文档库 最新最全的文档下载
当前位置:文档库 › 图像匹配课程设计

图像匹配课程设计

图像匹配课程设计
图像匹配课程设计

1.需求分析

1.1题目

用特征匹配算法实现数字图像匹配

1.2 问题描述

所谓图像匹配,就是指图像之间的比较、得到不同图像之间的相似度。基于数字图像,编写对两副数字图像进行匹配的算法及演示程序。

基本要求: (1).进行匹配的两幅图像为JPG格式或BMP格式。(2).能够进行对两幅数字图像的匹配。(3).采用交互式程序对图像进行匹配。

提高要求:能够对数字进行简单处理,例如放大,缩小,翻转,灰度处理,图象二值化。开发环境:MATLAB 7.1 GUI:MATLAB 7.1自带的GUI界面编辑器

1.3基本功能:

通过分析题目的基本要求,我将此软件的基本功能主要分为2大模块:一个是数字图像处理模块,另一个是数字图像匹配模块。在数字图像处理模块中,用户可以对数字图像进行简单的处理,可以对图像进行放大,缩小,翻转,灰度处理。在数字图像匹配模块中,用户可以对两张图像进行匹配并显示匹配结果。

1.4性能、接口:

输入/输出形式:此软件以MATLAB7.1 GUI编辑器开发出的界面作为载体对相映的图像行相应的操作,所以输入输出形式主要是通过MATLAB7.1 GUI编辑器开发出的界面来实现的。

输入形式:输入任何一幅JPG格式或BMP格式的数字图像。

输出形式:将经过相应操作处理后的图片显示出来。

测试数据要求: 任何一幅JPG格式或BMP格式的数字图像。

2.算法设计

2.1概念解释:

①数字图像:数字图像是由被称做像素的小块区域组成的二维像素矩阵。一般把图像分成3种形式:单色图像,灰度图像和彩色图像。

②像素:表示图像颜色的最小单位

③灰度图像:灰度图是指只含亮度信息,不含色彩信息的图像,就像平时看到的黑白照片:亮度由暗到明,变化是连续的。灰度图的每个像素的亮度用一个数值来表示,通常数值范围在0—255之间,即可用一个字节来表示,0表示黑,255表示白,而其他表示灰度。

④点阵图:显示器的屏幕由可以发光的像素点组成. 并且从几何位置看, 所用这些

像素点构成一个矩形的阵列.利用计算机控制各像素点按我们指定的要求发光,就构成了我们需要的图形.这种方式构成的图形我们可称之为点阵图形.

⑤点阵图形的坐标系统:各像素点有一个坐标唯一指定了它的位置.如果点阵图形的大小是N×M, 那么它的点阵共有M行N 列, 每个像素点的位置就由它所在的行和列的位置所唯一确定. 这个行和列的位置就给出了点阵图形的坐标系统. 按照前面的顺序, 第m行, 第n列的像素点顺序数就是m+(n-1)N.反之, 顺序数为s的像素点在第s Mod N行, 第Int(s/N ) + 1列, 这里的s Mod N是s除以N后的余数, Int( s/N ) 是s/N的整数部分.需要注意的是第m行, 第n列的像素点的坐标可能不是(m; n), 而是(m-1; n-1). 这是因为有时为了在计算机中处理的方便, 像素点的行列的排序不是从1, 而是从0开始的.

我们常用的显示器的像素坐标就是如此.

2.2数字图像匹配算法设计

在此软件中我采用了两种图像匹配算法:①基于灰度的模板匹配算法②基于灰度的快速匹配算法。由于各种各样的原因如(成象条件的差异)图象预处理,引入的误差等,参与图象匹配的模板与潜在的匹配子图象间通常存在着程度不同的不一致,因此根据模板在一幅陌生图象中检测出潜在的匹配对象并得出它在图象中的位置是一件复杂的工作。

2.2.1基于灰度的摸版匹配算法

模板匹配是指用一个较小的图像,即模板与源图像进行比较,以确定在源图像中是否存在与该模板相同或相似的区域,若该区域存在,还可确定其位置并提取该区域。

模板匹配常用的一种测度为模手术台与源图像对应区域的误差平方和。设f(x,y)

为M ×N 的源图像,t(j,k)为J ×K(J ≤M,K ≤N)的模板图像,则误差平方和测度定义为:

11

200

(,)[(,)(,)]J K j k D x y f x j y k t j k --===++-∑∑

由上式展开可得:

111111

2

200

00

(,)[(,)]2(,)(,)[(,)]J K J K J K j k j

k

j k D x y f x j y k t j k f x j y k t j k ------=====++-?+++∑∑∑∑∑∑令

11

200

(,)[(,)]J K j k DS x y f x j y k --===++∑∑

11

00

(,)2[(,)(,)]J K j k DST x y t j k f x j y k --===?++∑∑

11

200

(,)[(,)]J K j k DT x y t j k --===∑∑

DS (x ,y )称为源图像中与模板对应区域的能量,它与像素位置(x ,y )有关,但随像素位置(x ,y )的变化,DS (x ,y )变化缓慢。DST (x ,y )模板与源图像对应区域的互相关,它随像素位置(x ,y )的变化而变化,当模板t(j ,k)和源图像中对应区域相匹配时取最大值。DT (x ,y )称为模板的能量,它与图像像素位置(x ,y )无关,只用一次计算便可。显然,计算误差平方和测度可以减少计算量。

基于上述分析,若设DS (x ,y )也为常数,则用DST (x ,y )便可进行图像匹配,当DST (x ,y )取最大值时,便可认为模板与图像是匹配的。但假设DS (x ,y )为常数会产生误差,严重时将无法下确匹配,因此可用归一化互相关作为误差平方和测度,其定义为:

11

(,)(,)

(,)J K t j k f x j y k R x y --?++=

∑∑

下图给出了模板匹配的示意图,其中假设源图像f(x,y)和模板图像t(k,l)的原点都在左上角。对任何一个f(x,y)中的(x,y),根据上式都可以算得一个R(x,y).当x 和y 变化时,t(j,k)在源图像区域中移动并得出R(x,y)所有值。R(x,y)的最大值指出了与t(j,k)匹配的最佳位

置,若从该位置开始在源图像中取出与模板大小相同的一个区域,便可得到匹配图像。

2-1匹配图像

⑵基于灰度的快速匹配算法 1.局部灰度特征的编码与计算

首先将整幅图像划分为k ×k 尺寸且互不重叠的方块,k 可根据问题任意选择,称该方块为R-块.如果图像的边长不是k 的整数倍,则将最底部与最右边剩余的几行、几列裁剪掉(下文将说明这并不影响最终的匹配结果).对边长为H 的图像,共可得到H 2

/k

2

个R-

块.对于R-块R i ,S(R i )表示R i 所包含像素的灰度值之和.

定义1. R-块(如图2-2中的R 5所示)与其周围8个相邻的R-块(如图2中的R 1,R 2,R 3,R 4,R 6,R 7,R 8,R 9所示)组成R-块的邻域.将R-块的邻域分为4个部分,分别为D 1,D 2,D 3,D 4(如图2-2所示),称为R-块的D-邻域.R-块R 5分别属于4个D-邻域,即D 1=R 1∪R 2∪R 4∪R 5;D 2=R 4∪R 5∪R 7∪R 8;D 3=R 5∪R 6∪R 8∪R 9;D 4=R 2∪R 3∪R 5∪R 6.

对于每个D-邻域中的4个R-块,可规定一个顺序(如图2-3中所取的逆时针序).对D j 所包含的4个R-块的像素灰度值之和S(R j1),S(R j2),S(R j3),S(R j4)做排序,显然共有4!=24种可能,每种排序结果可以用5位的二进制编码来表示,记作P(D j )∈{00000,00001,…,10111}.

图2-2区域划分

图2-3划分后的区域

将R-块R

i 所在的4个D-块的P(D

j

)做位串拼接,得到F(R

i

)=P(D

1

)P(D

2

)P(D

3

)P(D

4

),即

F(R

i

)=(P(D

1

)<<15)+(P(D

2

)<<10)+(P(D

3

)<<5)+P(D

4

).

其中,P(D

j )为R

i

所在的邻域D

j

的二进编码,<<为移位操作,其后面的数字表示移位位

数.

定义2. F(R

i )为R

i

块的20位二进制编码特征表示,简称R

i

块的编码.

对一幅图像,提取它所有R

i 块的编码,需要计算各个R-块的灰度值和S(R

i

)、计算各个

D-邻域的编码P(D

j )、计算各个R

i

块的编码F(R

i

)等共3步.图像最外一圈的R

i

块的编码无定

义.对于边长为H的图像,上述运算的时间复杂度为O(H2).

显然,F(R

i )表示R-块R

i

的灰度与相邻8个R-块灰度的分布(序)关系,体现了图像灰度

的相对值,因此对整体灰度值的变化具有相对的稳定性.通过对R-块尺寸k的选择,可以改变图像处理粒度的大小,以改变抵抗不同频率噪声的能力.

2. 特征的匹配过程

定义3. 在待搜索图S上以模板T的长、宽为横向、纵向步长,从S的左上角开始按模

板T的大小划分S得到的子图称为限制块,记作C i, j,其中(i,j)为限制块左上角顶点在搜索图S上的坐标.这样划分后,如果在搜索图S的右侧或底部有剩余部分,则相应地从S的最右侧开始向左,或从最底部开始向上划分出一列或一行限制块,使得全部限制块可以完全覆盖搜索图S.这样得到的图S上的限制块的数量为M2/H2。

定义4. 限制块C i,j与模板T都是尺寸为N×N的图像,各自的R-块特征集合用(N/k)阶方阵A(C i,j)与A(T)表示,称为特征编码矩阵,这里k为R-块的边长.在C i,j与T作特征比较时,即比较A(T)每一个元素与A(C i,j)中每一个元素是否相等,如果相等,则记下矩阵A(C i,j)中的行号、列号.

3.应用程序设计

3.1程序代码

clear;

clc;

reference_img=imread('optical1.tif');%提取原始图片作为基准

target_img=imread('optical2.tif');%要求进行匹配的图像

subplot(2,3,1);%显示原始图像

imshow(reference_img);

title('原始图像');

subplot(2,3,2);%显示进行匹配的图像

imshow(target_img);

title('目标图像');

[Ix,Iy]=size(target_img);%取出图片大小

x=[160,103,102,209];%自己选定的特征点

y=[116,246,160,299];

u=[87,35,34,141];

v=[21,151,66,204];

Px=polyfit(x,u,1);%映射函数求解

Py=polyfit(y,v,1);

for i=1:Ix

for j=1:Iy

m=i*Px(1,1)+Px(1,2);%映射函数

n=j*Py(1,1)+Py(1,2);

m_integer=floor(m);%对映射值进行取整

n_integer=floor(n);

m_decimal=m-m_integer;%对映射值取小数

n_decimal=n-n_integer;

if(ge(m_integer,Ix)||ge(n_integer,Iy)||lt(m_integer,0)||lt(n_integer,0)||m_ integer==0||n_integer==0)%判断映射点是否满足条件

result_img(i,j)=0;

result_img3(i,j)=0;

else

result_img(i,j)=target_img(m_integer,n_integer);%没有进行插值

result_img3(i,j)=(1-m_decimal)*(n_decimal*target_img(m_integer,n_integer+1) +(1-n_decimal)*target_img(m_integer,n_integer))+m_decimal*(n_decimal*target _img(m_integer+1,n_integer+1)+(1-n_decimal)*target_img(m_integer+1,n_intege r));%双线性插值

end

if result_img(i,j)==0%把没有进行插值图像和原始图像进行组合

result_img2(i,j)=reference_img(i,j);

else

result_img2(i,j)=result_img(i,j);

end

if result_img3(i,j)==0%把插值后图像和原始图像进行组合

result_img4(i,j)=reference_img(i,j);

else

result_img4(i,j)=result_img3(i,j);

end

end

end

subplot(2,3,3);%显示未插值图像匹配

imshow(result_img,[]);

title('未插值图像匹配');

subplot(2,3,4);%显示未插值图像匹配组合

imshow(result_img2,[]);

title('未插值图像匹配组合')

subplot(2,3,5);%显示双线性插值后图像匹配

imshow(result_img3,[]);

title('双线性插值后图像匹配');

subplot(2,3,6);%显示双线性插值后图像匹配组合

imshow(result_img4,[]);

title('双线性插值后图像匹配组合');

3.3界面设计

本程序采用交互式来演示图像匹配过程,GUI采用MATLAB 7.1自带的GUI界面编辑器。主要涉及图像显示,各个功能按钮对显示的图像所进行的操作(如:放大,缩小,旋转和图像匹配),文件对话框(用来读取和保存图像)。

举例:[pname,adrname]=uigetfile('*.jpg','*.bmp')

运行结果如3-1:

3-1运行结果

3-2面样式

4.数据测试

读取了两幅图片显示在显示区域内,如图4-1所示,一幅是原始图片,一幅是目标图像。从显示区域内剪切一块区域(按下剪切按钮可进行剪切)。按下匹配算法1,或匹配算法2后,系统就会自动将模板图像在显示图像中进行匹配,如果找到了匹配地点就会用红色矩形将匹配区域给圈定下来,例如图4-1就是在显示图像中找到的匹配区域。

根据测试结果得:

匹配算法1(基于灰度的模板匹配算法)的匹配时间约为26秒左右。

匹配算法2(基于灰度的快速匹配算法)的匹配时间约为16秒左右。

结论:匹配算法1和匹配算法2的共同缺点是都绝对的依赖坐标系统,费时间较多。在抗噪音能力上,匹配算法1没有抗噪音的能力,匹配算法2在理论上有一定的抗噪音的能力,可是在此程序中没做出来。

4-1测试结果图

5.心得体会

1.总体看来此程序已经完成了我所希望的最基本功能。

2.这此课程设计是我第一次使用新的编程软件来编程,用MATLAB来编写程序。刚开始的时候由于不适应这种编译环境和对其语法不理解让我几度想要放弃,但是MATLAB 的数据处理能力是不容质疑的,经过几次失败后终于将程序一点一点编出来并调试通过。

3.此次课程设计是我第一次接触图形图像方面的知识,并研究图形图像领域中的一个比较热门的话题—数字图像匹配。在研究图形图像基础知识和数字图像匹配算法的过程中查阅了许多资料,也得到了老师的一些帮助,使我对图形图像方面的知识有了一定了解,对数字图像匹配算法方面掌握了大致方向。

4.目前的数字图像匹配的算法有很多,由于时间和能力有限,在此次课程设计中仅实现了两个比较基本的算法。

5.通过这次课程设计培养了我对新的编译软件的自学能力和适应能力,也培养了我对新知识的接受能力,让我收获很多。

参考文献

[1]景晓军.《图像处理技术及应用》. 国防工业出版社,2005

[2]张强, 王正林.《精通MATLAB图像处理》. 电子工业出版社,1997

[3]张兆礼.《现代图像处理技术及MATLAB实现》.人民邮电出版社,2001

[4]陈怀琛.《MATLAB及其在课程中的应用指南》. 西安电子科技大学出版社,2000

[5]朱习军.《MATLAB在信号与系统与图象处理中的应用》. 电子工业出版社,2002

数字图像处理 课程设计报告

数字图像处理 课程设计报告 姓名: 学号: 班级: 设计题目:图像处理 教师:赵哲老师 提交日期: 12月29日

一、设计内容: 主题:《图像处理》 详细说明:对图像进行处理(简单滤镜,模糊,锐化,高斯模糊等),对图像进行处理(上下对称,左右对称,单双色显示,亮暗程度调整等),对图像进行特效处理(反色,实色混合,色彩平衡,浮雕效果,素描效果,雾化效果等), 二、涉及知识内容: 1、二值化 2、各种滤波 3、算法等 三、设计流程图 四、实例分析及截图效果: 运行效果截图: 第一步:读取原图,并显示 close all;clear;clc; % 清楚工作窗口clc 清空变量clear 关闭打开的窗口close all I=imread(''); % 插入图片赋给I imshow(I);% 输出图I I1=rgb2gray(I);%图片变灰度图 figure%新建窗口 subplot(321);% 3行2列第一幅图 imhist(I1);%输出图片

title('原图直方图');%图片名称 一,图像处理模糊 H=fspecial('motion',40); %% 滤波算子模糊程度40 motion运动 q=imfilter(I,H,'replicate');%imfilter实现线性空间滤波函数,I图经过H滤波处理,replicate反复复制q1=rgb2gray(q); imhist(q1); title('模糊图直方图'); 二,图像处理锐化 H=fspecial('unsharp');%锐化滤波算子,unsharp不清晰的 qq=imfilter(I,H,'replicate'); qq1=rgb2gray(qq); imhist(qq1); title('锐化图直方图'); 三,图像处理浮雕(来源网络) %浮雕图 l=imread(''); f0=rgb2gray(l);%变灰度图 f1=imnoise(f0,'speckle',; %高斯噪声加入密度为的高斯乘性噪声 imnoise噪声污染图像函数 speckle斑点 f1=im2double(f1);%把图像数据类型转换为双精度浮点类型 h3=1/9.*[1 1 1;1 1 1;1 1 1]; %采用h3对图像f2进行卷积滤波 f4=conv2(f1,h3,'same'); %进行sobel滤波 h2=fspecial('sobel'); g3=filter2(h2,f1,'same');%卷积和多项式相乘 same相同的 k=mat2gray(g3);% 实现图像矩阵的归一化操作 四,图像处理素描(来源网络) f=imread(''); [VG,A,PPG] = colorgrad(f); ppg = im2uint8(PPG); ppgf = 255 - ppg; [M,N] = size(ppgf);T=200; ppgf1 = zeros(M,N); for ii = 1:M for jj = 1:N if ppgf(ii,jj)

2013数字图像处理课程设计报告

数字图像处理 课程设计报告 课设题目:彩色图像增强软件学院:信息科学与工程学院专业:电子与信息工程 班级: 1002501 姓名:曾小路 学号: 100250131 指导教师:赵占峰 哈尔滨工业大学(威海) 2013 年12月27日

目录 目录 .......................................................................................................................... I 一. 课程设计任务 (1) 二. 课程设计原理及设计方案 (2) 2.1 彩色图像基础 (2) 2.2 彩色模型 (2) 三. 课程设计的步骤和结果 (6) 3.1 采集图像 (6) 3.2 图像增强 (7) 3.3 界面设计 (9) 四. 课程设计总结 (12) 五. 设计体会 (13) 六. 参考文献 (14)

哈尔滨工业大学(威海)课程设计报告 一. 课程设计任务 1.1设计内容及要求: (1)、独立设计方案,根据所学知识,对由于曝光过度、光圈过小或图像亮度不均匀等情况下的彩色图像进行增强,提高图像的清晰度(通俗地讲,就是图像看起来干净、对比度高、颜色鲜艳)。 (2)、参考photoshop 软件,设计软件界面,对处理前后的图像以及直方图等进行对比显示; (3)、将实验结果与处理前的图像进行比较、分析。总结设计过程所遇到的问题。 1.2参考方案 1、实现图像处理的基本操作 学习使用matlab 图像处理工具箱,利用imread()语句读入图像,例如image=imread(flower.jpg),利用彩色图像模型转换公式,将RGB 类型图像转换为HSI 类型图像,显示各分量图像(如imshow(image)),以及计算和显示各分量图像直方图。 2、彩色图像增强实现 对HSI彩色模型图像的I分量进行对比度拉伸或直方图均衡化等处理,提高亮度图像的对比度。对S分量图像进行适当调整,使图像色彩鲜艳或柔和。 H 分量保持不变。将处理后的图像转换成RGB 类型图像,并进行显示。分析处理图像过程和结果存在的问题。 3、参照“photoshop”软件,设计图像处理软件界面 可设计菜单式界面,在功能较少的情况下,也可以设计按键式界面,视 功能多少而定;参考matlab 软件中GUI 设计,学习软件界面的设计 - 1 -

电子科技大学-数字图像处理-课程设计报告

电子科技大学 数字图像处理课程设计 课题名称数字图像处理 院(系)通信与信息工程学院 专业通信工程 姓名 学号 起讫日期 指导教师

2015年12月15日 目录 摘要: (03) 课题一:图像的灰度级分辨率调整 (04) 课题二:噪声的叠加与频域低通滤波器应用 (06) 课题三:顶帽变换在图像阴影校正方面的应用 (13) 课题四:利用Hough变换检测图像中的直线 (15) 课题五:图像的阈值分割操作及区域属性 (20) 课题六:基于MATLAB?的GUI程序设计 (23)

结束语: (36) 参考文献: (37)

基于MATLAB?的数字图像处理课题设计 摘要 本文首先对数字图像处理的相关定义、概念、算法与常用变换进行了介绍;并通过七个课题实例,借助MATLAB?的图像处理工具箱(Computer Vision System Toolbox)对这些案例逐一实现,包括图像的灰度值调整、图像噪声的叠加、频域低通滤波器、阈值分割、Hough变换等,常用的图像变化与处理;然后通过MATLAB?的GUI程序设计,对部分功能进行模块化整合,设计出了数字图像处理的简易软件;最后给出了软件的帮助文件以及该简易程序的系统结构和m代码。 关键词:灰度值调整噪声图像变换 MATLAB? GUI设计

课题一:图像的灰度级分辨率调整 设计要求: 128,64,32,16,8,4,2,并在同一个figure窗将图像的灰度级分辨率调整至{} 口上将它们显示出来。 设计思路: 灰度级分辨率又称色阶,是指图像中可分辨的灰度级的数目,它与存储灰度级别所使用的数据类型有关。由于灰度级度量的是投射到传感器上的光辐射值的强度,所以灰度级分辨率又称为辐射计量分辨率。随着图像灰度级分辨率的的逐渐降低,图像中所包含的颜色数目将变得越来越少,从而在颜色维度造成图像信息量的退化。 MATLAB?提供了histeq函数用于图像灰度值的改变,调用格式如下: J = histeq(I,n) 其中J为变换后的图像,I为输入图像,n为变换的灰度值。依次改变n的值为 128、64、32、16、8、4、2 就可以得到灰度值分辨率为128、64、32、16、8、4、2 的输出图像。利用MATLAB?的subplot命令可以将不同灰度的图像放在同一个figure中方便对比。 课题实现: 该思路的MATLAB?源代码如下: in_photo=imread('lena.bmp'); %读入图片“lena.bmp”,位置在matlab当前工作区路径下D:\TempProject\Matlab\Works for i = [128,64,32,16,8,4,2] syms(['out_photo',num2str(i)]); %利用for循环定义7个变量,作为不同灰度值分辨率的输出变量 eval(['out_photo',num2str(i), '=histeq(in_photo,i)',';']); %histeq函数用于改变图像灰度值,用eval函数给变量循环赋值

数字图像处理课程设计题目和要求-2013

. . . .页脚. 数字图像处理课程设计容、要求 题目一:图像处理软件 1、设计容及要求: (1)、独立设计方案,实现对图像的十五种以上处理(比如:底片化效果、灰度增强、图像复原、浮雕效果、木刻效果等等)。 (2)、参考photoshop软件,设计软件界面,对处理前后的图像以及直方图等进行对比显示; (3)、将实验结果与其他软件实现的效果进行比较、分析。总结设计过程所遇到的问题。 2、参考方案(所有参考方案若无特殊说明,均以matlab为例说明): (1)实现图像处理的基本操作 学习使用matlab图像处理工具箱,利用imread()语句读入图像,例如 image=imread(flower.jpg),对图像进行显示(如imshow(image)),以及直方图计算和显示。 (2)图像处理算法的实现与显示 针对课程中学习的图像处理容,实现至少十五种图像处理功能,例如模糊、锐化、对比度增强、复原操作。改变图像处理的参数,查看处理结果的变化。自己设计要解决的问题,例如引入噪声,去噪;引入运动模糊、聚焦模糊等,对图像进行复原。 (3)参照“photoshop”软件,设计图像处理软件界面 可设计菜单式界面,在功能较少的情况下,也可以设计按键式界面,视功能多少而定;参考matlab软件中GUI设计,学习软件界面的设计。

. . . 题目二:数字水印 1、设计容及要求: 为保护数字图像作品的知识产权,采用数字水印技术嵌入水印图像于作品中,同时尽可能不影响作品的可用性,在作品发生争执时,通过提取水印信息确认作品。通常情况下,水印图像大小要远小于载体图像,嵌入水印后的图像可能遇到噪声、有损压缩、滤波等方面的攻击。因此,评价水印算法的原则就是水印的隐藏性和抗攻击性。根据这一要求,设计水印算法。 (1)、查阅文献、了解数字水印的基本概念。 (2)、深入理解一种简单的数字水印嵌入与提取方法。 (3)、能够显示水印嵌入前后的载体图像。 (4)、能够显示嵌入与提取的水印。 (5)、选择一种以上的攻击方法,测试水印算法的鲁棒性等性能。 (6)、设计软件界面 2、参考方案 (1)对水印图像进行编码置乱(可采用伪随机码,提高水印图像的隐蔽性); (2) 对图像进行子图像分解(如8*8),对子块分别进行DCT变换; (3) 对DCT系数按照zig-zag排序进行排列,选择一种频系数,对该种频系数相邻 的系数进行水印嵌入 (4) 低通滤波检验水印算法的抗攻击性。 (5) 设计数字水印的软件界面。 .页脚.

数字图像处理课程设计报告

课程设计报告书课程名称:数字图像处理 题目:数字图像处理的傅里叶变换 学生姓名: 专业:计算机科学与技术 班别:计科本101班 学号: 指导老师: 日期: 2013 年 06 月 20 日

数字图像处理的傅里叶变换 1.课程设计目的和意义 (1)了解图像变换的意义和手段 (2)熟悉傅里叶变换的基本性质 (3)热练掌握FFT的方法反应用 (4)通过本实验掌握利用MATLAB编程实现数字图像的傅里叶变换 通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。扩展理论知识,培养综合设计能力。 2.课程设计内容 (1)熟悉并掌握傅立叶变换 (2)了解傅立叶变换在图像处理中的应用 (3)通过实验了解二维频谱的分布特点 (4)用MATLAB实现傅立叶变换仿真 3.课程设计背景与基本原理 傅里叶变换是可分离和正交变换中的一个特例,对图像的傅里叶变换将图像从图像空间变换到频率空间,从而可利用傅里叶频谱特性进行图像处理。从20世纪60年代傅里叶变换的快速算法提出来以后,傅里叶变换在信号处理和图像处理中都得到了广泛的使用。 3.1课程设计背景 数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 3.2 傅里叶变换 (1)应用傅里叶变换进行数字图像处理 数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。 20世纪20年代,图像处理首次得到应用。20世纪60年代中期,随电子计算机的发展得到普遍应用。60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。

图像处理课程设计报告

图像处理课程设计报告 导语:设计是把一种设想通过合理的规划周密的计划通过各种感觉形式传达出来的过程。以下是XX整理图像处理课程设计报告的资料,欢迎阅读参考。 图像处理课程设计报告1 摘要:图像处理技术从其功能上可以分为两大类:模拟图像处理技术、和数字图像处理技术。数字图像处理技术指的是将图像信号直接转换成为数字信号,并利用计算机进行处理的过程,其主要的特点在于处理的精度高、处理的内容丰富、可以进行复杂、难度较高的处理内容。当其不在于处理的速度比较缓慢。当前图像处理技术主要的是体现在数字处理技术上,本文说阐述的图像处理技术也是以数字图像处理技术为主要介绍对象。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。近年来, 图像处理技术得到了快速发展, 呈现出较为明显的发展趋势, 了解和掌握这些发展趋势对于做好目前的图像处理工作具有前瞻性的指导意义。本文总结了现代图像处理技术的三点发展趋势。 对图像进行处理(或加工、分析)的主要目的有三个方面: (1)提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善图像的质量。(2)提取图像中所包含的某些特征或特殊信息,这些被提

取的特征或信息往往为计算机分析图像提供便利。提取特征或信息的过程是计算机或计算机视觉的预处理。提取的特征可以包括很多方面,如频域特征、灰度或颜色特征、边界特征、区域特征、纹理特征、形状特征、拓扑特征和关系结构等。 (3)图像数据的变换、编码和压缩,以便于图像的存储和传输。不管是 何种目的的图像处理,都需要由计算机和图像专用设备组成的图像处理系统对图像数据进行输入、加工和输出。 数字图像处理主要研究的内容有以下几个方面: 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅里叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。 图像编码压缩图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

图像处理课程设计

《图像处理技术应用实践》课程设计题目图像增强算法综合应用 学生姓名韩帅_______ 学号 院系计算机与软件学院 专业计算机科学与技术 范春年____ 噪声,不同的去噪方法效果不同,因此应该采用不同的去噪方法以达到最好的去噪效果。? (2)随机噪声应在空间域去除,而空域去噪方法中,中值滤波法效果最好。? (3)周期噪声应在频域中消去。?

(4)去除噪声后的图像仍然可以改善处理。? (5)均方误差评估去噪处理后图像的去噪效果。 2.2算法设计? (1)读入初始图片及加噪图片。? clc;?clear;? f=imread();? ? for?j?=?1?:?N? ???????d?=?sqrt((i-m)^2+(j-n)^2);? ????? h?=?1/(1+0.414*(d/d0)^(2*nn));??%?计算低通滤波器传递函数??????????? ?result(i,j)?=?h?*?G(i,j);???????? end???

end (4)计算均方误差评估去噪效果。? [m?n]=size(p);?l=f-p;? he=sum(sum(l));? avg=he/(m*n); ?k=l-avg;? result1=(sum(sum(k.^2)))/(m*n);? for i=1:M for j=1:N d=sqrt((i-m)^2+(j-n)^2); h=1/(1+0.414*(d/d0)^(2*nn)); %h=1/(1+(d/d0)^(2*nn)); %备用 G(i,j)=h*G(i,j); end end p=uint8(real(ifft2(ifftshift(G)))); subplot(341);imshow(f),title('原图'); subplot(345);imshow(log(abs(f2)),[]),title('频谱'); subplot(349);imhist(f),title('原图'); subplot(342);imshow(g),title('噪声');

数字图像处理课程设计(实验报告)

上海理工大学 计算机工程学院 实验报告 实验名称红细胞数目统计课程名称数字图像处理 姓名王磊学号0916020226 日期2012-11-27 地点图文信息中心成绩教师韩彦芳

一、设计内容: 主题:《红细胞数目检测》 详细说明:读入红细胞图片,通过中值滤波,开运算,闭运算,以及贴标签等方法获得细胞个数。 二、现实意义: 细胞数目检测在现实生活中的意义主要体现在医学上的作用,可通过细胞数目的检测来查看并估计病人或动物的血液中细胞数,如估测血液中红细胞、白细胞、血小板、淋巴细胞等细胞的数目,同时也可检测癌细胞的数目来查看医疗效果,根据这一系列的指标来对病人或动物进行治疗,是具有极其重要的现实作用的。 三、涉及知识内容: 1、中值滤波 2、开运算 3、闭运算 4、二值化 5、贴标签 四、实例分析及截图效果: (1)代码如下: 1、程序中定义图像变量说明 (1)Image--------------------------------------------------------------原图变量;

(2)Image_BW-------------------------------------------------------值化图象; (3)Image_BW_medfilt-------------------------中值滤波后的二值化图像; (4)Optimized_Image_BW---通过“初次二值化图像”与“中值滤波后的二值化图像”进行“或”运算优化图像效果; (5)Reverse_Image_BW--------------------------优化后二值化图象取反;(6)Filled_Image_BW----------------------已填充背景色的二进制图像;(7)Open_Image_BW--------------------------------------开运算后的图像; 2、实现代码: %-------图片前期处理------------------- %第一步:读取原图,并显示 A = imread('E:\红细胞3.png'); Image=rgb2gray(A); %RGB转化成灰度图 figure,imshow(Image); title('【原图】'); %第二步:进行二值化 Theshold = graythresh(Image); %取得图象的全局域值 Image_BW = im2bw(Image,Theshold); %二值化图象 figure,imshow(Image_BW); title('【初次二值化图像】'); %第三步二值化图像进行中值滤波 Image_BW_medfilt= medfilt2(Image_BW,[13 13]); figure,imshow(Image_BW_medfilt); title('【中值滤波后的二值化图像】'); %第四步:通过“初次二值化图像”与“中值滤波后的二值化图像”进行“或”运算优化图像效果 Optimized_Image_BW = Image_BW_medfilt|Image_BW; figure,imshow(Optimized_Image_BW); title('【进行“或”运算优化图像效果】'); %第五步:优化后二值化图象取反,保证:‘1’-〉‘白色’,‘0’-〉‘黑色’ %方便下面的操作 Reverse_Image_BW = ~Optimized_Image_BW; figure,imshow(Reverse_Image_BW); title('【优化后二值化图象取反】');

图形图像处理实验报告

第四次实验报告 实验课程:图像图像处理实验人:尹丽(200921020047) 实验时间:2012年4月19日实验地点:5-602 指导老师:夏倩老师成绩: 一、实验内容: ⑴图像的锐化:使用Sobel,Laplacian 算子分别对图像进行运算,观察并体会运算结果。 ⑵综合练习:对需要进行处理的图像分析,正确运用所学的知识,采用正确的步骤,对图像进行各类处理,以得到令人满意的图像效果。 二、实验目的: 学会用Matlab中的下列函数对输入图像按实验内容进行运算;感受各种不同的图像处理方法对最终图像效果的影响。(imfilter;fspecial;) 三、实验步骤:

1、仔细阅读Matlab 帮助文件中有关以上函数的使用说明,能充分理解其使用方法并能运用它们完成实验内容。 2、将Fig3.41(c).jpg 图像文件读入Matlab ,使用filter2函数分别采用不同的算子对其作锐化运算,显示运算前后的图像。 3、算子的输入可采用直接输入法。其中Sobel ,Laplacian ,也可用fspecial 函数产生。 4、各类算子如下: ???? ??????---121000121 ??????????-111181111 5、将Fig3.46(a).jpg 图像文件读入Matlab ,按照以下步骤对其进行处理: (1)用带对角线的Laplacian 对其处理,以增强边缘。 (2)用imadd 函数叠加原始图像。可以看出噪声增强了,应想法降低。 (3)获取Sobel 模板并用filter2对其进行5×5邻域平均,以减少噪声。 5(1)实验代码如图: 对角线Laplacian Sobel 垂直梯度

数字图像处理——课程设计

, 目录 一、目的与要求————————————————————————————2 二、课程设计选题的背景意义——————————————————————3 三、设计的主要内容及基本原理—————————————————————4 . 四、总体方案设计———————————————————————————5 五、测试和调试————————————————————————————7 六、总结与体会————————————————————————————16 七、参考文献—————————————————————————————17 ~ )

一、目的与要求 1、课程设计目的 (1)、提高分析问题、解决问题的能力,进一步巩固数字图像处理系统中的基本原理和方法。 (2)、熟悉掌握一门计算机语言,可以进行数字图像应用处理的开发设计。 \ 2、课程设计任务 (1)、对加有高斯、椒盐、和乘性噪声的图像进行; (2)、采用不同的滤波方法处理上述图像,比较处理结果; (3)、分析对于所加噪声哪种方法能够获得较好的处理效果; (4)、概括介绍图像平滑应用领域; 注:图像要选择有代表性,分别对高频成分丰富、中低频成分进行分析 3、课程设计要求 (1)、理解各种图像处理方法确切意义; # (2)、独立进行方案的制定,系统结构要合理。 (3)、程序开发时,则必须清楚主要实现函数的目的和作用。如果使用matlab来进行开发,则必须理解每个函数的具体意义和适用范围。 (4)、通过多幅不同形式的图像来检测该系统的稳定性和正确性。 {

二、课程设计选题的背景意义 。 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。最早出现于20世纪50年代,作为一门学科大约形成于20世纪60年代初期。发展到现在其应用范围十分广泛,涉及航天和航空技术、生物医学工程、通信工程、视频和多媒体等。 作为图像处理的一个重要分支,图像平滑是指用于突出图像的宽大区域、低频成分、主干部分或抑制图像噪声和干扰高频成分,使图像亮度平缓渐变,减小突变梯度,改善图像质量的图像处理方法。主要包括:领域平均法、中值滤波法、理想地低通滤波器法等等,因噪声的类型而选择不同的滤波法。 图像平滑因其独特的功能而广泛应用于图像显示、传输、动画制作和媒体合成等多个领域。对于该课题的设计,能加强对图像处理的认识,理解噪声对图像干扰的原因,以及去除噪声的方法,同时增强系统设计提高分析问题与解决问题的能力。设计过程中采用matlab编写程序及结果运行,有效地提高软件处理数字图像的方法与认识水平。 [ 】

数字图像处理课程设计报告

课程设计报告书 课程名称:数字图像处理 题目:数字图像处理的傅里叶变换 学生姓名: 专业:计算机科学与技术 班别:计科本101班 学号: 指导老师: 日期:2013 年06 月20 日 数字图像处理的傅里叶变换 1.课程设计目的和意义 (1)了解图像变换的意义和手段 (2)熟悉傅里叶变换的基本性质 (3)热练掌握FFT的方法反应用 (4)通过本实验掌握利用MATLAB编程实现数字图像的傅里叶变换 通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。扩展理论知识,培养综合设计能力。 2.课程设计内容 (1)熟悉并掌握傅立叶变换 (2)了解傅立叶变换在图像处理中的应用 (3)通过实验了解二维频谱的分布特点 (4)用MATLAB实现傅立叶变换仿真

3.课程设计背景与基本原理 傅里叶变换是可分离和正交变换中的一个特例,对图像的傅里叶变换将图像从图像空间变换到频率空间,从而可利用傅里叶频谱特性进行图像处理。从20世纪60年代傅里叶变换的快速算法提出来以后,傅里叶变换在信号处理和图像处理中都得到了广泛的使用。 3.1课程设计背景 数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 3.2 傅里叶变换 (1)应用傅里叶变换进行数字图像处理 数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。 ? ??20世纪20年代,图像处理首次得到应用。20世纪60年代中期,随电子计算机的发展得到普遍应用。60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。 傅里叶变换在数字图像处理中广泛用于频谱分析,傅里叶变换是线性系统分析的一个有力工具,它使我们能够定量地分析诸如数字化系统,采样点,电子放大器,卷积滤波器,噪声,显示点等地作用(效应)。傅里叶变换(FT)是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图像信息的第二种语言,广泛应用于图像变换,图像编码与压缩,图像分割,图像重建等。因此,对涉及数字图像处理的工作者,深入研究和掌握傅里叶变换及其扩展形式的特性,是很有价值得。 (2)关于傅里叶(Fourier)变换 在信号处理中,傅里叶变换可以将时域信号变到频域中进行处理,因此傅里叶变换在信号处理中有着特殊重要的地位。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。傅里叶变换属于谐波分析。傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号

数字图像处理课程设计报告

本科综合课程设计报告 题 目 ____________________________ 指导教师__________________________ 辅导教师__________________________ 学生姓名__________________________ 学生学号__________________________ _______________________________ 院(部)____________________________专业________________班 ___2008___年 _12__月 _30__日 数字图像处理演示系统 信息科学与技术学院 通信工程 052

1 主要内容 1.1数字图像处理背景及应用 数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。目前,图像处理演示系统应用领域广泛医学、军事、科研、商业等领域。因为数字图像处理技术易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。本图像处理演示系统以数字图像处理理论为基础,对某些常用功能进行界面化设计,便于初级用户的操作。 1.2 图像处理演示系统设计要求 能加载和显示原始图像,显示和输出处理后的图像; 系统要便于维护和具备可扩展性; 界面友好便于操作; 1.3 图像处理演示系统设计任务 数字图像处理演示系统应该具备图像的几何变换(平移、缩放、旋转、翻转)、图像增强(空间域的平滑滤波与锐化滤波)的简单处理功能。 1.3.1几何变换 几何变换又称为几何运算,它是图像处理和图像分析的重要内容之一。通过几何运算,可以根据应用的需要使原图像产生大小、形状、和位置等各方面的变化。简单的说,几何变换可以改变像素点所在的几何位置,以及图像中各物体之间的空间位置关系,这种运算可以被看成是将各物体在图像内移动,特别是图像具有一定的规律性时,一个图像可以由另外一个图像通过几何变换来产生。实际上,一个不受约束的几何变换,可将输入图像的一个点变换到输出图像中的任意位置。几何变换不仅提供了产生某些特殊图像的可能,甚至还可以使图像处理程序设计简单化。从变换性质来分可以分为图像的位置变换、形状变换等 1.3.2图像增强 图像增强是数字图像处理的基本内容之一,其目的是根据应用需要突出图像中的某些“有用”的信息,削弱或去除不需要的信息,以达到扩大图像中不同物体特征之间的差别,使处理后的图像对于特定应用而言,比原始图像更合适,或者为图像的信息提取以及其他图像分析技术奠定了基础。一般情况下,经过增强处理后,图像的视觉效果会发生改变,这种变化意味着图像的视觉效果得到了改善,某些特定信息得到了增强。

数字图像处理课程设计 matlab

《数字图像处理》课程设计文档 目录 一、课程设计目的 (2) 二、课程设计要求 (2) 三、课程设计的内容 (2) 四、课题分析 (3) 五、总体设计 (3) 六、具体设计 (4) 6.1、文件 (4) 6.1.1、打开 (4) 6.1.2、保存 (4) 6.1.3、打印 (4) 6.1.4、退出 (4) 6.2、直方图统计 (4) 6.2.1、R直方图 (4) 6.2.2、G直方图 (4) 6.2.3、B直方图 (4) 6.3、图像增强处里 (5) 6.3.1、直方图均衡化 (5) 6.3.2、对比度展宽 (6) 6.3.3、动态范围调整 (6) 6.3.4、空间域平滑算法 (6) 6.3.4.1、均值滤波 (7) 6.3.4.2、中值滤波 (7) 6.3.4.3、边界保持滤波 (8) 6.4、图像分割 (8) 6.4.1、均匀性度量法 (8) 6.4.2、类间最大距离法 (9) 6.4.3、局部阈值法 (9) 6.5、颜色空间转化 (9) 6..5.1、RGB转HSV (10) 6.5.2、RGB转HIS (10) 6.6、其他图像处理功能 (10) 6.6.1、锐化 (10) 6.6.2、傅里叶………………………………………………………….10\\

七、程序调试及结果分析 (11) 八、心得体会 (11) 九、参考文献 (11) 十、附录 (12) 基于MATLAB的图像处理的课程设计 一、课程设计目的 1、提高分析问题、解决问题的能力,进一步巩固数字图像处理系统中的基本原理与方法。 2、熟悉掌握一门计算机语言,可以进行数字图像的应用处理的开发设计。 二、课程设计要求 1、要求独立完成设计项目,开发工具为MATLAB,也可为C、C++、java等, 具体自选。各组长有责任督促组员完成任务并提交报告; 2、时间为4月28日~6月28日为其两个月的业余时间。 三、课程设计的内容 学习MATLAB GUI程序设计,利用MATLAB图像处理工具箱,设计和实现自己的Photoshop 。要求:按照软件工程方法,根据需求进行程序的功能分析和界面设计,给出设计详细说明。然后按照自己拟定的功能要求进行程序设计和调试。

数字图像处理课程设计

课程设计说明书 题目:图像人脸区域隐私保护系统设计课程:数字图像处理课程设计 院(部):信息与电气工程学院 专业: 班级: 学生: 学号: 指导教师: 完成日期:2013年12月

目录 摘要 ------------------------------------------------------------------------------------------------------ 3 1 设计目的 ---------------------------------------------------------------------------------------------- 3 2 设计要求 ---------------------------------------------------------------------------------------------- 3 3 人脸识别系统概述----------------------------------------------------------------------------------- 3 3.1 当前现状 ----------------------------------------------------------------------------------------- 3 3.2系统概述------------------------------------------------------------------------------------------ 3 3.3 人脸识别的常用方法 -------------------------------------------------------------------------- 3 4 设计容 ------------------------------------------------------------------------------------------------- 3 4.1系统方案设计------------------------------------------------------------------------------------ 3 4.2 软件模块设计 ----------------------------------------------------------------------------------- 3 4.2.1 图像输入设计------------------------------------------------------------------------------ 3 4.2.2 图像肤色区分设计------------------------------------------------------------------------ 3 4.2.3 对肤色图进行修补处理设计 ------------------------------------------------------------ 3 4.2.4 网格标记图像设计------------------------------------------------------------------------ 3 4.2.5 人脸识别标记------------------------------------------------------------------------------ 3 4.2.6 对原图像进行脸部模糊处理 ------------------------------------------------------------ 3总结与致 ------------------------------------------------------------------------------------------------- 3参考文献 ------------------------------------------------------------------------------------------------- 3附录:系统设计程序----------------------------------------------------------------------------------- 3

MATLAB课程设计报告图像处理

一.课程设计相关知识综述...................................................................... 1.1 研究目的及意义 (3) 1.2 数字图像处理研究的内容........................................................... 1.3 MATLAB 软件的介绍.................................................................. 1.3.1 MATLAB 语言的特点......................................................... 1.3.2 MATLAB 图像文件格式.................................................... 1.3.3 MATLAB 图像处理工具箱简介........................................ 1.3.4 MATLAB 中的图像类型.................................................... 1.3.5 MATLAB 的主要应用........................................................ 1.4 函数介绍........................................................................................ 二.课程设计内容和要求........................................................................... 2.1 主要研究内容................................................................................ 2.2 具体要求....................................................................................... 2.3 预期达到的目标........................................................................... 三.设计过程............................................................................................... 3.1 设计方案及步骤............................................................................ 3.2 程序清单及注释........................................................................... 3.3 实验结果........................................................................................ 四.团队情况................................................................................................ 五.总结....................................................................................................... 六.参考文献............................................................................................... 一.课程设计相关知识综述. 1.1研究目的及意义

相关文档
相关文档 最新文档