文档库 最新最全的文档下载
当前位置:文档库 › 一种提高测量分辨率和信噪比的方法

一种提高测量分辨率和信噪比的方法

一种提高测量分辨率和信噪比的方法
一种提高测量分辨率和信噪比的方法

提高显微镜分辨率的方法简述

目录 1 选题背景 (1) 2 方案论证及过程论述 (1) 2.1 像差 (1) 2.1.1 球面像差 (1) 2.1.2 慧形像差 (2) 2.1.3 色像差 (2) 2.2 照明对显微镜分辨率的影响 (2) 2.2.1 非相干光照明 (2) 2.2.2 相干光照明 (2) 2.2.3 部分相干光照明 (3) 2.2.4 临界照明 (3) 2.3 衍射 (3) 2.3.1 对两个发光点的分辨率 (3) 2.3.2 对不发光物体的分辨率 (4) 2.4 光噪声 (6) 3 结果分析 (6) 4 结论 (7) 4.1 提高光学显微镜与电子显微镜分辨率的方法 (7) 4.1.1 提高光学显微镜分辨率的方法 (7) 4.1.2 如何提高电子显微镜分辨率 (7) 参考文献 (9)

1 选题背景 显微镜是实验室最重要的设备之一,对观察微小物体细节的显微镜来说,评价光学显微镜及电子显微镜的重要指标之一是分辨本领。显微镜的分辨能力是指其分辨近距离物体细微结构的能力,它主要是显微镜的性能决定。通常是以显微镜的分辨率级即显微镜能分辨开两个物点的最小距离d来表示,d值越小,则显微镜的分辨能力越强。 人眼本身就是一台显微镜,在标准照明条件下,人眼在明视距离(国际公认为25cm)上的分辨率约等于1/10mm。对于观察两条直线来说,由于直线能刺激一系列神经细胞,眼睛的分辨率还能提高一些,这就是显微镜的分划板使用双线对准的原理所在。人眼的分辨率只有1/10mm,那么比1/10mm小的物体或比1/10mm近的两个微小物体的距离,人眼就无法分辨了。这时人们开始研制出放大镜和显微镜,显微镜的分辨率计算公式为:d=0.61入/NA;式中:d为分辨率(μm);入为光源波长(μm);NA为物镜的数值口径(也称镜口率)。 造成显微镜光学像欠缺的因素主要在物镜组,有像差、衍射和光噪声等,它们是影响显微镜分辨率的主要因素,其次照明对显微镜的分辨率也有一定的影响。 对于显微镜的使用者来讲,应该对造成显微镜分辨率下降的因素有比较清楚的认识,并知道克服和减少这些因素的方法。本文从几何像差、色像差、衍射、干涉和照明几个方面分析了对显微镜分辨率的影响,指出了孔径数的增加,从衍射角度看对显微镜分辨率的提高有好处,但从几何像差的角度看则会降低显微镜的分辨率;并指出了照明对显微镜分辨率的影响是不可忽略的等。 2 方案论证及过程论述 2.1 像差 像差可分为单色像差和色像差两大类。单色像差有五种:(1)球面像差;(2)彗形像差;(3)像散;(4)像场弯曲;(5)畴变。其中(1)和(2)是由大孔径引起的,(3)、(4)、(5)是由大视场引起的。显微镜需要大孔径,但不需要大视场,所以显微镜的单色像差主要是(1)和(2)。 2.1.1 球面像差 单球面公式只有在满足近轴光线的条件下才能成立。当孔径较大时,有许多远轴光线也进入了透镜,近轴光线和远轴光线经透镜折射后不能在同一点上会聚。换句话说,主轴上一物点经透镜成像后,像不是一个点,而是一个圆斑,这样就产生了球面像差。消除的方法有二:一是在透镜前加一光阑,用以限制远轴光线的进入。这样做,会使显微镜的孔径数降低,从而降低了显微镜的分辨率。二是用复合透镜法,显微镜物镜就是采用这种方法制作的。

低信噪比检测总结

低信噪比检测技术算法总结 微弱信号检测技术是运用电子学、信息论、计算机和物理学等方法,研究被测信号和噪声的统计特性及其差别;采用一系列信号处理方法,从噪声中检测出有用的微弱信号,从而满足现代科学研究和技术应用需要的检测技术。 微弱信号检测特点是第一,在较低的信噪比中检测微弱信号。造成信噪比低的原因,一方面是由于特征信号本身十分微弱;另一方面是由于强噪声干扰使得信噪比降低。如在机械设备处在故障早期阶段时,故障对应的各类特征信号往往以某种方式与其它信源信号混合,使得特征信号相当微弱;同时设备在工作时,又有强噪声干扰。因此,特征信号多为低信噪比的微弱信号。第二,要求检测具有一定的快速性和实时性。工程实际中所采集的数据长度或持续时间往往会受到限制,这种在较短数据长度下的微弱信号检测在诸如通讯、雷达、声纳、地震、工业测量、机械系统实时监控等领域有着广泛的需求[3-5]。微弱特征信号检测方法日新月异,从传统的频谱分析、相关检测、取样积分和时域平均方法到新近发展起来的小波分析理论、神经网络、混沌振子、高阶统计量,随机共振等方法,在微弱特征信号检测中均有广泛的应用。 1 时域检测法 1.1 相关检测(可以再找找相关的论文补充一下) 相关检测是上世纪60年代发展起来的一门技术,最早的实用相关检测系统是1953年贝尔实验室的Bennett 等利用磁带记录仪技术实现,1961年,Weinreb 的文章描述了利用自相关法从随机噪声中提取周期信号。此后,人们进行了大量的工作,这项技术已经得到广泛的应用。 相关检测主要是对信号和噪声进行相关性分析,相关函数R(τ)是相关性分析的主要物理量。确定性信号的不同时刻取值一般都有较强的相关性;而对干扰噪声,因为其随机性较强,不同时刻取值的相关性一般较差。利用这一差异,把确定性信号和干扰噪声区分开来。 相关检测包括自相关法和互相关法,自相关法通过自相关函数度量同一个随机过程前后的相关性;而互相关法用互相关函数来度量两个随机过程间的相关性。相比自相关法,互相关法提取信号能力越强,对噪声抑制得较彻底[9]。通常,互相关是根据接收信号的重复周期或已知频率,在接收端发出与待测信号频率相同的参考信号,将参考信号与混有噪声的输入信号进行相关。互相关函数表达式为: 00()lim ()(t )T xy T R x y dt τττ→=-? 设待测信号为(t)S(t)n(t)x =+,其中S(t)为特征信号,n(t)为噪声。(t)y 为参考信号,()xy R τ为(t)x 和(t)y 信号的互相关函数,则互相关函数为: ()(t)y(t )(t)y(t )(t)y(t )()()xy Sy ny R E x E S E n R R ττττττ=-=-+-=+ 若(t)n 与(t)y 不相关,则0ny R =。 因此,()()xy ny R R ττ=,式中()Sy R τ为(t)S 信号和(t)y 参考信号的互相关函数。 在众多的信号检测方法中,相关检测室比较常用和有效的方法之一。利用相关检测技术对系统进行辨识的境地将首积分时间和信号带宽的影响。信号带宽越宽,积分时间越长,则精度越高。

光刻

光刻 一、概述: 光刻工艺是半导体制造中最为重要的工艺步骤之一。主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40~60%。 光刻机是生产线上最贵的机台,5~15百万美元/台。主要是贵在成像系统(由15~20个直径为200~300mm的透镜组成)和定位系统(定位精度小于10nm)。其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。光刻部分的主要机台包括两部分:轨道机(Tracker),用于涂胶显影;扫描曝光机(Scanning)。 光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性;准确地对准;大尺寸硅片的制造;低的缺陷密度。 二、光学基础: 光的反射(reflection)。光射到任何表面的时候都会发生反射,并且符合反射定律:入射角等于反射角。在曝光的时候,光刻胶往往会在硅片表面或者金属层发生反射,使不希望被曝光的光刻胶被曝光,从而造成图形复制的偏差。常常需要用抗反射涂层(ARC,Anti-Reflective Coating)来改善因反射造成的缺陷。 光的折射(refraction)。光通过一种透明介质进入到另一种透明介质的时候,发生方向的改变。主要是因为在两种介质中光的传播速度不同(λ=v/f)。直观来说是两种介质中光的入射角发生改变。所以我们在90nm工艺中利用高折射率的水为介质(空气的折射率为1.0,而水的折射率为1.47),采用浸入式光刻技术,从而提高了分辨率。而且这种技术有可能将被沿用至45nm工艺节点。 光的衍射或者绕射(diffraction)。光在传播过程中遇到障碍物(小孔或者轮廓分明的边缘)时,会发生光传播路线的改变。曝光的时候,掩膜板上有尺寸很小的图形而且间距很窄。衍射会使光部分发散,导致光刻胶上不需要曝光的区域被曝光。衍射现象会造成分辨率的下降。 光的干涉(interference)。波的本质是正弦曲线。任何形式的正弦波只要具有相同的频率就能相互干涉,即相长相消:相位相同,彼此相长;相位不同,彼此相消。在曝光的过程中,反射光与折射光往往会发生干涉,从而降低了图形特征复制的分辨率。 调制传输函数(MTF, Modulation Transfer Function)。用于定义明暗对比度的参数。即分辨掩膜板上明暗图形的能力,与光线的衍射效应密切相关。MTF=(Imax-Imin)/(Imax+Imin),好的调制传输函数,就会得到更加陡直的光刻胶显影图形,即有高的分辨率。临界调制传输函数(CMTF,Critical Modulation Transfer Function)。主要表征光刻胶本身曝光对比度的参数。即光刻胶分辨透射光线明暗的能力。一般来说光路系统的调制传输函数必须大于光刻胶的临界调制传输函数,即MTF>CMTF。 数值孔径(NA, Numerical Aperture)。透镜收集衍射光(聚光)的能力。NA=n*sinθ=n*(透镜半径/透镜焦长)。一般来说NA大小为0.5~0.85。提高数值孔径的方法:1、提高介质折射率n,采用水代替空气;2、增大透镜的半径; 分辨率(Resolution)。区分临近最小尺寸图形的能力。R=kλ/(NA)=0.66/(n*sinθ) 。提高分辨率的方法:1、减小光源的波长;2、采用高分辨率的光刻胶;3、增大透镜半径;4、采用高折射率的介质,即采用浸入式光刻技术;5、优化光学棱镜系统以提高k(0.4~0.7)值(k是标志工艺水平的参数)。 焦深(DOF,Depth of Focus)。表示焦点周围的范围,在该范围内图像连续地保持清晰。焦深是焦点上面和下面的范围,焦深应该穿越整个光刻胶层的上下表面,这样才能够保证光刻胶完全曝光。DOF=kλ/(NA)2。增大焦深的方法:1、增大光源的波长;2、采用小的数值

几类信号信噪比的计算_百度上传

1,确知信号的信噪比计算 这里的“确知信号”仅指信号的确知,噪声可以是随机的。某些随机信号,例如幅度和相位随机的正弦波,如果能够准确估计出它的相位和幅度等参数也可以认为是“确知信号”。 接收到的确知信号通过减去确知信号的方法得到噪声电压或电流,高斯噪声的数学期望为0,方差除以或乘上电阻得到噪声功率。确知信号的大小的平方的积分除以或乘上电阻得到信号功率。信噪比等于这两个功率相除,因此可以不用考虑电阻的大小。 clear all; clc; SIMU_OPTION = 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1, deterministic signal snr calc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (SIMU_OPTION==1) SAM_LEN = 1e6; PERIOD = 1e3; SNR_DB = 30 signal = sin((1:SAM_LEN)*2*pi/PERIOD); signal_wgn = awgn(signal,SNR_DB,'measured'); wgn = signal_wgn - signal; snr_db_calc = 10*log10(var(signal)/var(wgn)) end

2,随机信号的信噪比计算 2.1,窄带信号加宽带噪声的信噪比计算 可以使用周期图FFT方法,即得到信号加噪声的功率谱,利用信号和噪声的频率特性,通过积分的方法将信号和噪声的功率计算出来,这样就得到信噪比。窄带信号是相对整个信号频率带而言。 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2, sin signal + white gauss noise %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (SIMU_OPTION==2) SAM_LEN = 1e6; PERIOD = 1e3; SNR_DB = 30 signal = sin((1:SAM_LEN)*2*pi/PERIOD); signal_wgn = awgn(signal,SNR_DB,'measured'); signal_wgn_fft = fft(signal_wgn); signal_wgn_psd = (abs(signal_wgn_fft)).^2 / SAM_LEN; signal_wgn_psd_db = 10*log10(signal_wgn_psd); signal_wgn_psd = signal_wgn_psd(1:SAM_LEN/2); snr_db_calc = 10*log10(max(signal_wgn_psd)/(sum(signal_wgn_psd)-max(signal_wgn_psd) )) end

音频测试方法

STB音频测试操作手册 STB音频测试项目和指标 表1音频测试指标

测试信号 表2 0.33:01测试序列

在音频测试时,首先很重要的要对测试项目所对应的测试信号要十分清楚。目前测音频的指标用的信号基本上是CCITT0.33:01测试序列的各种码流,在.33测试序列中包含了表1所提到的所有测试指标用到的信号,而且每个测试信号都非常短,只有1秒,而我们测不同的指标要Freeze不同的曲线,所以先要十分熟悉每秒要播的信号,然后通过不断操作把自己培养成快手。 测试方法 1音频输出幅度和失真度 测音频输出幅度和失真度用的信号是CCIT0.33:01中的1020Hz,0dBm的信号,VM700T用Audio Analyzer进行测试,下面几个测试项目除了噪声用Audio Spectrum之外,都是用Audio Analyzer进行测试的。在1.020kHz,0dBu信号出现时,按Freeze,然后读出Level和THD+N的值,Level值为左右声道中较小的 值,失真度为左右声道中较大的那个。本例子中Level=-0.03dBu,失真度=0.016%.

2 音频幅频特性 测音频幅频特性时测试信号从1020Hz, -12dBm开始,到15000Hz,-12dBm,VM700T要在1020Hz,0dBm后,点击Erase Plot软键,清除屏幕上之前的打点,然后在信号跑到15000Hz,-12dBm时,按Freeze,可以得到幅频特性曲线。如下图所示。 得到的曲线看似平,但是通过放大后可以得到一根曲线,如下图。通过移动得到1kHz时的电平,记下该值A=-12.026dBu.

提高地震资料高频段信噪比及拓展有效频宽方法研究

提高地震资料高频段信噪比及拓展有效频宽方法研究 在进行了波形一致性处理和规则干扰衰减滤波技术之后,它使得子波统一、时间对齐;并且消除了较强的规则干扰波,使得整个记录面貌无论是信噪比、分辨率和保真度上均有了明显改进。为了达到高分辨率地震勘探的目的,在提高信噪比的基础上,我们还要进一步提高分辨率。众所周知, 分辨率不仅与信噪比有关,更主要的是与频带宽度有关,即有效波的频带宽度越宽,则分辨率越高。频带宽度,应该是指具有相同能量级别的有效波频率成分的集合;其分辨率是视觉分辨率,只有有效波的频谱成分具有一定的能量时,才能进入有效频带, 才能在剖面上看到它的存在。 关于地震记录的信噪比,通常是指有效波的纯度,从宏观上看记录的信噪比, 可对记录进行分频扫描,通过分析各频段上的有效信号,从而确定不同频段上的信噪比,获得一个信噪比谱。 在有效的频率范围内不同频带的信号和噪音的特点及所占的分量是不同的,即可以根据不同频带内信号和噪音的特点, 进行有针对性的处理加工,进而达到提高地震记录信噪比和分辨率的目的。 由于地震资料在低频段15Hz 以下,高频段60Hz 以上的信噪比较低。在低频段主要是面波、折射波干扰,而高频段主要是高频随机干扰。因此扩展优势信噪比的有效频带宽度,就是要解决高低频段的信噪比。采用前面的方法,将规则干扰波有效地分离出去,保留了低频有效信息,扩展了低频段的优势信噪比的有效信息频带宽度。 高频段的信噪比如何解决,至今还没有针对高频随机干扰去噪的有效方法,只能采用分频去噪方法,提高高频段的信噪比。有时从剖面上可以看出地震记录的分辨率很高,然而剖面上的信噪比确很低。对剖面进行频率扫描, 在低频段剖面的信噪比较高,影响剖面的信噪比主要是60Hz 以上的高频段。如何提高60Hz 以上频率段的信噪比,扩展高频段优势信噪比的有效频带的宽度,提高地震记录分辨率。通常在常规处理中,只是在整个频带上进行去噪的,我们知道几乎所有去噪的原理都是以能量相关性为依据的,这样在整个频带上去噪只能提高信噪比高的频率段的信噪比,而对信噪比低的频率段的信噪比没有提高多少,甚至损失了高频有效信息。所以,可以根据不同频段的信噪比适当地选择不同去噪方法及其参数,提高不同频率段的信噪比,特别是高频段的信噪比。 主要技术指标: 在有效的频率范围内不同频带的信号和噪音的特点及所占的分量是不同的,即可以根据不同频带内信号和噪音的特点, 进行有针对性的处理加工,进而达到提高地震记录信噪比和分辨率的目的。 根据不同频段的信噪比适当地选择不同去噪方法及其参数,提高不同频率段的信噪比,特别是高频段的信噪比。 创新点 (1)提高分辨率处理方法 把地震数据分解为若干个频带的数据,在15Hz 以下低频端的主要干扰为面波、折射波等规则干扰,它可以应用最佳规则干扰剔除的方法来解决低信噪比的问题;而大于60Hz 高频端的主要干扰是随机干扰波,它可以通过最佳信号拟合滤波的方法来解决它的低信噪比问题;对于中间较高信噪比部分,可通过其它较简单快速的方法或不做加工,然后对各个频带处理后的数据再合并起来。 (2)提高信噪比处理方法 不同频率成分有不同的信噪比,为达到尽可能提高分辨率的目的,对不同频率成分需要分别对待。最大分辨能力滤波所能达到的分辨率与每个频率成分的信噪比有关,任何频率成分的信噪比的改进,都对提高分辨率有好处。但不同的信噪比的频率成分对分辨率的贡献不同,并且不同信噪比的频率成分的信噪比改进对提高分辨率的作用也不同。 信噪比很高的频率成分, 对分辨率有很大贡献。但这种频率成分的信噪比改善并不会对提高分辨率有多大帮助。信噪比很低的频率成分,对分辨率的贡献很小。这种频率成分的信噪比改善, 可使其对分辨率的贡献成比例地增加,但由于它的贡献基数很小,即使有成倍增加,还是作用不大。而信噪比在1 附近的频率成分,信噪比改善对分辨率益处较大,是改善信噪比的重点。 效果评述

能够充分提高照片像素的方法!

能够充分提高照片像素的方法! 初玩摄影的朋友,是否为照片的像素不高而烦恼?下面分享能够提高照片素质12招,希望可以给大家带来帮助! 1. 尽量使用三脚架 很多情况下,照片图像模糊、不清晰的原因,是拍摄者在按动快门时产生“手振”或相机反光板抬升产生“机振”所造成的。如果使用了三脚架,无论快门速度设定到如何的“慢”,甚至长时间的曝光,即可防止图像由于“抖动”而产生的图像模糊。但要注意,使用三脚架时,要尽可能地使用快门线,忽视这一点,仍有可能在手指接触快门时产生的震动而影响清晰度。 2. 尽可能地使用高速快门 在手持照相机拍照的情况下,尽可能采用高速快门来拍摄。没有经验的拍摄者,快门速度设定在1/30s以下时,照片拍虚的概率较大。即使专业摄影工作者,也不能保证在低速快门拍摄时有百分之百的把握。提高快门速度,会相应提高照片清晰度的概率。当然,在手持照相机提高快门速度的情况下,势必开大光圈,因而会失去“大景深”,但为保证照片的清晰度,放弃景深是不得已的办法。 3. 尽可能使用“最佳光圈” 任何镜头都存在不同程度的成像误差,这些成像误差将使镜头的成像质量受到不同程度的影响。由于镜头球面的曲率不同,光线经过透镜中心和边缘时因折射率不同而不能聚焦于同一焦点,从而导致清晰度下降。如使用镜头的最大光圈拍摄,将导致该镜头像差缺陷的最大暴露,导致图像清晰度下降,而使用镜头的最小光圈拍摄,会产生光的衍射,也会导致图像清晰度下降。为改善像差而引起的清晰度下降问题,通常采用缩小光圈的办法来提高成像的质量。一般来说镜头的最佳光圈为该镜头最大光圈缩小2~3档左右,拍摄者可对某个镜头的最佳光圈进行比较。 4. 尽可能采用手动对焦 目前大多数相机具有自动对焦功能。然而,在景深特别小的情况下,自动对焦往往会聚焦不准确,特别是在向主体近距离对焦,使用长焦距镜头,采用大光圈拍摄人像特写的情况下,要特别小心。如果此时采用自动对焦,“靶子”非要对在人物的眼睛上,如果没有十分的把握,宁可放弃自动对焦,而采用手动对焦。人们不希望照片上人物的耳朵或鼻子是清晰的,而传神的眼睛是模糊的。 5. 尽量使用遮光罩 遮光罩的使用,很多人并不在意。在用正面光、前侧光或侧光时,遮光罩的作用并不明显。但是在逆光或侧逆光拍摄时,必须使用遮光罩,有时即便使用了遮光罩,阳光仍会直射到镜头上,造成画面“冲光”,产生雾翳,影响被摄体的色彩饱和度和清晰度。这时,应调整镜头角度,避开直射到镜头上的光线。此外,遮光罩还有助于防止镜头镜面损伤,同时避免手指接触到镜面。 6. 合理利用景深 景深的大小是根据拍摄者拍摄的目的来决定。如果是拍摄风光摄影,景深就要求大,目的是为让照片上景物的清晰范围从近至远都表现得很清楚。如果是拍摄特写,景深就要求小,目的是让照片上主体的背景(也可能是前景)虚化(模糊),突出被摄主体。用小景深来表现风光题材,或用大景深去表现被摄体特写,从摄影表现手法上来说适得其反。如何合理运用景深呢?请记住:采用小光圈、短焦距镜头、远距离对焦拍摄三种方法,景深就大。采用大光圈、长焦距镜头、近距离对焦拍摄三种方法,景深就小。采用其中一种或两种拍摄方法也行,但效果没有三种方法合起来使用作用更明显。 7. 尽可能选用低值感光度 要获得影像的高清晰度,让照片看起来具有丰富的质感,除选择使用高像素的数码照相

光刻技术新进展

光刻技术新进展 刘泽文李志坚 一、引言 目前,集成电路已经从60年代的每个芯片上仅几十个器件发展到现在的每个芯片上可包含约10亿个器件,其增长过程遵从一个我们称之为摩尔定律的规律,即集成度每3年提高4倍。这一增长速度不仅导致了半导体市场在过去30年中以平均每年约15%的速度增长,而且对现代经济、国防和社会也产生了巨大的影响。集成电路之所以能飞速发展,光刻技术的支持起到了极为关键的作用。因为它直接决定了单个器件的物理尺寸。每个新一代集成电路的出现,总是以光刻所获得的线宽为主要技术标志。光刻技术的不断发展从三个方面为集成电路技术的进步提供了保证:其一是大面积均匀曝光,在同一块硅片上同时作出大量器件和芯片,保证了批量化的生产水平;其二是图形线宽不断缩小,使用权集成度不断提高,生产成本持续下降;其三,由于线宽的缩小,器件的运行速度越来越快,使用权集成电路的性能不断提高。随着集成度的提高,光刻技术所面临的困难也越来越多。 二、当前光刻技术的主要研究领域及进展 1999年初,0.18微米工艺的深紫外线(DUV)光刻机已相继投放市场,用于 1G位DRAM生产。根据当前的技术发展情况,光学光刻用于2003年前后的0.13微米将没有问题。而在2006年用到的0.1微米特征线宽则有可能是光学光刻的一个技术极限,被称为0.1微米难关。如何在光源、材料、物理方法等方面取得突破,攻克这一难关并为0.07,0.05微米工艺开辟道路是光刻技术和相应基础研究领域的共同课题。

在0.1微米之后用于替代光学光刻的所谓下一代光刻技术(NGL)主要有极紫外、X射线、电子束的离子束光刻。由于光学光刻的不断突破,它们一直处于"候选者"的地位,并形成竞争态势。这些技术能否在生产中取得应用,取决于它们的技术成熟程度、设备成本、生产效率等。下面我们就各种光刻技术进展情况作进一步介绍。 1.光学光刻 光学光刻是通过光学系统以投影方法将掩模上的大规模集成电路器件的结 构图形"刻"在涂有光刻胶的硅片上,限制光刻所能获得的最小特征尺寸直接与光刻系统所能获得的分辨率直接相关,而减小光源的波长是提高分辨率的最有效途径。因此,开发新型短波长光源光刻机一直是国际上的研究热点。目前,商品化光刻机的光源波长已经从过去的汞灯光源紫外光波段进入到深紫外波段(DUV),如用于0.25微米技术的KrF准分子激光(波长为248纳米)和用于0.18微米技术的ArF准分子激光(波长为193纳米)。 除此之外,利用光的干涉特性,采用各种波前技术优化工艺参数也是提高光刻分辨率的重要手段。这些技术是运用电磁理论结合光刻实际对曝光成像进行深入的分析所取得的突破。其中有移相掩膜、离轴照明技术、邻近效应校正等。运用这些技术,可在目前的技术水平上获得更高分辨率的光刻图形。如1999年初Canon公司推出的FPA-1000ASI扫描步进机,该机的光源为193纳米ArF,通过采用波前技术,可在300毫米硅片上实现0.13微米光刻线宽。 光刻技术包括光刻机、掩模、光刻胶等一系列技术,涉及光、机、电、物理、化学、材料等多个研究领域。目前科学家正在探索更短波长的F2激光(波长为157纳米)光刻技术。由于大量的光吸收,获得用于光刻系统的新型光学及掩模衬底材料是该波段技术的主要困 难。

为什么牺牲带宽可以提高信噪比

仙农信息论中的仙农定理描述了信道容量C,信号带宽W,持续时间T,与信 噪比S N之间的关系: 2 log(1) S C WT N =+ (7-1) 它表明了一个信道无误差地传输信息的能力与信道中的信噪比以及用于传输信息的信道带宽之间的关系。 决定信道容量的C的参数有三个:信号带宽W,持续时间T,以及信噪比S N。 这三个参数组成一个很形象的具有可塑性的三维立方体,见图7-1。 f ) 1( log 2N S + log 2 W T t 图7-1 信道容量与信号带宽、持续时间以及信噪比之间的关系由信号带宽W,持续时间T,与信噪比 S N组成的立方体的体积就是信道容量C。这个信道容量所决定的三维信号体积最大的特点就是具有可塑性。即在总体积不变的条件下,三轴上的自变量间可以互换,可以互相取长补短。 用频带换取信噪比,就是现代扩频通信的基本原理,其目的是为了提高通信系统的可靠性。如果通信中信噪比为主要矛盾(比如无线通信),而信号带宽有富裕,往往就可以采用这种用带宽换取信噪比的方法提高通信可靠性,即使带宽没有富裕,但是为了保证可靠性也要采用牺牲带宽,确保信噪比。 那么,是否可以一味地牺牲带宽来换取信噪比上性能的提高呢? 根据仙农公式2 log(1) S C WT N =+ ,将其转换为以e为底的对数,那么单位时间内(T=1)信道容量为:

1.44ln(1)S C W N =?+ (7-2) 对于干扰环境的典型情况,1S N <<,那么公式可以简化为 1.44S C W N ≈? (7-3) 一般而言,信号功率总是受限的,这里假定S 不变,同时有: 0N N W = (7-4) 其中N 为噪声功率,0N 为噪声功率谱,W 为信道带宽。 则可得: 001.44 1.44S S C W N W N =?= (7-5) 这就是由仙农公式得出的,用频带换取信噪比的极限容量。

什么是信噪比详解

信噪比详解 定义 信噪比,即SNR(Signal to Noise Ratio)又称为讯噪比,狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示。设备的信噪比越高表明它产生的杂音越少。一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以上。 解析 信噪比是音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。用dB表示。例如,某音箱的信噪比为80dB,即输出信号功率是噪音功率的10^8倍,输出信号标准差则是噪音标准差的10^4倍。信噪比数值越高,噪音越小。 “噪声”的简单定义就是:“在处理过程中设备自行产生的信号”,这些信号与输入信号无关。对于M P3播放器来说,信噪比都是一个比较重要的参数,它指音源产生最大不失真声音信号强度与同时发出噪音强度之间的比率称为信号噪声比,简称信噪比(Signal/Noise),通常以S/N表示,单位为分贝(d B)。对于播放器来说,该值当然越大越好。 目前MP3播放器的信噪比有60dB、65dB、85dB、90dB、95dB等等,我们在选择MP3的时候,一般都选择60dB以上的,但即使这一参数达到了要求,也不一定表示机子好,毕竟它只是MP3性能参数中要考虑的参数之一。 指在规定输入电压下的输出信号电压与输入电压切断时,输出所残留之杂音电压之比,也可看成是最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以S/N表示。一般用分贝(dB)为单位,信噪比越高表示音频产品越好,常见产品都选择60dB以上。 国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB,CD机的信噪比可达90dB 以上,高档的更可达110dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB的音箱不建议购买,而低音炮70dB的低音炮同样原因不建议购买。用途 另外,信噪比可以是车载功放;光端机;影碟机;数字语音室;家庭影院套装;网络摄像机;音箱……等等,这里所说明的是MP3播放器的信噪比。 以dB计算的信号最大保真输出与不可避免的电子噪音的比率。该值越大越好。低于75dB这个指标,噪音在寂静时有可能被发现。AWE64 Gold声卡的信噪比是80dB,较为合理。SBLIVE更是宣称超过120dB的顶级信噪比。总的说来,由于电脑里的高频干扰太大,所以声卡的信噪比往往不令人满意。

光刻技术

1.涂胶涂胶就是在SIO2或其他薄膜表面,涂布一层粘附良好,厚度适当,厚薄均匀的光刻胶膜。涂胶前的硅片表面必须清洁干燥,如果硅片搁置较久或光刻返工,则应重新进行清洗并烘干后再涂胶。生产中,最好在氧化或蒸发后立即涂胶,此时硅片表面清洁干燥,光刻胶的粘附性较好。 涂胶一般采用旋转法,其原理是利用转动时产生的离心力,将滴在硅片的多余胶液甩去,在光刻胶表面张力和旋转离心力共同作用下,扩展成厚度均匀的胶膜。胶膜厚度可通过转速和胶的浓度来调节。 涂胶的厚度要适当,膜厚均匀,粘附良好。胶膜太薄,则针孔多,抗蚀能力差;胶膜太厚,则分辨率低。在一般情况下,可分辨线宽约为膜厚的5~8倍。 2.前烘前烘就是在一定的温度下,使胶膜里的溶剂缓慢地挥发出来,使胶膜干燥,并增加其粘附性和耐磨性。 前烘的温度和时间随胶的种类及膜厚的不同而有所差别,一般通过实验来加以确定。 前烘的温度和时间必须适当。温度过高会引起抗蚀剂的热交联,在显影时留下底膜,或者增感剂升华挥发使感光灵敏度下降;前烘温度过低或时间过短,则抗蚀剂中的有机溶剂不能充分挥发,残留的溶剂分子会妨碍光交链反应,从而造成针孔密度增加,浮胶或图形变形等。同时,前烘时还不能骤热,以免引起表面鼓泡,产生针孔甚至浮胶。一般前烘是在80℃恒温干燥箱中烘烤1015分钟;也可以用红外灯在硅片背面烘烤,使胶膜的干燥从里到外,以获得良好的前烘效果。 3.暴光暴光就是对涂有光刻胶的基片进行选择性光化学反应,使暴光部分的光刻胶改变在显影液中的溶解性,经显影后在光刻胶膜上得到和掩膜版相对应的图形。 生产上,通常都采用紫外光接触暴光法,其基本步骤是定位对准和暴光。定位对准是使掩膜版的图形和硅片上的图形精确套合,因此要求光刻机有良好的对准装置,即具有精密的微调和压紧机构,特别是在压紧时保证精确套合不发生位移。此外,光刻机还应具有合适的光学观察系统,要求有一个景深较大,同时又有足够高分辨率的显微镜。 暴光量的选择决定于光刻胶的吸收光谱,配比,膜厚和光源的光谱分布。最佳暴光量的确定,还要考虑衬底的光反射特性。在实际生产中,往往以暴光时间来控制暴光量,并通过实验来确定最佳暴光时间。 暴光时影响分辨率的因素有: ①掩膜版于光刻胶膜的接触情况若硅片弯曲,硅片表面有灰尘或突起,胶膜厚度不均匀,光刻机压紧机构不良等都会影响掩膜版与光刻胶膜的接触情况,从而使分辨率降低。 ②暴光光线的平行度暴光光线应与掩膜版和胶膜表面垂直,否则将使光刻图形发生畸变。

课程设计参考报告——提高光学光刻分辨率的方法研究

微电子工艺课程设计 提供光学光刻分辨率的方法研究

目录 摘要 (5) 关键词 (5) 引言 (5) 正文 (5) 一、提高分辨率的方法 (5) 1. 影响图形光刻分辨率的主要因素 (5) 1.1掩膜(Mask) (6) 1.2照明系统(Illumination system) (6) 1.3投影(Projection) (7) 1.4发射和过滤特性 (7) 1.5成像(Image) (8) 1.6曝光(Expose) (9) 1.7烘烤(Bake) (10) 1.8显影(Develop) (10) 1.9一些效应的影响 (12) 2. 提高分辨率的措施 (14) 2.1掩膜 (14) 2.2照明系统 (15) 2.3投影(Projection) (16) 2.4发射和过滤特性 (17) 2.5成像(Image) (18) 2.6曝光(Expose) (18) 2.7烘烤(Bake) (19) 2.8显影(Develop) (20) 2.9一些常见且有效的技术 (22) 2.10采用先进的光刻技术 (28) 二、一个优化的工艺组合方案的各参数的确定 (31) 1 掩膜版和照明窗口的设计 (31) 仿真1 (33) 仿真2 (35) 仿真3 (36) 仿真4 (37) 仿真5 (39) 仿真6 (40) 结论 (41)

2 数值孔径 (42) 3光照波长 (42) 仿真1: (42) 仿真2: (43) 仿真3: (44) 仿真4: (45) 结论 (46) 4 照明系统与光轴的角度和离轴照明技术的结合使用 (46) 仿真1: (47) 仿真2: (47) 仿真3: (48) 仿真4: (49) 仿真5: (49) 结论: (50) 5 光刻胶的厚度、光照强度和曝光剂量 (50) 仿真1 (50) 仿真2 (51) 仿真3 (52) 仿真4 (52) 仿真5 (53) 仿真6 (54) 仿真7 (54) 仿真8 (55) 仿真9 (56) 仿真10 (56) 结论 (57) 6 耀斑数 (57) 仿真1 (58) 仿真2 (58) 仿真3 (59) 结论 (60) 7 损伤因子 (60) 仿真1 (60) 仿真2 (61) 仿真3 (63) 结论 (64) 8反射的次数和POWER MIN (64) 仿真1 (64)

缺陷检出能力、信噪比的测试方法

缺陷检出能力、信噪比的测试方法 一、70°探头缺陷检出能力、信噪比的测试方法 1. 设备:SZT-8型探伤仪、SZT-8多功能转换盒、GTS-60 试块、70°探头、耦合剂、压块。 2. 将SZT-8多功能转换盒用9芯高频线及电池4芯电源线 与SZT-8型探伤仪连接好,通道选择置A上,功能选择置外接探头上,70°探头暂不接Q9插座上。 3. 开机,仪器置A超显示状态,轨型置P60,抑制置大, 调节A通道衰减器使电噪声电平≤10%(满刻度的),记录此时衰减器读数为S0'= dB 4. 将70°探头对接于Q9插座上,探头置GTS-60试块上, 偏斜20°角,前后移动探头,用二次波探测GTS-60试块的Φ4平底孔回波。Φ4平底孔回波应出在7.2大格上,调节衰减器使Φ4平底孔反射波波幅达到80%时。 此时衰减器的读数 dB并按下式(1)算出。在此基础上保持探头不动,释放衰减器,使Φ4平底孔反射回波前面的杂波达到80%时衰减器读数 dB并按下式(2)算出。 S t=S2-S0'(1)S t—检出能力,S2—衰减器读数。S0'—电噪声电平 S噪=S3-S2(2)S3—杂波80%时衰减器读数。

5. 测试结果分析 标准:缺陷检出能力≥20dB,信噪比≥10dB 实测:S t= dB S噪= dB 经测试后,70°探头的缺陷检出能力及信噪比合格或不合格。 二、37°探头缺陷检出能力、信噪比的测试方法 1. 设备:SZT-8型探伤仪SZT-8多功能转换盒、GTS-60试 块、37°探头、耦合剂、压块。 2. 将SZT-8SZT-8多功能转换盒用9芯高频线及电池4芯 电源线与SZT-8型探伤仪连接好,通道选择置D或E上,功能选择置外接探头上,37°探头暂不接Q9插座上。 3. 开机,仪器置A超显示状态,轨型置P60,抑制置大, 调节D通道衰减器使电噪声电平≤10%(满刻度的),记录此时衰减器读数为S0'。 4. 将37°探头对接于Q9插座上,探头置GTS-60试块上, 前后移动探头,探测GTS-60试块的螺孔和3mm深度的上斜裂,调节衰减器使两波等高,并使波幅达到80%。 此时衰减器读 dB并按下式(1)算出。在此基础上保持探头不动,释放衰减器,使3mm深的上斜裂反射回波前面的杂波达到80%时衰减器读数 dB并按下式(2)算出 S t=S2-S0'(1)

光刻机分辨率

第一章引言 1.1光刻背景: 受功能增加和成本降低的要求所推动,包括微处理器、NAND闪存与DRAM等高密度存储器以及SoC(片上系统)和ASSP(特殊应用标准产品)在内的集成电路不断以快速的步伐微缩化。光刻则使具有成本优势的器件尺寸微缩成为可能。 目前,集成电路已经从60年代的每个芯片上仅几十个器件发展到现在的每个芯片上可含约10亿个器件,其增长过程遵从一个我们所熟知的摩尔定律,即集成度每3年提高4倍。这一增长速度不仅导致了半导体市场在过去30年中以平均每年约15%的速度增长,而且对现代经济、国防和社会也产生了巨大的影响。集成电路之所以能飞速发展,光刻技术的支持起到了极为关键的作用。因为它直接决定了单个器件的物理尺寸。每个新一代集成电路的出现总是以光刻所获得的线宽为主要技术标志。光刻技术的不断发展从三个方面为集成电路技术的进步提供了保证:其一是大面积均匀曝光,在同一块硅片上同时作出大量器件和芯片,保证了批量化的生产水平;其二是图形线宽不断缩小,使用权集成度不断提高,生产成本持续下降;其三,由于线宽的缩小,器件的运行速度越来越快,使用权集成电路的性能不断提高。随着集成度的提高,光刻技术所面临的困难也越来越多。 图1-1 1.2集成电路微缩化趋势及其对光刻的要求 由于器件单元不同,存储器与逻辑IC芯片的关键曝光层(critical layer)有着迥然不同的特征和光刻容差,这便对给定的光刻系统提出了不同的性能要求和实用限制。图1给出了几种不同器件的图形特征和对光刻的启示。 图1-2 第二章.当前光刻技术的主要研究领域及进展 1999 年初,0.18 微米工艺的深紫外线(DUV)光刻机已相继投放市场,用于 1G 位 DRAM 生产。根据当前的技术发展情况,光学光刻用于 2003 年前后的 0.13 微米将没有问题。而 在 2006 年用到的 0.1 微米特征线宽则有可能是光学光刻的一个技术极限,被称为 0.1 微米难关。如何在光源、材料、物理方法等方面取得突破,攻克这一难关并为 0.07,0.05 微米工艺开辟道路是光刻技术和相应基础研究领域的共同课题。 在 0.1 微米之后用于替代光学光刻的所谓下一代光刻技术(NGL)主要有极紫外、X

噪声系数相关

噪声系数的基本定义:F = total output noise power/output noise power due to input source,其中F称为Noise Factor,如果用dB表示,称为Noise Figure或NF。 输出噪声功率包含两部分:噪声源输入噪声引起的噪声功率输出和系统本身产生的噪声功率输出。 设噪声源输入噪声为KTB,则系统本身产生的噪声功率NA=(F-1)* KTBG,其中G为系统对输入噪声的增益。 F = (SNR IN )/(SNR OUT ),表征系统输入信噪比和输出信噪比的比值。当系统的信号 功率增益和噪声增益相等时该式成立,即系统为线性的。 美国联邦标准1037C的噪声因子定义如下: 噪声系数:标准噪声温度(通常为290 K)时,装置的输出噪声功率与其中由输入端点中热噪声引起的部分之比。注:如果装置本身不产生噪声,噪声系数则为实际输出噪声与残余噪声之比。在外差式系统中,输出噪声功率包括镜像频率变换引起的杂散噪声,但是标准噪声温度下输入端点中热噪声的部分仅包括通过系统的主频率变换出现在输出中的噪声,不包括通过镜像频率变换出现的噪声。 当信号链路中存在混频器时,需要区分双边带噪声系数F DSB ,单边带噪声系数 F SSB ,单边带有效噪声系数F SSBe 。 其中F SSB = 2*F DSB ; F SSBe = F SSB -1 = 2*F DSB -1 传统的单边带噪声系数F SSB ,假设允许来自于两个边带的噪声折叠至输出信号,但只有一个边带对表示预期信号有用。如果两处响应的转换增益相等,这就自然造成噪声系统增大3dB。相反,双边带噪声系数假设混频器的两处响应包含有预

如何在液相色谱中看信噪比

2、信噪比的查看 在方法验证时,通常需要验证方法的检测限与定量限,而检测限与定量限通常是以信噪比

然后再单击菜单栏的Report Specify Report<或直接点击该 界面的图标,下图红色方框处) 弹出“Specify Report”对话框在Style项下的“Report Style”下拉选项中选择“Performance + Noise”项OK。 DXDiTa9E3d

最后点击报告预览图标,如下图所示:

在报告中的“Noise determination”项下有噪音的相关信息,然后还有样品相关信息将样品的峰高[mAU]即得信噪比,报告中的各种Noise是通过各种不同的数据处理方式计算所得的噪音结果,因为(6*SD>[mAU]方式计算的噪音结果比较准确,所以一般取(6*SD>[mAU]Noise。另外,在报告最后 的Signal/ Noise项下可直接读出信噪比。RTCrpUDGiT

相关文档