文档库 最新最全的文档下载
当前位置:文档库 › EPON加密系统的设计和实现

EPON加密系统的设计和实现

EPON加密系统的设计和实现
EPON加密系统的设计和实现

信息安全与通信保密?2009.11

学术研究

A c a d e 79

李 鹰

(中国电子科技集团公司第三十研究所,四川 成都 610041)

【摘 要】基于以太网的无源光网络(EPON)是一个点到多点的光接入网,由于其成本低、网络结构简单、高带宽等特点,被普遍认为是下一代宽带光接入网技术的最好选择。文中通过对EPON原理与技术的研究,分析了EPON系统的安全隐患,并结合EPON特点,提出了集成式EPON加密系统的设计和实现思路,并从原理、优劣势等方面进行了论述。【关键词】EPON;点到多点;光接入网

【中图分类号】TN915.08 【文献标识码】A 【文章编号】1009-8054(2009) 11-0079-03

Design and Implementation of EPON Encryption System

LI Ying

(NO.30 Institute of Chinese Electronic Technology Corporation, Chengdu Sichuan 610041, China)

【Abstract 】Ethernet Passive Optical Network is a point-to-multipoint optical access network. Due to its low cost, simple network structure and high bandwidth, it is generally regarded as the best choice for next generation of broadband access network technology. Based on studying the principle of EPON, this paper analyzes the hidden safety trouble, and pro-poses an idea for design of the integrated EPON equipment.【Keywords 】EPON; P2MP; optical access network

EPON 加密系统的设计和实现

0 引言

基于以太网的无源光网络(EPON)是一种融合了以太网和无源光网络(PON)优点的接入网技术,具有容量大、成本低、对IP业务支持好、技术成熟和维护简单等优点,是未来实现FTTx的理想方案之一。由于EPON专门用于用户接入网,且EPON为非合作的、私有的用户服务;另一方面,EPON系统下行信道采用广播方式,在混杂模式下,凡是有意接收的终端站点都能接收其下行传输信息。因此,安全问题在EPON中将显得尤为重要。EPON的安全问题能否得到解决,在很大程度上影响着EPON应用的进展,特别是在军事上的应用。因此,研究确保EPON网络信息安全的EPON加密系统是十分必要的。

1 EPON原理概述

EPON是一种应用于接入网,局端设备(OLT)与多个用户端设备(ONU/ONT)之间通过无源的光缆、光分/合路器等组成的光分配网(ODN)连接的网络。EPON系统由光线路终端OLT(Optical Line Terminal)、光网络单元ONU(OpticalNetwork Unit)、光网络终端ONT(Optical NetworkTerminal),以及光分配网ODN(Optical DistributionNetwork)等组成。典型的EPON系统采用波分复用技术,在一根单模光纤中实现全双工传输。下行方向采用广播的方式,光线路终端(OLT)把以太网通过1:N的分路器用广播的方式发送到各个光网络单元(ONU),ONU根据自己分配到的逻辑链路标示(LLID)决定是否提取该以太网帧,其原理如图 1所示。上行方向通过时分复用(TDM)方式,ONU在OLT已经

分配好的时隙中发送自己的以太网包,其原理如图2所示[1]。

2 EPON的安全隐患及常用的安全技术

在EPON系统中,下行方向具有共享介质的特点,对

图1 EPON下行数据传输原理

图2 EPON上行数据传输原理

s e a r c h

学术研究

于下行广播的数据,每个ONU仅仅依据分配到的LLID决定是否接受数据,这样的机制从安全角度考虑明显是不够的。如果攻击者把ONU设置成混杂模式,不管LLID,从而提取所有下行以太网帧,则一方面可以窃听到其他用户接收的通信内容,另一方面可以截获下行的控制帧和OAM帧,从而获取授权以及网络的管理信息。此外,EPON系统具有自动发现功能,对于新加入的ONU可以自动完成注册,从而接入系统。该功能在给用户带来快捷方便的同时也给非法用户提供了自由接入系统的机会。对于处于用户端的设备ONU不采取任何鉴权措施,随意接入到系统是不能令人接受的。同时,由于以太网帧结构的透明性,非法用户依据该结构伪造控制帧和OAM帧并利用分配好的上行时隙发送,不仅可以使用控制帧骗取授权信息,而且可以利用控制网络资源的OAM帧更改系统参数甚至捣毁系统[2]。

针对EPON的安全性问题,IEEE802.3工作组专门进行了讨论,提出了采用鉴权和加密技术来保证EPON系统的安全性[2]。

(1) 鉴权策略

鉴权策略在初始时刻和数据通信两个阶段采用。在初始时刻,对于要求接入到系统的ONU,需要有鉴权机制来确认它的身份,从而决定是否允许该ONU完成注册过程。在数据通信过程中,为了确保通信的安全性,需要采取措施进行用户鉴权,确认正在通信的对方是合法用户。

(2) 加密技术

加密技术对数据进行加密,可保证非法用户不能获得有效的信息。无疑,加密是确保EPON网络数据传输安全最直接有效的手段。

3 EPON加密系统的设计思路

(1) 加密位置

加密可以在数据链路层、物理层或者三层以上进行。MAC层以上的加密只加密净负荷,而帧头和MAC地址信息都保留,这就使得非法ONU仍然可以获得任何其他ONU的MAC地址。MAC层以下的加密可以使OLT对整个MAC帧各个部分都加密,给每个合法的ONU分配不同的密钥,利用密钥对MAC的地址字节、净负荷、校验字节甚至整个MAC帧加密。在物理层加密也是一种比较有效的方法,它能对整个比特流(包括帧头和CRC)进行加密。在接收端,物理层首先对数据进行解密,然后将解密的数据传送给MAC层验证。因为每个ONU采用不同的密钥,即使收到别的ONU的数据帧,也不能够将其解密成具有正确格式的帧,因而不会被MAC层接受[2]。在这种方案中,恶意的ONU不能获得任何信息。文中采用在链路层对传输帧进行加密的方式。

(2) 加密范围

EPON基本的帧格式如图3所示。

其中,前导码除了可实现收发双方时钟同步外,还携带了LLID起始定界符(SLD),包括模式比特和逻辑链路标识的LLID域,以及8比特循环冗余校验码(CRC-8)。模式比特和逻辑链路标识是接收方向用于鉴定这个帧应该定向给哪个MAC的信息。因此,基于链路层的加密选择除前导码以外的字节进行加密。FCS为帧校验序列,可用于解密后帧校验的依据,对其也不进行加密。

综上所述,EPON帧的加密范围定位在前导码与FCS之间的数据域。

(3) 加密方法

在加密方法上,在EPON网络设备中常用的有两种类型加密方法,即三重搅动加密机制和AES加密机制。三重搅动加密机制是借鉴APON的加密机制,采用3个字节24位的密钥搅动机制;AES是2002年5月,美国国家标准与技术研究所(NIST)建立的新的高级数据加密标准规范,是一个新的可用于保护电子数据的加密算法,是可变密钥长度的迭代块密码,其加密和解密使用相同的密钥,可以使用128、192、256位密钥,并且用128位分组加密和解密数据。AES较三重搅动在安全性、代价、算法和实现特性等各项测试指标的综合中最为优秀。以上两种算法均是公开算法,对于一些专有的应用领域,根据自身的需要选择专用的算法。

(4) 密钥的处理

在对称密钥加密体制下,密钥本身的保护和传递十分重要。同时,为了进一步提高安全性,普遍采用密钥周期性更新的原则。

在设计中,可通过自定义的EPON数据帧,或者一些空闲字节,传输加密系统中密钥分发和协商等交互信息,确保密钥的定期、同步更换。密钥分发信息在传递时,用专用密钥对其进行加密保护。

4 集成式EPON加密系统的设计和实现

集成式EPON加密系统是指集成在EPON网络设备中,由EPON网络进行统一管理,它是EPON网络设备内部的一个模块,是目前EPON加密系统常见的设计和实现方式。文中就集成式EPON加密系统提出两种设计和实现方案。

(1) 方案一:基于包含加密模块的EPON专用物理层芯片的实现

目前,部分主流的EPON专用物理层芯片内部,集成了

图3 EPON基本帧格式

信息安全与通信保密?2009.11

学术研究

A c a d e 81

加密模块,这些加密模块采用通用的三重搅动加密算法和AES加密算法,可对EPON帧进行加(解)密处理。在设计OLT和ONU设备时,采用这类芯片,既可以完成EPON协议的处理,又可实现对数据帧的加密保护。

方案一的原理框架如图4所示。由于光纤上传输的信号速率为1.25 Gb/s,物理层芯片一般不直接处理频率这么高的信号,因此,在物理层芯片之前加入一个串并变换模块,此模块通过一个SERDES芯片,实现1.25 Gb/s串行数据与10位125 Mb/s并行数据信号的转换,再通过10位TBI与物理层芯片相连。加密模块位于物理层芯片的EPON MAC模块与Packet Processor模块之间,对封装后的数据帧进行加密处理。由于EPON MPCP帧在EPONMAC模块内处理,所以加密模块无法对EPON MPCP进行加密保护。基于物理层芯片的实现方案在技术上较为简单,但是方案采用的是公开的加密算法,大大降低了加密系统的安全性;另一方面,方案对MPCP帧无法进行保护,EPON系统只能完全依靠鉴权机制,防止非法用户的接入,在保护手段上比较单一。

(2) 方案二:基于现场可编程逻辑阵列(FPGA)的实现图5为基于FPGA的集成式EPON加密系统实现方案的原理框图。该方案在EPON物理层芯片和串并转换芯片(SERDES)之间,增加了一个基于FPGA的加密模块,该加密模块由一个EPON帧解析FPGA、一个加(解)密FPGA和一个CPU组成,其中EPON帧解析FPGA位于EPON物理层芯片和串并转换芯片(SERDES)之间,对进出EPON设备的帧进行分析,将需要加(解)密的帧送到加(解)密FPGA进行加(解)密处理,并将加(解)密后的数据重新封装到EPON帧中。在设计时,采用专用的FPGA来实现加(解)密算法,在加(解)密FPGA与帧解析FPGA之间定义出标准的接口提供给用户,用户可根据需要在此FPGA内部使用自己的算法。

方案二中的加密模块与EPON物理层芯片在功能上相对独立,它不参与和影响EPON网络自身运行、管理、维护协议的处理,只对EPON帧进行保护。由于加密模块位于EPON

物理层芯片的后端,因此,它可以对所有EPON帧,包括数据帧、MPCP帧、控制帧进行加密保护。为了有效地实现逻辑链路之间用户信息的隔离,OLT和ONU中的加密模块在数据处理上有一定的差异。

在OLT侧,对于广播信道上传输的EPON帧,应该被所有的ONU接收,因此,这种类型的EPON帧采用公用的安全策略对其加(解)密,以便被所有合法的ONU获取;对于单播信道上传送的EPON帧,应该只能被相应信道对应的ONU接收到,因此,分别采用各自信道特有的安全策略进行加(解)密保护。在ONU侧,与OLT侧加(解)密模块对应,对于广播信道上传输的EPON帧,采用公用的安全策略解(加)密;对于单播信道上传送的EPON帧,只能用本条信道对应的安全策略去解(加)密属于本条信道的EPON帧,对于其他信道的EPON帧,无法处理。

综上所述,基于FPGA的集成式EPON加密系统,采用了基于逻辑链路属性的安全策略选择机制,有效地加强了逻辑链路之间用户信息的隔离,确保各条逻辑链路上传输信息的安全。此外,在加(解)密FPGA内可以根据EPON设备的应用领域,选择专用的加(解)密算法对EPON帧进行加(解)密,从而进一步提高系统的加密强度。另一方面,此方案实现了对MPCP帧的加密保护,进一步加强了对非法用户恶意接入的防范。

5 结语

EPON系统存在窃听和假冒的安全隐患,文中从EPON网络的特点出发,提出集成式EPON加密系统设计和实现的方案,采用这种设计方案,在EPON网络建立时,已将EPON网络的加密系统包含了进去。但是,对于已有的加密强度较弱的EPON网络,集成式EPON加密系统只能通过替换相应的EPON网络设备,实现对EPON网络的加密保护。如何在不更换EPON网络设备前提下,实现对EPON网络的加密保护?基于这种考虑,提出一种与EPON网络相对独立的加密系统,即分离式EPON加密系统。在后续的研究中,可进一步对分离式EPON加密系统进行深入研究,为EPON网络安全技术的设计和实现提供新的思路。

参考文献

[1] [美]Glen Kramer. 基于以太网的无源光网络[M]. 陈雪,

孙曙和,刘冬,等,译. 北京:北京邮电大学出版社,

2007:35-39.

[2] 阎德升,边恩炯,王旭,等. EPON—新一代宽带光

接入技术与应用[M]. 北京:机械工业出版社,2008:227-233. 

图4 基于EPON专用物理层芯片的加密系统实现方案

图5 基于FPGA的集成式EPON加密系统实现方案

文件加密与解密—Java课程设计报告

JAVA课程设计题目:文件的加密与解密 姓名: 学号: 班级: 日期:

目录 一、设计思路 (3) 二、具体实现 (3) 三、运行调试与分析讨论 (8) 四、设计体会与小结 (11) 五、参考文献 (12) 六、附录 (12)

一、设计思路 自从Java技术出现以业,有关Java平台的安全性用由Java技术发展所引发的安全性问题,引起了越来越多的关注。目前,Java已经大量应用于各个领域,研究Java的安全性对于更好地利用Java具有深远的意义。使用Java的安全机制设计和实现安全系统更具有重要的应用价值。 本课程设计,主要实践Java安全中的JCE模块,包括密钥生成,Cipher对象初始化、加密模式、填充模式、底层算法参数传递,也涉及文件读写与对象输入输出流。 二、具体实现 本系统通过用户界面接收三个参数:明文文件、密文文件、口令。采用DES加密算法,密码分组链(Cipher Block Chaining,CBC)加密模式,PKCS#5-Padding的分组填充算法。因为CBC涉及到底层算法参数的解密密钥的传递,所以将明文文件中的字节块以密封对象(Sealed Object)的方式加密后,用对象流输出到密文文件,这样就将密文、算法参数、解密密钥三都密封到一个对象中了。口令的hash值作为产生密钥的参数。设计流程图如下所示: 文件加密与解密设计流程图

本系统中,包含Default,Shares,SecretKey,EncAndDec四个包共6个类组成。定义的几个参数:MAX_BUF_SIZE为每次从文件中读取的字节数,也是内存缓冲区的大小;加密算法为DES;加密模式是密码分组链(CBC)模式;分组填充方式是PKCS#5Padding。包和类结构图如下所示: 本课程设计,包和类结构图: 以下为包中的类的方法实现说明 Package Shares类结构图

RSA加密解密的设计与实现

RSA加密解密的设计与实现

上海电力学院 《应用密码学》课程设计 题目: RSA加密解密的设计与实现 院系:计算机科学与技术学院 专业年级:级 学生姓名:李正熹学号: 3273 指导教师:田秀霞 1月 8日 目录

目录 1.设计要求 2.开发环境与工具 3.设计原理(算法工作原理) 4.系统功能描述与软件模块划分 5.设计核心代码 6.参考文献 7. 设计结果及验证 8. 软件使用说明 9. 设计体会 附录 1.设计要求

1 随机搜索大素数,随机生成公钥和私钥 2 用公钥对任意长度的明文加密 3 用私钥对密文解密 4 界面简洁、交互操作性强 2.开发环境与工具 Windows XP操作系统 Microsoft Visual C++ 6.0 1.创立rsa工程

2.在rsa工程中创立 3273 李正熹cpp文件 3.设计原理 RSA算法简介 公开密码算法与其它密码学完全不同,它是基于数学函数而不是基于替换或置换。与使用一个密钥的对称算法不同,公开密钥算法是非对称的,而且它使用的是两个密钥,包括用于加密的公钥和用于解密的私钥。公开密钥算法有RSA、Elgamal等。 RSA公钥密码算法是由美国麻省理工学院(MIT)的Rivest,Shamir和Adleman在1978年提出来的,并以她们的名字的有字母命名的。RSA是第一个安全、实用的公钥密码算法,已经成为公钥密码的国际标准,是当前应用广泛的公钥密码体制。

RSA的基础是数论的Euler定理,其安全性基于二大整数因子分解问题的困难性,公私钥是一对大素数的函数。而且该算法已经经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这不恰恰说明该算法有其一定的可信度。 4.系统功能描述与软件模块划分 功能:

加密解密课程设计

兰州商学院陇桥学院工学系课程设计报告 课程名称: Java 设计题目:加密与解密 系别:工学系 专业 (方向):信息管理与信息系统 年级、班:2012级(2)班 学生姓名:费亚芬 学生学号: 208

指导教师:张鑫 2014年7 月 1日 目录 一、系统开发的背景................................. 错误!未定义书签。 二、系统分析与设计................................. 错误!未定义书签。(一)............................................. 系统功能要求错误!未定义书签。(二)......................................... 系统模块结构设计错误!未定义书签。 三、系统的设计与实现............................... 错误!未定义书签。(一)图形用户界面模块 ........................... 错误!未定义书签。(二)加密操作模块 ............................... 错误!未定义书签。 (三)解密操作模块................................ 错误!未定义书签。(四)文件保存模块 ............................... 错误!未定义书签。

(五)文件选择模块 ............................... 错误!未定义书签。 四、系统测试....................................... 错误!未定义书签。(一)测试加密..................................... 错误!未定义书签。(二)测试选择加密文件............................. 错误!未定义书签。(三)测试生成加密文件............................. 错误!未定义书签。(四)测试浏览加密文件............................. 错误!未定义书签。(五)测试解密文件................................. 错误!未定义书签。 五、总结........................................... 错误!未定义书签。 六、附件(代码、部分图表) ......................... 错误!未定义书签。

加密解密程序设计

课程设计 题目加密解密程序设计 学院自动化学院 专业电气工程及其自动化班级 姓名 指导教师 年月9 日

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:自动化学院 题目:加密解密程序设计 初始条件: 掌握8086汇编语言程序设计方法,设计一个电子时钟,实现分、秒、时的显示与刷新功能。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1. 定义显示界面。 2. 调用系统时间,并将调用的用二进制表示的时间数转换成ASCII码,并将时间数存入内存区。 3. 将存在系统内存区的时间数用数字式或指针式钟表的形式显示出来。 4. 获取键盘的按键值,判断键值并退出系统。 5. 撰写课程设计说明书。内容包括:摘要、目录、正文、参考文献、附录(程序清单)。正文部分包括:设计任务及要求、方案比较及论证、软件设计说明(软件思想,流程,源程序设计及说明等)、程序调试说明和结果分析、课程设计收获及心得体会。 时间安排: 12月26日-----12月28日查阅资料及方案设计 12月29日----- 1月 2 日编程 1月3日----- 1月7日调试程序 1月8日----- 1月9日撰写课程设计报告 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1设计任务及要求 (2) 1.1 加密解密设计的意义 (2) 1.2 程序设计任务 (2) 2 加密方法及方案比较 (3) 2.1 加密方法 (3) 2.2 加密方案及比较 (3) 3 加密解密设计流程及描述 (5) 3.1程序所需模块 (5) 3.2程序运行界面 (5) 3.3响铃程序 (6) 3.4功能选择程序 (6) 3.5数据循环输入子程序 (7) 3.6加密过程程序 (8) 3.7解密过程程序 (9) 3.8退出程序 (10) 3.9总体程序流程图 (11) 4 程序调试说明和结果分析 (12) 4.1 程序调试 (12) 4.2 程序运行结果 (12) 5 心得体会 (15) 参考文献 (16) 附录:设计原程序 (17) 本科生课程设计成绩评定

密码学课程方案AES加密解密文档

个人资料整理仅限学习使用 成都信息工程学院课程设计报告 AES加密解密的实现 课程名称:应用密码算法程序设计 学生姓名: 学生学号: 专业班级: 任课教师: 年月日

个人资料整理仅限学习使用 附件:课程设计成绩评价表

个人资料整理仅限学习使用目录

1.背景 AES,密码学中的高级加密标准

数据加密实验报告

实验报告 课程:计算机保密_ _ 实验名称:数据的加密与解密_ _ 院系(部):计科院_ _ 专业班级:计科11001班_ _ 学号: 201003647_ _ 实验日期: 2013-4-25_ _ 姓名: _刘雄 _ 报告日期: _2013-5-1 _ 报告评分:教师签字:

一. 实验名称 数据加密与解密 二.运行环境 Windows XP系统 IE浏览器 三.实验目的 熟悉加密解密的处理过程,了解基本的加密解密算法。尝试编制基本的加密解密程序。掌握信息认证技术。 四.实验内容及步骤 1、安装运行常用的加解密软件。 2、掌握加解密软件的实际运用。 *3、编写凯撒密码实现、维吉尼亚表加密等置换和替换加解密程序。 4、掌握信息认证的方法及完整性认证。 (1)安装运行常用的加解密软件,掌握加解密软件的实际运用 任务一:通过安装运行加密解密软件(Apocalypso.exe;RSATool.exe;SWriter.exe等(参见:实验一指导))的实际运用,了解并掌握对称密码体系DES、IDEA、AES等算法,及非对称密码体制RSA等算法实施加密加密的原理及技术。 ?DES:加密解密是一种分组加密算法,输入的明文为64位,密钥为56位,生成的密文为64位。 ?BlowFish:算法用来加密64Bit长度的字符串或文件和文件夹加密软件。 ?Gost(Gosudarstvennyi Standard):算法是一种由前苏联设计的类似DES算法的分组密码算法。它是一个64位分组及256位密钥的采用32轮简单迭代型加密算法. ?IDEA:国际数据加密算法:使用128 位密钥提供非常强的安全性; ?Rijndael:是带有可变块长和可变密钥长度的迭代块密码(AES 算法)。块长和密钥长度可以分别指定成128、192 或256 位。 ?MISTY1:它用128位密钥对64位数据进行不确定轮回的加密。文档分为两部分:密钥产生部分和数据随机化部分。 ?Twofish:同Blowfish一样,Twofish使用分组加密机制。它使用任何长度为256比特的单个密钥,对如智能卡的微处理器和嵌入在硬件中运行的软件很有效。它允许使用者调节加密速度,密钥安装时间,和编码大小来平衡性能。 ?Cast-256:AES 算法的一种。 (同学们也可自己下载相应的加解密软件,应用并分析加解密过程) 任务二:下载带MD5验证码的软件(如:https://www.wendangku.net/doc/1710585366.html,/downloads/installer/下载(MySQL):Windows (x86, 32-bit), MSI Installer 5.6.11、1.5M;MD5码: 20f788b009a7af437ff4abce8fb3a7d1),使用MD5Verify工具对刚下载的软件生成信息摘要,并与原来的MD5码比较以确定所下载软件的完整性。或用两款不同的MD5软件对同一文件提取信息摘要,而后比较是否一致,由此可进行文件的完整性认证。

java文件加密解密课程设计

软件学院 课程设计报告书 课程名称面向对象程序设计 设计题目文本文档的加密与解密 专业班级财升本12-1班 学号 1220970120 姓名王微微 指导教师徐娇月 2013年 1 月

1 设计时间 2013年1月14日-2013年1月18日 2 设计目的 面向对象程序设计是一门实践性很强的计算机专业基础课程。通过实践加深学生对面向对象程序设计的理论、方法和基础知识的理解,掌握使用Java语言进行面向对象设计的基本方法,提高运用面向对象知识分析实际问题、解决实际问题的能力,提高学生的应用能力。 3 设计任务 对文件进行加密解密 4 设计内容 4.1 需求分析 (1)给定任意一个文本文件,进行加密,生成另一个文件。 (2)对加密后的文件还原。 4.2 总体设计 4.2.1 包的描述 导入了java.awt; java.awt.event; java.io; javax.swing等包。 4.2.2 类的描述 Myframe类;E1类。其中Myframe类继承Frame类;可以扩展Frame的功能并且可以实例化的多种功能,这个类也实现了ActionListener这个接口,它是Java中关于事件处理的一个接口,ActionListener用于接收操作事件的侦听器接口。对处理操作事件感兴趣的类可以实现此接口,而使用该类创建的对象可使用组件的addActionListener 方法向该组件注册。在发生操作事件时,调用该对象的actionPerformed 方法。 4.3 页面设计

图4.3-1 显示页面 代码实现: addWindowListener(new WindowAdapter() { public void windowClosing(WindowEvent e) { System.exit(0); } });

数据加密方案

数据加密方案

一、什么是数据加密 1、数据加密的定义 数据加密又称密码学,它是一门历史悠久的技术,指通过加密算法和加密密钥将明文转变为密文,而解密则是通过解密算法和解密密钥将密文恢复为明文。数据加密目前仍是计算机系统对信息进行保护的一种最可靠的办法。它利用密码技术对信息进行加密,实现信息隐蔽,从而起到保护信息的安全的作用。 2、加密方式分类 数据加密技术要求只有在指定的用户或网络下,才能解除密码而获得原来的数据,这就需要给数据发送方和接受方以一些特殊的信息用于加解密,这就是所谓的密钥。其密钥的值是从大量的随机数中选取的。按加密算法分为对称密钥和非对称密钥两种。 对称密钥:加密和解密时使用同一个密钥,即同一个算法。如DES和MIT的Kerberos算法。单密钥是最简单方式,通信双方必须交换彼此密钥,当需给对方发信息时,用自己的加密密钥进行加密,而在接收方收到数据后,用对方所给的密钥进行解密。当一个文本要加密传送时,该文本用密钥加密构成密文,密文在信道上传送,收到密文后用同一个密钥将密文解出来,形成普通文体供阅读。在对称密钥中,密钥的管理极为重要,一旦密钥丢失,密文将无密可保。这种

方式在与多方通信时因为需要保存很多密钥而变得很复杂,而且密钥本身的安全就是一个问题。 对称加密 对称密钥是最古老的,一般说“密电码”采用的就是对称密钥。由于对称密钥运算量小、速度快、安全强度高,因而如今仍广泛被采用。 DES是一种数据分组的加密算法,它将数据分成长度为64位的数据块,其中8位用作奇偶校验,剩余的56位作为密码的长度。第一步将原文进行置换,得到64位的杂乱无章的数据组;第二步将其分成均等两段;第三步用加密函数进行变换,并在给定的密钥参数条件下,进行多次迭代而得到加密密文。 非对称密钥:非对称密钥由于两个密钥(加密密钥和解密密钥)各不相同,因而可以将一个密钥公开,而将另一个密钥保密,同样可以起到加密的作用。

加密解密软件的设计与实现

课程设计任务书 2010—2011学年第二学期 专业:计算机科学与技术学号:080101010 姓名:刘海坤 课程设计名称:计算机网络课程设计 设计题目:加密解密软件的设计与实现 完成期限:自2011 年 6 月21 日至2011 年 6 月26 日共 1 周 设计目的: 本程序设计所采用的就是DES算法,同时利用Java的GUI编程,生成文本对话框,对文件的路径进行选择、提供密钥框、加密和解密按钮。 功能要求:根据DES算法,设计加密解密软件来为各种文件加密解密。 一、设计的任务:根据设计整体需求,本人负责窗体的设计与实现和目标文件 的导入模块。 二、进度安排: 三、主要参考资料: [1] 谢希仁.计算机网络教程.北京: 人民邮电出版社,2006. [2] 耿祥义.Java2使用教程:清华大学出版社,2006. [3] 方敏,张彤.网络应用程序设计.西安:电子科技大学出版社,2005. [4] 黄超.Windows下的网络编程.北京:人民邮电出版社,2003. 指导教师(签字):教研室主任(签字): 批准日期:年月日

摘要 随着计算机的应用和网络技术的不断发展,网络间的通讯量不断的加大,人们的个人信息、网络间的文件传递、电子商务等方面都需要大力的保护,文件加密技术也就随之产生。文件的加密主要是由加密算法实现,加密算法有多种,常见的有RSA、DES、MD5等。本程序设计对文件的加密使用的是DES加密算法。 DES是分块加密的。DES用软件进行解码需要用很长时间,而用硬件解码速度非常快,1977年,人们估计要耗资两千万美元才能建成一个专门计算机用于DES的解密,而且需要12个小时的破解才能得到结果。所以,当时DES被认为是一种十分强壮的加密方法。但今天,只需二十万美元就可以制造一台破译DES的特殊的计算机,所以现在 DES 对要求“强壮”加密的场合已经不再适用了。 Java语言具有简单、安全、可移植、面向对象、健壮、多线程、体系结构中立、解释执行、高性能、分布式和动态等主要特点。利用Java语言中秘密密钥工厂对DES算法的支持,使程序实现文件加密、解密两大功能更简单。 本程序设计所采用的就是DES算法。同时利用Java的GUI编程,生成文本对话框,对文件的路径进行选择、提供密钥框、加密和解密按钮。 使用本程序可以对txt,word等多种文件进行加密解密,使用便捷实用,功能完善,满足了用户对文件安全性的需求。 关键词:JA V A ,DES,加密,解密。

DES加密解密课程设计报告

D E S加密解密课程设计报 告 Prepared on 22 November 2020

成都信息工程学院课程设计报告 DES算法加密与解密的设计与实现课程名称:密码算法程序设计 学生姓名: 学生学号: 专业班级: 任课教师: XX年 XX 月 XX 日

目录

1背景 DES算法概述 DES(Data Encryption Standard)是由美国IBM公司于20世纪70年代中期的一个密码算(LUCIFER)发展而来,在1977年1月15日,美国国家标准局正式公布实施,并得到了ISO的认可,在过去的20多年时间里,DES被广泛应用于美国联邦和各种商业信息的保密工作中,经受住了各种密码分析和攻击,有很好的安全性。然而,目前DES算法已经被更为安全的Rijndael算法取代,但是DES加密算法还没有被彻底的破解掉,仍是目前使用最为普遍的对称密码算法。所以对DES的研究还有很大价值,在国内DES算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收费站等领域被广泛应用,以此来实现关键的数据保密,如信用卡持卡人的PIN 码加密传输,IC卡与POS机之间的双向认证、金融交易数据包的MAC校验等,均用到DES算法。 DES算法是一种采用传统的代替和置换操作加密的分组密码,明文以64比特为分组,密钥长度为64比特,有效密钥长度是56比特,其中加密密钥有8比特是奇偶校验,DES的加密和解密用的是同一算法,它的安全性依赖于所用的密钥。它首先把需要加密的明文划分为每64比特的二进制的数据块,用56比特有效密钥对64比特二进制数据块进行加密,每次加密可对64比特的明文输入进行16轮的替换和移位后,输出完全不同的64比特密文数据。由于DES算法仅使用最大为64比特的标准算法和逻辑运算,运算速

实现加密解密程序

目录 一.摘要 (1) 二.网络安全简 (2) 安全技术手段 (3) 三.现代密码技术分类 (3) 1.对称密码体制 (4) 2.非对称密码体制 (4) 四.RSA加密解密体制 (5) 1.RSA公钥密码体制概述 (5) 2.RSA公钥密码体制的安全性 (6) 3.RSA算法工作原理 (6) 五.实现RSA加密解密算法 (7) 六.RSA的安全性 (11) 七.结语 (13)

实现加密解密程序 摘要:随着计算机网络的广泛应用,网络信息安全的重要性也日渐突出,计算机信息的保密问题显得越来越重要,无论是个人信息通信还是电子商务发展,都迫切需要保证Internet网上信息传输的安全,需要保证信息安全;网络安全也已经成为国家、国防及国民经济的重要组成部分。密码技术是保护信息安全的最主要手段之一。使用密码技术可以防止信息被篡改、伪造和假冒。加密算法:将普通信息(明文)转换成难以理解的资料(密文)的过程;解密算法则是其相反的过程:由密文转换回明文;密码机包含了这两种算法,一般加密即同时指称加密与解密的技术。 关键字:密码技术、加密算法、解密算法、密码机、RSA 正文 一、网络安全简介 网络安全是指网络系统的硬件、软件及其系统中的数据受到保护,不因偶然的或者恶意的原因而遭受到破坏、更改、泄露,系统连续可靠正常地运行,网络服务不中断。网络安全从其本质上来讲就是网络上的信息安全。从广义来说,凡是涉及到网络上信息的保密性、完整性、可用性、真实性和可控性的相关技术和理论都是网络安全的研究领域。网络安全是一门涉及计算机科学、网络技术、通信技术、密码技术、信息安全技术、应用数学、数论、信息论等多种学科的综合性学科。 网络安全的具体含义会随着“角度”的变化而变化。比如:从用户(个人、企业等)的角度来说,他们希望涉及个人隐私或商业利益的信息在网络上传输时受到机密性、完整性和真实性的保护,避免其他人或对手利用窃听、冒充、篡改、抵赖等手段侵犯用户的利益和隐私。 二、安全技术手段

文件加密系统课程设计

仲恺农业工程学院课程设计 文件加密 姓名孙浩斌 院(系)信息科学与技术学院 专业年级计算机132 学号 指导教师罗慧慧 职称学生 起止时间2015-6-15至2015-6-24 仲恺农业工程学院教务处制 目录

一.课程设计目的和要求 设计目的 有时我们有些资料不希望别人看到,最常用的方法就是加密。对给定的相关文件进行加密可以对文件进行保护,可以防止某些重要信息不被别人所知道甚至窃取。对文件起到保护作用,可以方便用户使用某些只有自己能知道的信息,能够安全保护文件的相关内容几信息不被外流。随着信息社会的到来,人们在享受信息资源所带来的巨大的利益的同时,也面临着信息安全的严峻考验。信息安全已经成为世界性的现实问题,信息安全问题已威胁到国家的政治、经济、军事、文化、意识形态等领域,同时,信息安全问题也是人们能否保护自己的个人隐私的关键。信息安全是社会稳定安全的必要前提条件。通过课程设计,使学生了解高级程序设计语言的结构,逐渐培养学生的编程能力、用计算机解决实际问题的能力,掌握基本的程序设计过程和技巧,掌握基本的分析问题和利用计算机求解问题的能力,具备初步的高级语言程序设计能力。为后续各门计算机课程的学习和毕业设计打下坚实基础。 程序设计的主要任务是要求学生遵循软件开发过程的基本规范,运用结构化程序设计的方法,按照课程设计的题目要求,分析、设计、编写、调试和测试程序及编写设计报告。

本课程设计的目标: 1. 巩固《高级语言程序设计》课程学习的内容和加深学生对基本知识的理解和掌握。 2. 掌握编程和程序调试的基本技能。 3. 掌握软件设计的方法。 4. 提高运用程序设计解决实际问题的能力。 5. 培养独立思考、综合运用所学有关相应知识的能力。 6. 强化上机动手编程能力,闯过理论与实践相结合的难关! 设计要求 1. 分析课程设计题目的要求,根据所要求的程序功能,画出程序的流程图。 2.对系统功能模块进行分析,写出详细设计说明文档。 3.对程序源代码进行调试与测试,使其能正确运行。 4.设计完成的软件要便于操作和使用。 5.设计完成后提交课程设计报告。 设计意义 至今,密码技术是取得信息安全性最有效的一种方法, 密码技术是信息安全的核心技术。通过数据加密,人们可以有效地保证通信线路上的内容不被泄露,而且还可以检验传送信息的完整性。进一步,密码技术可以应用于数字签名、身份认证和信息鉴定,这些应用对于资源存取控制以及其它安全措施是必须而且有效的。相对于防病毒软件和防火墙软件来说,基于密码技术密码类产品、认证类产品份额相对较小,但随着金融、电信、政府等行业信息化建设对于网络安全整体解决方案需求的增加,将会有较大的增长。

常见硬盘加密解密的几种方法解析

常见硬盘加密解密的几种方法解析 一、修改硬盘分区表信息 硬盘分区表信息对硬盘的启动至关重要,假设找不到有效的分区表,将不能从硬盘启动或即使从软盘启动也找不到硬盘。素日,第一个分区表项的第0子节为80H,透露显示C 盘为活动DOS分区,硬盘能否自举就依*它。若将该字节改为00H,则不能从硬盘启动,但从软盘启动后,硬盘仍然可以接见。分区表的第4字节是分区类型标志,第一分区的此处素日为06H,透露显示C盘为活动DOS分区,若对第一分区的此处中止批改可对硬盘起到一定加密浸染。 详细表现为: 1.若将该字节改为0,则透露显示该分区未运用,当然不能再从C盘启动了。从软盘启动后,原来的C盘不见了,你看到的C盘是原来的D盘,D盘是原来的E盘,依此类推。 2.若将此处字节改为05H,则不但不能从硬盘启动,即使从软盘启动,硬盘的每个逻辑盘都弗成接见,多么等于整个硬盘被加密了。另外,硬盘主指导记录的有效标志是该扇区的最后两字节为55AAH。若将这两字节变为0,也可以完成对整个硬盘加锁而不能被接见。硬盘分区表在物理0柱面0磁头1扇区,可以用Norton for Win95中的Diskedit直接将该扇区调出并批改后存盘。或者在Debug下用INT 13H的02H子功用将0柱面0磁头1扇区读到内存,在响应位置中止批改,再用INT 13H的03H子功用写入0柱面0磁头1扇区就可以了。

上面的加密措置,对通俗用户来讲已足够了。但对有阅历的用户,即使硬盘弗成接见,也可以用INT 13H的02H子功用将0柱面0磁头1扇区读出,根据阅历将响应位置数据中止批改,可以完成对硬盘解锁,因为这些位置的数据素日是固定的或有限的几种景遇。另外一种保险但显得笨拙的方法是将硬盘的分区表项备份起来,然后将其悉数变为0,多么别人由于不知道分区信息,就无法对硬盘解锁和接见硬盘了。 二、对硬盘启动加口令 我们知道,在CMOS中可以设置系统口令,使非法用户无法启动比赛争论机,当然也就无法运用硬盘了。但这并未真正锁住硬盘,因为只需将硬盘挂在其他比赛争论机上,硬盘上的数据和软件仍可运用。要对硬盘启动加口令,可以首先将硬盘0柱面0磁头1扇区的主指导记录和分区信息都储存在硬盘并不运用的隐含扇区,比如0柱面0磁头3扇区。然后用Debug重写一个不超越512字节的轨范(理论上100多字节足矣)装载到硬盘0柱面0磁头1扇区。该轨范的功用是执行它时首先需求输进口令,若口令纰谬则进入死轮回;若口令正确则读取硬盘上存有主指导记录和分区信息的隐含扇区(0柱面0磁头3扇区),并转去执行主指导记录。 由于硬盘启动时首先是BIOS调用自举轨范INT 19H将主硬盘的0柱面0磁头1扇区的主指导记录读入内存0000:7C00H处执行,而我们曾经偷梁换柱,将0柱面0磁头1扇区变为我们自己设计的轨范。多么从硬盘启动时,首先执行的不是主指导轨范,而是我们设计的轨范。在执行我们设计的轨范时,口令若纰谬则无法继续执行,也就无法启动了。即使从软盘启动,由于0柱面0磁头1扇区不再有分区信息,硬盘也不能被接见了。当然还可以将我们设计的轨范像病毒一样,将个中一部分驻留在高端内存,看守INT 13H的运用,防止0柱面0磁头1扇区被改写。

加密及解密算法(利用C语言)

利用VC++6.0 C语言进行设计加密: #include "stdio.h" #include"string.h" void main() { int i,k,h; char g[26]; printf("请输入字符窜\n"); gets(g); k=strlen(g); do{ for(i=0;i='a'&&g[i]<='z') g[i]-=32; for(i=0;i='A') g[i]+=3; else if(g[i]>'W'&&g[i]<='Z') g[i]-=23; } printf("%s\n",g); printf("0-退出任意键继续\n"); scanf("%d",&h); } while(h); } 2.进行解密算法 #include "stdio.h" #include"string.h" void main() { int i,k,h; char g[26]; printf("请输入字符窜\n");

gets(g); k=strlen(g); do{ for(i=0;i='d'&&g[i]<='z') g[i]-=3; else if(g[i]>'d'&&g[i]<='a') g[i]+=23; for(i=0;i='D'&&g[i]<='Z') g[i]-=3; else if(g[i]>'D'&&g[i]<='A') g[i]+=23; printf("%s\n",g); printf("0-退出任意键继续\n"); scanf("%d",&h); } while(h); }

加密解密设计报告

郑州轻工业学院本科 实验报告 设计题目:使用加密保护信息 学生姓名:*** 系别:计算机与通信工程学院 专业:计算机通信工程学院班级:网络运维13-01 学号:5413071101** 指导教师:吉星、程立辉 2016 年4月18日

1目的 数据加密技术是网络中最基本的安全技术,主要是通过对网络中传输的信息进行数据加密来保障其安全性,这是一种主动安全防御策略,用很小的代价即可为信息提供相当大的安全保护。 2题目 使用C#编程语言,进行数据的加密与解密。 系统基本功能描述如下: 1、实现DES算法加密与解密功能。 2、实现TripleDES算法加密与解密功能。 3、实现MD5算法加密功能。 4、实现RC2算法加密与解密功能。 5、实现TripleDES算法加密与解密功能。 6、实现RSA算法加密与解密功能。

3加密知识 加密的基本概念 "加密",是一种限制对网络上传输数据的访问权的技术。原始数据(也称为明文,plaintext)被加密设备(硬件或软件)和密钥加密而产生的经过编码的数据称为密文(ciphertext)。将密文还原为原始明文的过程称为解密,它是加密的反向处理,但解密者必须利用相同类型的加密设备和密钥对密文进行解密。 加密的基本功能包括: 1. 防止不速之客查看机密的数据文件; 2. 防止机密数据被泄露或篡改; 3. 防止特权用户(如系统管理员)查看私人数据文件; 4. 使入侵者不能轻易地查找一个系统的文件。 数据加密是确保计算机网络安全的一种重要机制,虽然由于成本、技术和管理上的复杂性等原因,目前尚未在网络中普及,但数据加密的确是实现分布式系统和网络环境下数据安全的重要手段之一。 数据加密可在网络OSI七层协议(OSI是Open System Interconnect 的缩写,意为开放式系统互联。国际标准组织(国际标准化组织)制定了OSI模型。这个模型把网络通信的工作分为7层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。)的多层上

DES加密解密课程设计报告

D E S加密解密课程设计 报告 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

成都信息工程学院课程设计报告 DES算法加密与解密的设计与实现课程名称:密码算法程序设计 学生姓名: 学生学号: 专业班级: 任课教师: XX年 XX 月 XX 日

1背景 1.1 DES算法概述 DES(Data Encryption Standard)是由美国IBM公司于20世纪70年代中期的一个密码算(LUCIFER)发展而来,在1977年1月15日,美国国家标准局正式公布实施,并得到了ISO的认可,在过去的20多年时间里,DES被广泛应用于美国联邦和各种商业信息的保密工作中,经受住了各种密码分析和攻击,有很好的安全性。然而,目前DES算法已经被更为安全的Rijndael算法取代,但是DES加密算法还没有被彻底的破解掉,仍是目前使用最为普遍的对称密码算法。所以对DES的研究还有很大价值,在国内DES算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收费站等领域被广泛应用,以此来实现关键的数据保密,如信用卡持卡人的PIN码加密传输,IC卡与POS机之间的双向认证、金融交易数据包的MAC校验等,均用到DES算法。 DES算法是一种采用传统的代替和置换操作加密的分组密码,明文以64比特为分组,密钥长度为64比特,有效密钥长度是56比特,其中加密密钥有8比特是奇偶校验,DES的加密和解密用的是同一算法,它的安全性依赖于所用的密钥。它首先把需要加密的明文划分为每64比特的二进制的数据块,用56比特有效密钥对64比特二进制数据块进行加密,每次加密可对64比特的明文输入进行16轮的替换和移位后,输出完全不同的64比特密文数据。由于DES算法仅使用最大为64比特的标准算法和逻辑运算,运算速度快,密钥容易产生,适合于在大多数计算机上用软件快速实现,同样也适合于在专用芯片上实现。 1.2 DES算法描述 DES算法的加密过程首先对明文分组进行操作,需要加密的明文分组固定为64比特的块。图1-1是DES加密算法的加密流程。图1-2是密钥扩展处理过程。 图1-1DES加密算法流程 图1-2子密钥产生流程 2系统设计 2.1系统主要目标 (1)用C++设计一个DES加密/解密软件系统; (2)完成一个明文分组的加解密,明文和密钥是ASCII码,长度都为8个字符,输入明文和密钥,输出密文,进行加密后,能够进行正确的解密; (3)程序运行时,要求输出第15、16轮的密钥,以及第15、16轮加密或解密之后的值,16进制表示; (4)程序有良好的人机交互操作; (5)要求从两个文件分别读取明文和密钥,并在程序中输出明文及密钥; (6)要求提供所设计系统的报告及完整的软件。 2.2系统运行环境

加密解密课程设计

兰州商学院陇桥学院 工学系课程设计报告 课程名称: Java 设计题目:加密与解密 系别:工学系 专业 (方向):信息管理与信息系统 年级、班:2012级(2)班 学生姓名:费亚芬 学生学号:20120651208 指导教师:张鑫 2014年7 月1日

目录 一、系统开发的背景 (1) 二、系统分析与设计 (1) (一)系统功能要求 (1) (二)系统模块结构设计 (2) 三、系统的设计与实现 (2) (一)图形用户界面模块 (2) (二)加密操作模块 (3) (三)解密操作模块 (4) (四)文件保存模块 (4) (五)文件选择模块 (5) 四、系统测试 (6) (一)测试加密 (6) (二)测试选择加密文件 (6) (三)测试生成加密文件 (6) (四)测试浏览加密文件 (7) (五)测试解密文件 (8) 五、总结 (8) 六、附件(代码、部分图表) (10)

加密与解密 一、系统开发的背景 随着网络技术的不断发展,人们的个人信息、网络间的文件传递、电子商务等方面都需要大力的保护,文件加密技术也就随之产生。文件的加密主要是由加密算法实现,加密算法有多种,本程序设计对文件的加密使用的是最基础的异或加密算法。 Java语言具有简单、安全、可移植、面向对象、健壮、多线程、体系结构中立、解释执行、高性能、分布式和动态等主要特点。本程序充分利用Java语言的特点,针对当下社会比较重视的文件加密,设计了本程序。使用本程序可以对txt,word等多种文件进行加密解密,使用便捷实用,功能完善,满足了用户对文件安全性的需求。 二、系统分析与设计 (一)系统功能要求 可以采用图形用户界面,给定任意一个文本文件,进行加密,生成另一个文件,然后对加密后的文件还原。 1、向图形用户界面中添加组件; 2、设置各个组件的布局; 3、添加窗口事件; 4、查找读入及写入文件,并显示; 5、加密功能实现; 6、解密功能实现;

文本文档的加密与解密课程设计说明书

******************* 实践教学 ******************* 理工大学 计算机与通信学院 2014年春季学期 工程开发综合训练课程设计 题目:文本文档的加密与解密 专业班级:计算机科学与技术11级4班 姓名:有刚 学号: 11240417 指导教师:树群 成绩:

目录 摘要 (1) 1.问题描述 (2) 2.系统设计 (3) 3.系统实现 (4) 4.系统测试 (8) 5.总结 (13) 参考文献 (14)

摘要 随着网络技术的不断发展,人们的个人信息、网络间的文件传递、电子商务等方面都需要大力的保护,文件加密技术也就随之产生。文件的加密主要是由加密算法实现,加密算法有多种,常见的有RSA、DES、MD5等。但是这些算法虽然原理简单,但具体实现起来却非常繁琐复杂,故而本程序设计对文件的加密使用的是最基础的异或加密算法。 Java语言具有简单、安全、可移植、面向对象、健壮、多线程、体系结构中立、解释执行、高性能、分布式和动态等主要特点。Java是一门很优秀的编程语言,是目前软件设计中极为健壮的编程语言。Java不仅可以用来开发大型的应用程序,而且特别适合于Internet的应用开发。Java确实具备了“一次写成,处处运行”的特点,所以,Java已经成为网络时代最重要的编程语言之一。本程序充分利用Java语言的特点,针对当下社会比较重视的文件加密,设计了本程序。 使用本程序可以对txt,word等多种文件进行加密解密,使用便捷实用,功能完善, 满足了用户对文件安全性的需求。 关键词: JAVA ,加密,解密

1.问题描述 本设计要求学生开发一个在Windows操作系统下,利用DES加密算法,开发出一款能够对文本信息进行加密与解密的软件。通过对文本信息特点的分析,设计出相应的DES加密算法,同时,根据DES加密过程设计出解密算法,画出相应的流程图,实现对文本文件的加密和解密,写出软件说明书,并提出日后的升级维护意见。 此外,学生通过该题目的设计过程,可以初步应用软件系统的开发原理和开发方法,全面培养软件开发过程中的分析、设计、编码、测试及文档规书写的能力,得到软件工程的训练,提高解决实际问题的能力。 (1)用图形用户界面实现软件界面,整体布局合理,美观大方。 (2)用56位秘钥对文本进行加解密。 (3)能够对一般的文本文件包括扩展名为doc和txt的文件进行直接加解密。(4)能够实现对中英文文本的加解密。 (5)系统的开发可以采用Java或C++等编程语言来实现; (6)在基本要求达到后,可进行创新设计,如改善算法性能、友好的人机界面。

封包加密解密

封包加密解密-01 网络游戏客户端与服务器之间需要数据交换处理,数据包通过TCP网络协议进行传送,这里我们称数据包为封包. 之前有教程介绍了如何使用模块中的功能进行封包拦截,修改,替换等功能.本章将完全讲解如何对封包的加密,解密技术. 为什么需要解密封包呢?除非那些封包是明文的(即没有加密处理过),否则就得解密,只有解密出来了数据,才能更清楚的了解游戏是如何交换数据处理,分析出封包数据才能够做出脱机万挂,完全脱离游戏客户端,模拟一个客户端来与游戏服务器连接,做你一切想做的事都没问题.所以封包加密解密技术是脱机万挂的第一前提条件. 即使不做脱机万挂,封包技术仍然比CALL技术更有用处.学过前章后大家应该也知道分析CALL,找CALL,调CALL都不是件容易的事.若能完全解密封包就可以减少或不需要CALL,模拟,内存操作了. 有加密就得有解密,有解密当然要有加密.这是相对立的.对封包数据进行加密与解密的函数过程,称为算法. 那封包加密解密技术容易吗?比较讽刺的就是,90%以上的网络游戏的封包都是很容易搞定了.为什么呢?如果算法复杂了的话,会多占CPU性能,而游戏服务器要处理的工作很多,不能把性能全用在加密解密上.举个简单的例子,游戏服务器若同时连接在线的玩家有十万人的话,这些玩家在聊天,打怪,走路等都会产生封包,若算法过于复杂,服务器就很难同时处理得了这么多玩家的封包,何况还得处理数据库中的数据呢. 出于服务器的性能考虑,所以若想同时能在线更多玩家,就不能进行复杂的算法来加密封包.不然就得限制减少能同时在线的玩家,不然游戏服务器会一卡一卡的,导致所有玩家都玩起来. 而还有很多的游戏在设计时,为了减少服务器的负担,不但算法简单,还放松了很多的一些数据验证处理.最终漏洞百出,以致于产生了全屏吸怪,穿墙,复制,无敌等等各种变态万挂. 基本上游戏的加密解密算法,都是采用简单的位运算.位就是比特位,简单的说,只是二进制数据运算处理罢了.所以有必要了解一些常见的位运算汇编指令.在汇编那章的指令那节,有过一些指令的介绍,这里再介绍一下几个重中之重的指令. 加减指令

相关文档
相关文档 最新文档