指示灯来用。LED就是一种半导体元件,其电气性能与普通二极管相同,不同之处在于当给LED通电流时,它会发光。由于LED是固态的,所以它能延长传感器的使用寿命。因而使用LED 的光电传感器能被做得更小,且比白炽灯传感器更可靠。不象白炽灯那样,LED抗震动抗冲击,并且没有灯丝。另外,LED所发出的光能只相当于同尺寸白炽灯所产生光能的 一部分。(激光二极管除外,它与普通LED的原理相同,但能产生几倍的光能,并能达到更远的检测距离)。LED能发射人眼看不到的红外光,也能发射可见的绿光、黄光、红光、蓝光、蓝绿光或白光。 经调制的LED传感器 1970年,人们发现LED还有一个比寿命长更好的优点,就是它能够以非常快的速度来开关,开关速度可达到KHz。将接收器的放大器调制到发

传感器及其工作原理教案

江苏省淮阴中学06-07年度优秀教学案例 《传感器及其工作原理》的创新教学设计 王刚 教学依据 ①物理(新人教版)选修3-2第六章第1节《传感器及其工作原理》(P56-P60); ②新物理课程标准(实验). 教学流程图

教学目标1.知识与技能:①知道非电学量转换成电学量的技术意义;②通过实验,知道常见传感器的工作原理;③初步探究利用和设计简单的传感器. 2.过程与方法:①通过对实验的观察、思考和探究,让学生了解传感器、熟悉传感器工作原理;②让学生自己设计简单的传感器,经历科学探究过程,学习科学研究方法,培养学生的实践能力和创新思维能力. 3.情感态度与价值观:在理解传感器工作原理的基础上,通过自己设计简单的传感器,体验科技创新的乐趣,激发学习物理的兴趣. 重、难点 1.几种常见传感器的工作原理(演示实验);2.学生自己设计简单的传感器. 教学策略 用几个有趣的传感器实验引入课题,激发学生探究传感器原理的兴趣.给出“传感器就是把非电学量转换为电学量”的概念之后,重点介绍光敏电阻、金属热电阻、热敏电阻.安排音乐茶杯和火警装置两个设计性问题让学生体会传感器的简单应用.结合电容、霍尔效应、电阻定律等知识让学生设计传感器,进一步深化传感器的工作原理.最后在对本节课总结的基础上,结合《思考与讨论》进行教学反馈. 教学程序 教学环节教学内容及师生互动设计情感与方法 一.课题的引入 二.什么是传感器?【演示实验1】干簧管控制电路的通断 如图,小盒子A的侧面露出一个小灯泡,盒外没有开 关,但是把磁铁B放到盒子上面,灯泡就会发光,把磁铁移 走,灯泡熄灭. 师问:盒子里有怎样的装置,才能实现这样的控制? 生猜:(可以自由讨论,也可以请学生回答) 师生探究:打开盒子,用实物投影仪展示盒内的电路 图,了解元件“干簧管”的结构。探明原因:玻璃管内封入 两个软磁性材料制成的簧片。当磁铁靠近干簧管时,两个簧 片被磁化而接通,电路导通。所以,干簧管能起到开关的作 用。 师点拨:这个装置反过来还可以让我们通过灯泡的发 光情况,感知干簧管周围是否存在着磁场。 【演示实验2】声光控开关控制电路的通断 ①先在普通光照条件下, ②在把开关置于黑暗环境中。 师生总结:声光控开关 师:刚才的两个实验,都用了一种元件,这些元件能够 感受某些信息,通过它能实现电路的自动控制,这种元件有 一个专门的名称:传感器。什么是传感器呢?它能够感受诸 如力、温度、光、声、化学成分等非电学量,并能把它们按 照一定的规律转换为电压、电流等电学量,或转换为电路的 通断。我们把这种元件叫做传感器。它的优点是:把非电学 量转换为电学量以后,就可以很方便地进行测量、传输、处 理和控制了。 其实,传感器并不神秘。你家里可能就有很多的传感 器。请大家相互说说看,你家里,或者在你的生活当中,都 (演示实验1: 干簧管传感器) (干簧管的实 物及原理图) 学生对干簧 管并不熟悉,因 此才有了好奇。 声光控开关在 生活中很普及, 所以又有亲切 感

光电传感器工作原理

光电传感器工作原理 电子电路 2008-05-31 22:27 阅读6004 评论3 字号:大中小 本文来源网络 光电传感器工作原理 光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的。光电传感器在一般情况下,有三部分构成 它们分为:发送器、接收器和检测电路。发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。光束不间断地发射,或者改变脉冲宽度。接收器有光电二极管、光电三极管、光电池组成。在接收器的前面,装有光学元件如透镜和光圈等。在其后面是检测电路,它能滤出有效信号和应用该信号。此外,光电开关的结构元件中还有发射板和光导纤维。三角反射板是结构牢固的发射装

置。它由很小的三角锥体反射材料组成,能够使光束准确地从反射板中返回,具有实用意义。它可以在与光轴0到25的范围改变发射角,使光束几乎是从一根发射线,经过反射后,还是从这根反射线返回。分类和工作方式⑴槽型光电传感器把一个光发射器和一个接收器面对面地装在一个槽的两侧的是槽形光电。发光器能发出红外光或可见光,在无阻情况下光接收器能收到光。但当被检测物体从槽中通过时,光被遮挡,光电开关便动作。输出一个开关控制信号,切断或接通负载电流,从而完成一次控制动作。槽形开关的检测距离因为受整体结构的限制一般只有几厘米。⑵对射型光电传感器若把发光器和收光器分离开,就可使检测距离加大。由一个发光器和一个收光器组成的光电开关就称为对射分离式光电开关,简称对射式光电开关。它的检测距离可达几米乃至几十米。使用时把发光器和收光器分别装在检测物通过路径的两侧,检测物通过时阻挡光路,收光器就动作输出一个开关控制信号。⑶反光板型光电开关把发光器和收光器装入同一个装置内,在它的前方装一块反光板,利用反射原理完成光电控制作用的称为反光板反射式(或反射镜反射式)光电开关。正常情况下,发光器发出的光被反光板反射回来被收光器收到;一旦光路被检测物挡住,收光器收不到光时,光电开关就动作,输出一个开关控制信号它的检测头里也装有一个发光器和一个收光器,但前方没有反光板。正常情况下发光器发出的光收光器是找

光栅传感器的工作原理

光栅传感器的工作原理 光栅数字传感器,通常由光源5(聚光镜4)、计量光栅、光电器件3及测量电路等部分组成,如图12.1.2所示。计量光栅由标尺光栅1(主光栅)和指示光栅2组成,因此计量光栅又称光栅副,它决定了整个系统的测量精度。一般主光栅和指示光栅的刻线密度相同,但主光栅要比指示光栅长得多。测量时主光栅与被测对象连在一起,并随其运动,指示光栅固定不动,因此主光栅的有效长度决定了传感器的测量范围。 1.莫尔条纹 将主光栅与标尺光栅重叠放置,两者之间保持很小的间隙,并使两块光栅的刻线之间有一个微小的夹角θ,如图12.1.3所示。当有光源照射时,由于挡光效应(对刻线密度≤50条/mm的光栅)或光的衍射作用(对刻线密度≥100条/mm的光栅),与光栅刻线大致垂直的方向上形成明暗相间的条纹。在两光栅的刻线重合处,光从缝隙透过,形成亮带;在两光栅刻线的错开的地方,形成暗带;这些明暗相间的条纹称为莫尔条纹。 莫尔条纹有如下几个重要特性: (1)莫尔条纹的运动与光栅的运动一一对应 当指示光栅不动,主光栅的刻线与指示光栅刻线之间始终保持夹角θ,而使主光栅沿刻线的垂直方向作相对移动时,莫尔条纹将沿光栅刻线方向移动;光栅反向移动,莫尔条纹也反向移动。主光栅每移动一个栅距W,莫尔条纹也相应移动一个间距S。因此通过测量莫尔条纹的移动,就能测量光栅移动的大小和方向,这要比直接对光栅进行测量容易得多。 (2)莫尔条纹具有位移放大作用 当主光栅沿与刻线垂直方向移动一个栅距W时,莫尔条纹移动一个条纹间距。当两个光栅刻线夹角θ较小时,由式(12.1.1)可知,W一定时,θ愈小,则B愈大,相当于把栅距W放大了1/ θ倍。例如,对50条/mm的光栅,W=0.02mm,若取,则莫尔条纹间距,K=573,相当于将栅距放大了573倍。因此,莫尔条纹的放大倍数相当大,可以实现高灵敏度的位移测量。(3)莫尔条纹具有误差平均效应 莫尔条纹是由光栅的许多刻线共同形成的,对刻线误差具有平均效应,能在很大程度上消除由于刻线误差所引起的局部和短周期误差影响,可以达到比光栅本身刻线精度更高的测量精度。因此,计量光栅特别适合于小位移、高精度位移测量。 (4)莫尔条纹的间距S随光栅刻线夹角θ变化 由于光栅刻线夹角θ可以调节,因此可以根据需要改变θ的大小来调节莫尔条纹的间距,这给实际应用带来了方便。 当两光栅的相对移动方向不变时,改变θ的方向,则莫尔条纹的移动方向改变。 2.光电转换 主光栅和指示光栅的相对位移产生了莫尔条纹,为了测量莫尔条纹的位移,必须通过光电器件(如硅光电池等)将光信号转换成电信号。 在光栅的适当位置放置光电器件,当两光栅作相对移动时,光电器件上的光强随莫尔条纹移动,光强变化为正弦曲线,如图12.1.4所示。在a位置,两个光栅刻线重叠,透过的光强最大,光电器件输出的电信号也最大;在c位置由于光被遮去一半,光强减小;位置d的光被完全遮去而成全黑,光强最小;若光栅继续移动,透射到光电器件上的光强又逐渐增大。光电器件上的光强变化近似于正弦曲线,光栅移动一个栅距W,光强变化一个周期。光电器件的输出电压 通过整形电路,将正弦信号转变成方波脉冲信号,则每经过一个周期输出一个方波脉冲,这样脉冲总数N就与光栅移动的栅距数相对应,因此光栅的位移为

光栅的结构及工作原理

光栅的结构及工作原理 光栅是利用光的透射、衍射现象制成的光电检测元件,它主要由标尺光栅和光栅读数头两部分组成。通常,标尺光栅固定在机床的活动部件上(如工作台或丝杠),光栅读数头安装在机床的固定部件上(如机床底座),二者随着工作台的移动而相对移动。在光栅读数头中,安装着一个指示光栅,当光栅读数头相对于标尺光栅移动时,指示光栅便在标尺光栅上移动。当安装光栅时,要严格保证标尺光栅和指示光栅的平行度以及两者之间的间隙(一般取0.05mm或0.1mm)要求。 1. 光栅尺的构造和种类 光栅尺包括标尺光栅和指示光栅,它是用真空镀膜的方法光刻上均匀密集线纹的透明玻璃片或长条形金属镜面。对于长光栅,这些线纹相互平行,各线纹之间距离相等,我们称此距离为栅距。对于圆光栅,这些线纹是等栅距角的向心条纹。栅距和栅距角是决定光栅光学性质的基本参数。常见的长光栅的线纹密度为25,50,100,125,250条/mm。对于圆光栅,若直径为70mm,一周内刻线100-768条;若直径为110mm,一周内刻线达600-1024条,甚至更高。同一个光栅元件,其标尺光栅和指示光栅的线纹密度必须相同。 2. 光栅读数头 图4-7是光栅读数头的构成图,它由光源、透镜、指示光栅、光敏元件和驱动线路组成。读数头的光源一般采用白炽灯泡。白炽灯泡发出的辐射光线,经过透镜后变成平行光束,照射在光栅尺上。光敏元件是一种将光强信号转换为电信号的光电转换元件,它接收透过光栅尺的光强信号,并将其转换成与之成比例的电压信号。由于光敏元件产生的电压信号一般比较微弱,在长距离传递时很容易被各种干扰信号所淹没、覆盖,造成传送失真。为了保证光敏元件输出的信号在传送中不失真,应首先将该电压信号进行功率和电压放大,然后再进行传送。驱动线路就是实现对光敏元件输出信号进行功率和电压放大的线路。

光电开关工作原理NPN与PNP传感器差异

光电开关工作原理NPN与PNP传感器差异 红外线属于一种电磁射线,其特性等同于无线电或X射线。人眼可见的光波是380n m-780n m,发射波长为780n m-1m m的长射线称为红外线,省洞头县光电开关厂生产的红外线光电开关优先使用的是接近可见光波长的近红外线。 红外线光电开关(光电传感 器)属于光电接近开关的简称,它是利 用被检测物体对红外光束的遮光或反 射,由同步回路选通而检测物体的有 无,其物体不限于金属,对所有能反射 光线的物体均可检测。根据检测方式的 不同,红外线光电开关可分为 1.漫反射式光电开关 漫反射光电开关是一种集发射器和接收器于一体的传 感器,当有被检测物体经过时,将光电开关发射器发 射的足够量的光线反射到接收器,于是光电开关就产 生了开关信号。当被检测物体的表面光亮或其反光率 极高时,漫反射式的光电开关是首选的检测模式。 引起理想漫反射的光度分布 局部较强漫反射时的光度分布

2.镜反射式光电开关 镜反射式光电开关亦是集发射器与接收器于一体,光电开关发射器发出的光线经过反射镜,反射回接收器,当被检测物体经过且完全阻断光线时,光电开关就产生了检测开关信号。 3.对射式光电开关 对射式光电开关包含在结构上相互分离且光轴相对放置的发射器和接收器,发射器发出的光线直接进入接收器。当被检测物体经过发射器和接收器之间且阻断光线时,光电开关就产生了开关信号。当检测物体是不透明时,对射式光电开关是最可靠的检测模式。 4.槽式光电开关 槽式光电开关通常是标准的U字型结构,其发射器和接收器分别位于U型槽的两边,并形成一光轴,当被检测物体经过U型槽且阻断光轴时,光电开关就产生了检测到的开关量信号。槽式光电开关比较安全可靠的适合检测高速变化,分辨透明与半透明物体。 5.光纤式光电开关 光纤式光电开关采用塑料或玻璃光纤传感器来引导光线,以实现被检测物体不在相近区域的检测。通常光纤传感器分为对射式和漫反射式。 型号说明

常见光纤光栅传感器工作原理

常见光纤光栅传感器工作原理 光纤光栅传感器的工作原理 光栅的Bragg波长λB由下式决定:λB=2nΛ (1) 式中,n为芯模有效折射率,Λ为光栅周期。当光纤光栅所处环境的温度、应力、应变或其它物理量发生变化时,光栅的周期或纤芯折射率将发生变化,从而使反射光的波长发生变化,通过测量物理量变化前后反射光波长的变化,就可以获得待测物理量的变化情况。如利用磁场诱导的左右旋极化波的折射率变化不同,可实现对磁场的直接测量。此外,通过特定的技术,可实现对应力和温度的分别测量,也可同时测量。通过在光栅上涂敷特定的功能材料(如压电材料),还可实现对电场等物理量的间接测量。 1、啁啾光纤光栅传感器的工作原理 上面介绍的光栅传感器系统,光栅的几何结构是均匀的,对单参数的定点测量很有效,但在需要同时测量应变和温度或者测量应变或温度沿光栅长度的分布时,就显得力不从心。一种较好的方法就是采用啁啾光纤光栅传感器。 啁啾光纤光栅由于其优异的色散补偿能力而应用在高比特远程通信系统中。与光纤Bragg光栅传感器的工作原理基本相同,在外界物理量的作用下啁啾光纤光栅除了△λB的变化外,还会引起光谱的展宽。这种传感器在应变和温度均存在的场合是非常有用的,啁啾光纤光栅由于应变的影响导致了反射信号的拓宽和峰值波长的位移,而温度的变化则由于折射率的温度依赖性(dn/dT),仅影响重心的位置。通过同时测量光谱位移和展宽,就可以同时测量应变和温度。 2、长周期光纤光栅(LPG)传感器的工作原理 长周期光纤光栅(LPG)的周期一般认为有数百微米,LPG在特定的波长上把纤芯的

光耦合进包层:λi=(n0-niclad)。Λ。式中,n0为纤芯的折射率,niclad为i阶轴对称包层模的有效折射率。光在包层中将由于包层/空气界面的损耗而迅速衰减,留下一串损耗带。一个独立的LPG可能在一个很宽的波长范围上有许多的共振,LPG共振的中心波长主要取决于芯和包层的折射率差,由应变、温度或外部折射率变化而产生的任何变化都能在共振中产生大的波长位移,通过检测△λi,就可获得外界物理量变化的信息。LPG在给定波长上的共振带的响应通常有不同的幅度,因而LPG适用于多参数传感器。 光纤光栅传感器的应用 1、在民用工程结构中的应用 民用工程的结构监测是光纤光栅传感器最活跃的领域。力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和状况监测是非常重要的。通过测量上述结构的应变分布,可以预知结构局部的载荷及状况。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行冲击检测、形状控制和振动阻尼检测等,以监视结构的缺陷情况。另外,多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式检测,可以用计算机对传感信号进行远程控制。 光纤光栅传感器可以检测的建筑结构之一为桥梁。应用时,一组光纤光栅被粘于桥梁复合筋的表面,或在梁的表面开一个小凹槽,使光栅的裸纤芯部分嵌进凹槽得以保护。如果需要更加完善的保护,则最好是在建造桥时把光栅埋进复合筋,由于需要修正温度效应引起的应变,可使用应力和温度分开的传感臂,并在每一个梁上均安装这两个臂。 两个具有相同中心波长的光纤光栅代替法布里-珀罗干涉仪的反射镜,形成全光纤法布里-珀罗干涉仪(FFH),利用低相干性使干涉的相位噪声最小化,这一方法实现了高灵敏度的动态应变测量。用FFPI结合另外两个FBG,其中一个光栅用来测应变,另一个被保护起来,免受应力影响,以测量和修正温度效应,所以FFP~FBG实现了同时测量三个量:温度、静态应变、瞬时动态应变。这种方法兼有干涉仪的相干性和光纤布拉格光栅传感器的优点。已在5mε的测量范围内,实现了小于1με的静态应变测量精度、0.1℃的温度灵敏度和小于1nε/(Hz)1/2的动态应变灵敏度。

光栅尺的工作原理

光栅尺工作原理 常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。图4-9是其工作原理图。当使指示光栅上的线纹与标尺光栅上的线纹成一角度 来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个区域出现暗带。这些与光栅线纹几乎垂直,相间出现的亮、暗带就是莫尔条纹。莫尔条纹具有以下性质: (1) 当用平行光束照射光栅时,透过莫尔条纹的光强度分布近似于余弦函数。 (2) 若用W表示莫尔条纹的宽度,d表示光栅的栅距,θ表示两光栅尺线纹的夹角,则它们之间的几何关系为W=d/sin当 角很小时,上式可近似写W=d/θ 若取d=0.01mm,θ=0.01rad,则由上式可得W=1mm。这说明,无需复杂的光学系统和电子系统,利用光的干涉现象,就能把光栅的栅距转换成放大100倍的莫尔条纹的宽度。这种放大作用是光栅的一个重要特点。 (3) 由于莫尔条纹是由若干条光栅线纹共同干涉形成的,所以莫尔条纹对光栅个别线纹之间的栅距误差具有平均效应,能消除光栅栅距不均匀所造成的影响。 (4) 莫尔条纹的移动与两光栅尺之间的相对移动相对应。两光栅尺相对移动一个栅距d,莫尔条纹便相应移动一个莫尔条纹宽度W,其方向与两光栅尺相对移动的方向垂直,且当两光栅尺相对移动的方向改变时,莫尔条纹移动的方向也随之改变。 根据上述莫尔条纹的特性,假如我们在莫尔条纹移动的方向上开4个观察窗口A,B,C,D,且使这4个窗口两两相距1/4莫尔条纹宽度,即W/4。由上述讨论可知,当两光栅尺相对移动时,莫尔条纹随之移动,从4个观察窗口A,B,C,D可以得到4个在相位上依次超前或滞后(取决于两光栅尺相对移动的方向)1/4周期(即π/2)的近似于余弦函数的光强度变化过程,用表示,见图4-9(c)。若采用光敏元件来检测,光敏元件把透过观察窗口的光强度变化 转换成相应的电压信号,设为 。根据这4个电压信号,可以检测出光栅尺的相对移动。 1.位移大小的检测 由于莫尔条纹的移动与两光栅尺之间的相对移动是相对应的,故通过检测 这4个电压信号的变化情况,便可相应地检测出两光栅尺之间的相对移动。 每变化一个周期,即莫尔条纹每变化一个周期,表明两光栅尺相对移动了一个栅距的距离;若两光栅尺之间的相对移动不到一个栅距,因 是余弦函数,故根据 之值也可以计算出其相对移动的距离。 2. 位移方向的检测 在图4-9(a)中,若标尺光栅固定不动,指示光栅沿正方向移动,这时,莫尔条纹相应地沿向下的方向移动,透过观察窗口A和B,光敏元件检测到的光强度变化过程 和及输出的相应的电压信号和如图4-10(a)所示,在这种情况下,滞后的相位为/2;反之,若标尺光栅固定不动,指示光栅沿负方向移动,这时,莫尔条纹则相应地沿向上的方向移动,透过观察窗口A和B,光敏元件检测到的光强度变化过程和 及输出的相应的电压信号和如图4-10(b)所示,在这种情况下,超前的相位为/2。因此,根据和两信号相互间的超前和滞后关系,便可确定出两光栅尺之间的相对移动方向。 工作原理: 直线光栅尺和旋转编码器均依据相对运动的原理来产生光信号,这些信号经过光电器件的转换处理后,用来检测机械装置的位移。FAGOR公司反馈产品采用两种不同的材料来产生反馈信

光电传感器的原理及应用

光电传感器的原理及应用

光电传感器的原理与应用 学院: 班级: 学号: 姓名: 指导老师:

电感式传感器的原理及应用 摘要:将被测量变化转换成电感量变化的传感器,称为电感式传感器。电感它利用电磁感应原理将被测非电量(位移、压力、流量、振动等)转换为线圈自感系数L 或互感系数M 的变化,再由测量电路转换为电压或电流的变化量输出。其工作流程图如下所示: 关键字:电感测微仪、原理、应用,发展 正文: 1.电感式传感器的原理、组成及特点 电感式传感器由三大部分组成:振荡器、开关电路及放大输出电路。振荡器产生一个交变磁场。当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的。 电感式传感器具有以下特点:(1)结构简单,传感器无活动电触点,因此工作可靠寿命长。(2)灵敏度和分辨力高,能测出0.01微米的位移变化。传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出。 (3)线性度和重复性都比较好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差可达0.05%-0.1%。同时,这种传感器能实现信息的远距离传输、记录、显示和控制,它在工业自动控制系统中广泛被采用。但不足的是,它有频率响应较低,不宜快速动态测控等缺点。 2.电感式传感器的类别及其在实际生活中的应用 常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸力所造成的附加误差。 1、变间隙型电感传感器 这种传感器的气隙δ随被测量的变化而改变,从而改变磁阻。原理图如下所示: 输入量(温度、 压力等) LC 振荡 电路 测量电路 输出(电压、电 流的变化量)

光栅尺与磁栅尺的优缺点与特长

介绍一下开环控制系统和闭环控制系统吗?若在机床上用闭环控制系统有哪些优缺点?还有光栅尺磁栅尺的优缺点及特长,通常磁栅尺光栅尺在哪些地方应用? -------------------------- 回复如下:(经整理) 控制系统大致分类:按控制原理的不同,自动控制系统分为开环控制系统和闭环控制系统。 1)开环控制系统 开环控制系统是指被控对象的输出(被控制量)对控制器的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 2)闭环控制系统 闭环控制系统的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈,若极性相同,则称为正反馈。一般闭环控制系统均采用负反馈,又称负反馈控制系统。 3)开环、闭环控制系统的各自特点: 在开环控制系统中,系统输出只受输入的控制,控制精度和抑制干扰的特性都相对比较差。 闭环控制系统是建立在反馈原理基础之上的,利用输出量同期望值的偏差对系统进行控制,可获得比较好的控制性能。通常大多数重要的自动控制系统都采用闭环控制的方式。 闭环控制系统按控制和测量信号的不同,又可分为连续控制系统和离散控制系统。控制信号连续地作用于系统的,称为连续控制系统。控制信号断续地作用于系统的,称为离散控制系统。此外,在工程中,自动控制系统也有按所控制变量的物理属性进行分类,如速度、位置、压力、温度、流量、液位等等。 4)闭环控制系统的应用 自动控制系统已被广泛应用于人类社会的各个领域。在工业方面,对于冶金、化工、机械制造等生产过程中遇到的各种物理量,包括温度、流量、压力、厚度、张力、速度、位置、频率、相位等等。 应用例子有很多,人类使用自动装置的历史可以追溯到古代。中国古代的指南车和铜壶滴漏,古罗马人家庭水管系统的简单水位调节装置都是自动控制系统的萌芽。

相关文档