文档库 最新最全的文档下载
当前位置:文档库 › 关于步进电机外文翻译

关于步进电机外文翻译

关于步进电机外文翻译
关于步进电机外文翻译

简单紧凑的大步长线性压电步进电机

Qi Wang1 and Qingyou Lu1,2,a)

1 合肥微物质科学国家实验室,中国科学技术大学,安徽合肥230026,中华人民共和国

2强磁场实验室,中国科学院,安徽合肥230031,中华人民共和国的中国(2009.6.11接收;2009.7.16通过;2009.8.14网络出版)

我们提出一篇关于新型压电步进电机的文章,它具有高密度,刚性,简单,和任意方向可操作性的特点。虽然测试在室温下进行,但是由于宽松的操作条件和大步长,该电机也能在低温下工作。电机由一个压电扫描器管来运行,它的轴向几乎被切成两半,通过轴的弹簧部分夹持一个空心轴内部两端。双驱动电压仅使压力管的两部分在一个方向上变形,且能反向移动轴承以恢复原状,反之亦然。?美国物理研究所

[工业部: 10.1063/1.3197381]

一.简介

扫描探针显微镜(SPM)在一些有重要类型的原子甚至是亚原子研究的纳米技术领域是一个功能强大的工具。显微镜的一个关键组成部分,就是它那个能在纳米范围内粗略接近被测物的末端或者样品的定位器,这多半需要一个压电步进电机。1-11压电电动机在其他领域也有重要应用,例如显微镜在现代光学12,细胞或者DNA控制中的定位13。

到现在为止,在尺蠖3,14-19、甲虫类生物5-7,10,20-22、剪切压电步进电机2,8,9,11,23,24,惯性滑块4,25-28等文献中找到了各种各样的压电电动机。然而,他们都有着严重的缺点。对于前三种而言,每一种都需要三个或者更多的电压驱动才能被操作,这使得电机的结构和控制都变得太过复杂。在小领域(极端环境条件)或者微信号测量等方面,他们的可靠性和应用程度成为了一个很大的问题。惯性滑块虽然简单,但是特性不够硬(容易产生振动,从而降低了原子图像的品质),并且无法产生足够的推动力。

在这片文章中,我们阐述了一个不具有以上限制的压电电动机。电机由一个压电扫描器管(PST)来运行,它的轴向几乎被切成两半,通过轴上的弹簧部分夹持一个空心管(HS)内部两端。双驱动电压仅使压力管的两部分在一个方向上变形,且能反向移动轴承以恢复原状,反之亦然。其紧凑,简单,刚度,和大步长的特性使其在小空间(极端条件下)和低温应用中非常有用。

a)作者的联系方式如下。电话:86-551-360-0247。电子邮箱:qxl@https://www.wendangku.net/doc/1710906600.html,。二.设计原理

图1为我们设计的原理图。图2为实物图。两个1.5mm厚的蓝色环粘(采用了来自环氧树脂技术的环氧树脂)在了7.9mm内径、10.2mm外径的压电扫描管(压电扫描管物理模型

130.24,长30mm,外径10mm,壁厚0.5mm,有±200V的最大工作电压)的整个外环边缘处。在压电扫描管的外径蓝色环上切两个相对的切口,长度从一段的蓝色环到另一端的蓝色环,总长大概占到整个压电扫描管的92%的长度。为被切到的蓝色环是粘在基环上的,另外一个蓝色环被切成了两半,它被称作半夹持环(夹持一个可转动的空心管)。没对没有被切割的相邻电极用导线连在了一起,形成两个半圆柱形电极,任意一个称为电极1(E1),为了方便,把另一个称为电极2(E2)。由E1和E2控制的压电扫描管的两部分分别简称为P1,P2。

电机可移动部分是一个钛合金空心管,它被插入到压电扫描管的内部,如图1(a)所示。我们还研究过圆形和方形的空心管,如图1(b)所示。对于圆形空心管而言(长45mm,内径5.8mm,外径7.8mm,穿过蓝色环到达压电扫描管的边缘并形成一个0.05mm的间隙),导线从与他垂直的平面的一段管过轴到另一端。两个切割线不会穿过整个空心管,会在每端留下0.8mm的未切割部分。空心管切除部分的那对空隙朝同一方向打开,并且和压电扫描管上分布的缝隙是同一方向。一个弹性很强的弹簧被牢固的固定在空心管的一端,推动空心管的打开,分别对夹持的半环施加N1和N2的推力,同时空心管另一端一个较弱的压缩弹簧让空心管给基换施加一个总的压力N br。N1,N2和N br在上述较强和较弱的压缩弹簧上能大致平衡。因此,只要两者的摩擦系数相等,那么施加在空心管的最大静摩擦力会因为这三个压力的大致相等而抵消(方向可能与下面讨论的相反)。

图1(a)我们的压电电机的结构(b)两种空心管的研究

这种在压电扫描管和空心管两段互相夹持的结构有一个很大的好处,就是这种结构很稳定(耐振动噪声),能在任意方向上安装。同时也应注意到,这种夹持结构是灵活的(大范围的力),这表明较大的温度变化不会引起夹持力显著的变化,且这三个最大静摩擦力任然可以保持平衡。

为了能控制电机,图3(a)所示的两个驱动电压D1和D2分别适用于压电扫描管的电极E1和E2(内部电极电压定为-200V),这能试相对的半圆形螺线管P1和P2变形,如下图所示。在第一个1/6周期(T1)内,P1和P2初始化状态。在T2内,P1保持不变,P2收缩。这会导致P2和空心管的自由端的电压下降,而不是基环和空心环指间电压的下滑,因为P2到空心管的最大静摩擦力小于fr2小于P1到空心管与基环到空心管的最大静摩擦力之和,f r1+fr br(假

设这些摩擦力远远小于P1和P2的阻力F bl1和F bl2)。下一时间段,T3,P1和P2保持在之前的状态。这种纯粹的“等待”是为下一步的同步做好准备,这不是必须的,可以去掉来节省时间。在T4时间内,P1收缩,P2保持不变。这会导致P1和空心管的自由端电压下降(与T2时间的动作原因一样)。到现在为止,P1和P2都已经在基于基础环,没有移动空心管的情况下从扩张的状态变到收缩的状态。T5是另外一个等待时间,它也是可以去掉的。在最后一个1/6周期(T6)内,P1和P2同时扩张。这次仅在基础环和空心环之间的电压发生了下滑,因为fr br

图2 压电电机的实物图

除了上述讨论的原型空心管,我们也尝试了方形空心管(42mm长,5.6mm宽,壁厚0.7mm),它的壁从一段到另一端进行了线切割(切割长度35mm),与另一个切割线互相平行,组成了一个蛇形的结构,如图1(b)所示。切割平面之间的距离是0.8mm。这种设计比圆形的设计相对以下方面要好:(1)空心管在蓝环上的滑落就想溜冰鞋在冰上的滑行,允许更大的压力

(更线性)却又不会有更多的阻力;(2)阻力值更精确,更稳定;(3)只需要一个压力弹簧,它在方形空心管的位置能满足最佳的工作条件fr1≈fr2≈fr br;(4)方形空心管和蓝色环指间的最小空隙容易调整扭曲(较小的空隙容易形成较大的运行距离)。

图3(a)趋势空心管朝压电扫描管方向扩张的两个驱动电压(b)趋势空心管朝压电扫描管相反方

向扩张的两个驱动电压

显然的,夹持力N1,N2和Nbr在空心管运动时不是一直存在的,因此需要限制它的运动范围。方形空心管的运动范围可以从下述方式获得。在图4中,弹簧产生的理Fs,LB和LC分别代表从弹簧到基环,从弹簧到半圆形夹持环的距离,由杠杆原理可知:L B·F s=(N1+N2)·(L C+L B),L C·F s=N br·(L C+L B)。因为N1≈N2,我们要求N1+N2>N br以使空心管运动,这就意味着LB>LC这个条件应该满足。因为如果L C=0,空心管不能运动,那么运动范围最终由0

图4 图示可得运动范围大小

三.性能测试

我们在室温下,在移动方向(向上移动和向下移动)的极端条件下测试了电机的运行情况,包括它的步长,速度,工作频率[分别如图5(a)的原型空心管和图6(a)的方形空心管],工作电压[分别如图5(b)的原型空心管和图6(b)的方形空心管]。圆形空心管的压力值设为N1≈N2≈N br≈0.22N,这个值远远小于驱动压电P1和P2的阻力值(F bl1~F bl2~2N)。

最大步长是12.9μm,测试条件是:0.3Hz向下滑的驱动频率带动的圆形空心管。当移动方向变为向上的时候,步长因为重力变为11.7μm。如果是方形空心管,向下的步长和向上的步长分别是8.9μm和8.2μm,这个值更为合适,因为他的切割边缘与蓝色环相接。所有这些步长值都比其他类似大小的压电电机9,11,23的步长要大。电机的转速当然和驱动频率很接近。我们设置的最大驱动频率是50Hz,圆形空心管(向上运行对向下运行)和方形空心管(向上运行对向下运行)的转速分别是(22.27对24.62)(19.44对19.8)mm/min。

当驱动频率上升或者工作电压值下降的时候,步长的下降情况如图5和图6所示。虽然我们从圆形空心管中获得了较大的步长,但是我们更倾向于使用方形空心管,因为它的优点限制更少。例如,方形空心管的运行范围是9mm(理论上),而圆形空心管的运行范围是3.3mm (比方形的在理论上少了6.6mm)。方形空心管电机的运行曲线如图6所示,比圆形空心管电机的曲线更平滑更稳定。

虽然测试是在室温条件下进行的,但是电机在固化氮的温度下工作也有很大潜力,原因有两个:大步长的特性可以应对热量下降带来的问题,保持运行的稳定;(2)它的弹簧夹持结构可以让压力弹簧(~5mm长,劲度系数大约是286N/m)在从室温到固化氮的很大的温度范围变化下仅有微米级的下滑,确保必要的摩擦力关系的成立,|fr1|≈|fr2|≈|fr br|,这种变化对于空心管和蓝色环之间的压力值的影响可以忽略不计。

方形空心管可以承受磨损和撕裂的问题,因为它的四个边缘可以被蓝色环固定。为了测试它的耐久度,我们在±200V和50Hz的驱动电压下超过一千次的3mm的替换条件下操作电机,电机任然能正常工作。磨损不严重。当然,空心管外部可以加上耐磨金属材料进行更好的保护(如果需要的话)。

图5 用圆形空心管测试的电机步长(左侧垂直轴)和速度(右侧垂直轴)(a)频率(最大工作

电压=±200V)(b)最大工作电压(频率=20Hz)

图6 用圆形空心管测试的电机步长(左侧垂直轴)和速度(右侧垂直轴)(a)频率(最大工作电

压=±200V)(b)最大工作电压(频率=20Hz)

四.结束语

我们呈现了一个强大的线性压电电动机,它拥有其他压电电动机不能同时具有的几个重要特性,包括:大步长,小尺寸,刚性,结构简单,操作方便,温度范围大,易形成不精确

的加工公差等。耐久度测试结果非常好。在建设一个现代化的扫描探针显微镜中,所有这些性能都是非常需要的。

致谢

这项工程得到了中国国家自然科学基金10627403号,中国国家强磁场设施计划和中国科学院自然科学基金YZ200846的资助。

1 B. J. Albers, M. Liebmann, T. C. Schwendemann, M. Z. Baykara, M.Heyde, M. Salmeron,

E. I. Altman, and U. D. Schwarz, Rev. Sci. Instrum.79, 033704 (2008).

2Chr. Wittneven, R. Dombrowski, S. H. Pan, and R. Wiesendanger, Rev.Sci. Instrum. 68, 3806 (1997).

3 R. A. Wolkow, Rev. Sci. Instrum. 63, 4049 (1992).

4Y. Hou, J. Wang, and Q. Lu, Rev. Sci. Instrum. 79, 1137(2008).

5T. H. Chang, C. H. Yang, M. J. Yang, and J. B. Dottellis, Rev. Sci. Instrum.72, 2989 (2001).

6 J. H. Ferris, J. G. Kushmerick, J. A. Johnson, M. G. Yoshikawa Youngquist,R. B. Kessinger, H. F. Kingsbury, and P. S. Weisse, Rev. Sci. Instrum.69, 2691 (1998).

7 N. Pertaya, K.-F. Braun, and K.-H. Rieder, Rev. Sci. Instrum. 75, 2608(2004). 8T. Hanaguri, J. Phys.: Conf. Ser. 51, 514 (2006).

9 S. H. Pan, E. W. Hudson, and J. C. Davis, Rev. Sci. Instrum. 70, 1459(1999).

10 L. A. Silva, Rev. Sci. Instrum. 68, 1300 (1997).

11 A. K. Gupta and K.-W. Ng, Rev. Sci. Instrum. 72, 3552(2001).

12 J. Lee, J. Chae, C. K. Kim, H. Kim, S. Oh, and Y. Kuk, Rev. Sci. Instrum.76, 093701 (2005).

13 J. Kusch, A. Meyer, M. P. Snyder, and Y. Barral, Genes Dev. 16, 1627(2002).

14 Burleigh Instruments, Inc., U.S. Patent No. 3,902,084 (1975).

15P. E. Tenzer and R. Ben Mrad, IEEE/ASME Trans. Mechatron. 9, 427(2004).

16 J. Frank, G. H. Koopmann, W. Chen, and G. A. Lesieutre, Proc. SPIE3668, 717 (1999).

17 J. Ni and Z. Zhu, IEEE/ASME Trans. Mechatron. 5, 44(2000).

18 K. Duong and E. Garcia, Proc. SPIE 2443, 782 (1995).

19 J. E. Miesner and J. P. Teter, Proc. SPIE 2190, 520 (1994).

20 B. Koc, S. Cagatay, and K. Uchino, IEEE Trans. Ultrason. Ferroelectr.Freq. Control 49, 495 (2002).

21M. Bexell and S. Johansson, Sens. Actuators, A 75, 118 (1999).

22 J. Frohn, J. F. Wolf, K. Besocke, and M. Teske, Rev. Sci. Instrum. 60,1200 (1989). 23M. H. Arafa, O. J. Aldraihem, and A. M. Baz, IEEE Proceedings of theFifth

International Symposium on Mechatronics and Its Applications,2008 (unpublished), pp. 1–5.

24 S. H. Pan, International Patent Publication No. WO 93/19494 (1993).

25 R. Yoshida, Y. Okamoto, and H. Okada, J. Jpn. Soc. Precision. Eng. 68,536 (2002). 26W. Zesch, R. Buchi, A. Codourey, and R. Siegwart, Proc. SPIE 2593, 80(1995).

27 D.-S. Paik, K.-H. Yoo, C.-Y. Kang, B.-H. Cho, S. Nam, and S.-J. Yoon,J. Electroceram. 22, 346 (2009).

28 L. Howald, H. Rudin, and H.-J. Gijntherodt, Rev. Sci. Instrum. 63, 3909(1992) 科学仪器评论刊物版权归美国物理研究所(AIP)所有。使用出版物作为刊物素材必须经过AIP同意和/或AIP版权允许。更多信息,请见https://www.wendangku.net/doc/1710906600.html,/rsio/rsicr.jsp

原文:

REVIEW OF SCIENTIFIC INSTRUMENTS 80, 085104 2009

A simple, compact, and rigid piezoelectric step motor

with large step size

Qi Wang1 and Qingyou Lu1,2,a

1Hefei National Laboratory for Physical Sciences at Microscale, University of Scienceand Technology of China, Hefei, Anhui 230026, People’s Republic of China 2High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031,People’s Republic of China

Received 11 June 2009; accepted 16 July 2009; published online 14 August 2009

We present a novel piezoelectric stepper motor featuring high compactness, rigidity, simplicity, andany direction operability. Although tested in room temperature, it is believed to work in lowtemperatures, owing to its loose operation conditions and large step size. The motor is implementedwith a piezoelectric scanner tube that is axially cut into almost two halves and clamp holds a hollow shaft inside at both ends via the spring parts of the shaft. Two driving voltages that singly deform the two halves of the piezotube in one direction and recover simultaneously will move the shaft inthe opposite direction, and vice versa. ? 2009 American Institute of Physics.

DOI: 10.1063/1.3197381

I. INTRODUCTION

The scanning probe microscope(SPM)is a powerful tool in the ?eld of nanotechnology with some important types having atomic or even subatomic resolutions. One key component of an SPM is its coarse approach positioner

which brings the tip and sample as close as in nanometer range and is many times a piezoelectric motor.1–11 The piezo-motor has nevertheless other important applications such as mirror positioning in modern optics12 and cell or DNA manipulations.13

Up to now, there are many kinds of piezomotors found in literatures including Inchworm,3,14–19 beetle type,5

–7,10,20–22 shear piezostepper,2,8,9,11,23,24 and inertial slider,4,25–28 etc.However, they all have severe drawbacks. For the ?rst three

types, each needs three or more piezoelectric actuators to operate, which is too complicated in both structure and control. Their reliability and applications in small space(extreme condition environments)and weak signal measurements all become severe issues. Inertial slider is rather simple, but not very rigid(prone to vibration, thus downgrading the quality of atomic images)and unable to produce enough pushing force.

In this paper, we demonstrate a piezoelectric motor that does not have the above limitations. It is implemented by a single piezoelectric scanner tube(PST) that is axially and deeply cut into almost two halves and grips a hollow shaft

(HS)inside from both ends by the spring parts of the HS.Two driving voltages that separately deform the two halves of the PST in one direction and concurrently recover will move the HS one step in the opposite direction, and vice versa. Its compactness, simplicity, rigidity, and large step

size make it particularly useful in small space(extreme conditions)and low temperature applications.

II. DESIGN AND PRINCIPLE

Figure 1 shows the schematic of our design. A photo

of the actual setup is given in Fig. 2. Two sapphire rings of 1.5mm thick by 7.9 and 10.2 mm inner versus outer diameters are glued(with H74F epoxy from Epoxy Technology)onto

the ends of a four-quadrant PST(model PT130.24 of Physik Instrumente, 30 mm long by 10 mm outer diameter by 0.5mm wall thickness with ±200 V maximum operating voltages), respectively. A cut(with diamond

saw)through two opposite boundaries of the quadrants is made from the sapphire ring at one end of the PST into about 92% of the tube length toward the other end. The uncut sapphire ring is the base ring, whereas the other is cut into two semi rings which are called clamping semi rings(will clamp hold a mobile HS).Each pair of the neighboring electrodes with no cut in between is wired together, resulting in two semicylindrical electrodes, one is arbitrarily called the ?rst electrode (E1)for convenience and the other, the second electrode(E2).The two halves of the PST that E1 and E2 control are abbreviated as P1 and P2, respectively.

The moving part of the motor is a titanium HS that is inserted into the PST as shown in Fig.1(a).We have studied a circular and a square HS as illustrated in Fig.1(b). For the circular one(length=45mm,inner diameter=5.8mm, and outer diameter= 7.8 mm which can pass through the sapphire rings at the PST ends with a small gap of 0.05 mm),a wire cut through the axis is made from each end toward the other end with the cutting planes perpendicular to each other.The two cuts do not go through the entire HS and a small length of 0.8 mm remains uncut at each end. The pair of the HS cut slits having the opening toward the same direction as that

of the PST slits is arranged in the same plane with the PST slits. A stronger compression spring is secured in the HS at one end, pushing the HS to open wider and press against the clamping semi rings with forces N1 and

N2,respectively,whereas a weaker compression spring in the HS at the other end presses the HS on the base ring with a total pressing force N br.The three pressing forces N1,N2,and N br are set roughly equal by the above stronger and weaker compression springs. Accordingly, the maximum static friction forces on the HS due to these three pressing forces are approximately equal in value(directions may be opposite as discussed below)if equal friction coef?cients are assumed.

FIG.1.(a)The structure of our piezomotor;(b)two kinds of hollow shafts

studied.

One big advantage of this mutual clamping between

the PST and HS at both ends is that this structure is very ?rm(resistant to vibration noise)and can be installed in any direction. Also note that the clamping is elastic(long range forces),implying that large temperature variations will not change the clamping forces signi?cantly and the three maximum static frictions remains equal in value.

To operate the motor, two driving voltages D1 and D2 of Fig.3(a)type are applied to the electrodes E1 and E2 of the PST, respectively(the inner electrode voltage is ?xed at -200 V), which will deform the corresponding semitubular actuators P1 and P2 as follows. P1 and P2 are initialized to expansion states during the ?rst 1/6 period(T1).In T2,P2 shrinks while P1 stays unchanged. This results in a sliding between the free end of P2 and HS rather than a sliding between the base ring and HS, because the P2-to-HS maximum static friction fr2is smaller than the sum of the P1-to-HS and base ring-to-HS maximum static frictions, fr1+ fr br(assuming these frictions are much smaller than the blocking forces F bl1 and F bl2 of P1 and P2). Next, in T3, P1and P2 both stay in the previous state. This purely “wait”state is a preparation for good synchrony in the next action,which is not necessary and can be dropped to save time. In T4, P1 shrinks while P2 stays unchanged. This induces a sliding between the free end of P1 and HS(y the similar reason to the T2 action).Up to now, both P1 and P2 have changed the states from expansion to contraction without moving the HS with reference to the base ring. T5 is another wait which is again discardable.In the last 1/6 period(T6),P1 and P2 both expand simultaneously. This time, the sliding happens only between the base ring and HS because fr br

meaning that P1 and P2 together drag the HS to move one step in the expansion direction from the base ring. Finally, P1 and P2 return to the initial states and the HS has moved one step. This sequence can be repeated to achieve a large travel range. The HS can also move in the opposite direction using the driving voltage

given in Fig.3(b)and the principle is very similar.

FIG.2.The photo of our piezoelectric motor.

FIG. 3.(a)The two driving voltages which move the HS in the expansion direction of the PST.(b)The two driving voltages which move the HS in the

contraction direction of the PST.

Apart from the circular HS described above, we have also tried a square HS (42 mm long by 5.6 mm wide, wall thickness is 0.7 mm),which is wire cut from each end to the other end(cutting length= 35 mm)with the cutting planes parallel to each other, forming a serpentine structure as exhibited in Fig.1 (b). The distance between the cutting planes is 0.8 mm. This design is better than its circular counterpart in the following aspects:(1)the sliding of the HS on the sapphire rings is like ice skating shoes sliding on ice, allowing bigger pressing forces more rigid without increasing the frictions;(2)the frictions are better de?ned and more stable;(3)only one compression spring is needed, whose position in the square HS can be adjusted to meet the optimal working condition of fr1≈fr2≈fr br;(4)the smallest gap between the square HS and the sapphire

rings is easier to tweak by grinding(smaller gap will lead to a larger travel range).

FIG.4.The schematic diagram for deriving the range of motion.

Apparently, the clamping forces N1,N2,and N br do not remain constant when the HS moves, thus limiting its range of motion.The range of motion for the square HS can be derived as follows. Referring to Fig.4 in which F S is the force produced by the spring and L B and L C stand for the distances from the spring to the base ring and to the clamping semi rings, respectively, the lever law leads to:L B·F S=(N1+N2)·(L C+L B) and

L C·F S=N br·(L C+L B).Because N1=N2 and we need N1+N2>N br for the HS to walk, this means that L B>L C should be satis?ed. Since the HS cannot move if L C=0, the range of motion is ?nally determined by0

III. PERFORMANCE TEST

We have tested the room temperature performance of the motor in two extreme cases of moving

directions(upward and downward)by measuring its step size and speed as functions of the frequency [Figs. 5(a)and 6(a)for circular and square HS,

respectively]and operating voltage[Figs.5(b)and

6(b)for circular and square HS, respectively]. The pressing forces were set to N1≈N2≈N br≈0.22N for circular HS which are much smaller than the blocking forces (F bl1~F bl2~2N)of the driving piezo-P1 and P2. The maximum step size is 12.9 m with the measurement conditions being: circular HS, downward stepping with 0.3 Hz driving frequency. When the moving direction is changed to upward, the step size becomes 11.7 m due to gravity. In case of square HS, the downward and upward step sizes are 8.9 and 8.2m, respectively, which is more uniform because of its knife edge contacts with the sapphire rings. All these step sizes are rather large compared with other types of piezoelectric motors9,11,23 with the similar size.The speed of motion is of course closely related to the driving frequency. The maximum driving frequency we set was50 Hz, at which the speeds for the circular(upward versus downward) and

square(upward versus downward)HS were:(22.27 versus 24.62)and(19.44 versus 19.98)mm/min.

When the driving frequency increases or if the magnitude of the operating voltage drops, the step size diminishes as seen in Figs. 5 and 6. Although we get larger step size from circular HS, we still prefer the square HS owing to its advantages listed earlier. For instance, the travel range using the square HS is 9 mm(as designed)compared with 3.3 mm for the circular HS(worse than the designed 6.6mm travel range).The performance curves of the square HS motor seen in Fig.6 are also smoother and more consistent than those (Fig.5)of the circular HS motor.

FIG.5.The step size(left vertical axis)nd speed(right vertical axis of the motor using the circular HS as functions of (a) frequency(maximum operating voltage=±200 V) and (b) maximum

operating voltage (frequency=20 Hz).

Although tested in room temperature, the motor has high potential to work in liquid helium temperature for two reasons:(1)its large step size can afford to pay for the thermal contraction still with remarkable step size remaining to produce a move;(2)its spring clamping structure validates the required friction relationship,|fr1|≈|fr2|≈|fr br|,in a very wide temperature range since a change from room temperature to liquid helium only shrinks the compression springs (~5 mm long, spring constant is about 286 N/m)by microns which do not considerably affect the pressing forces between the HS and the sapphire rings.

步进电机控制系统

目录 一、设计任务: (2) 二、步进电机概述: (2) 三、题目分析与整体构思: (4) 四、硬件电路设计: (7) 五、硬件验证: (10) 六、程序设计: (10) 七、系统仿真: (15) 八、感应子式步进电机工作原理: (17) 九、心得体会: (24) 参考文献: (25)

一、系统设计要求 步进电机作为一种电脉冲—角位移的转换元件,由于具有价格低廉、易于控、制、无积累误差和计算机接口方面等优点,在机械、仪表、工业控制等领域中获得了广泛的应用。本设计的具体要求是: 1. 设计制作一个步进电机控制电路,可以细分驱动和常规驱动。 2. 常规驱动状态转速四档可调并可实现正反转。 二、步进电机概述 步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。 现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。 永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度或15度。 反应式步进电机一般为三相,可实现大转矩输出,步进角一般为 1.5度,但噪声和振动都很大。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。 混合式步进电机是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为 1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛,也是本次细分驱动方案所选用的步进电机。 (一)步进电机的一些基本参数: 1.电机固有步距角: 电机固有步距角表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角的值,如86BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°,整步工作时为1.8°),这个步距角可以称之为“电机固有步距角”,它不一定是电机实际工作时的真正步距角,真正的步距角和驱动器有关。 2.步进电机的相数: 步进电机的相数是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机。电机相数不同,它们的步距角也不同,一般二相电机的步距角为0.9°/1.8°、三相的为0.75°/1.5°、五相的为0.36°

四相步进电机控制系统设计资料讲解

四相步进电机控制系 统设计

课题:四相五线单4拍步进制电动机的正反转控制专业:机械电子工程 班级:2班 学号: 20110259 姓名:周后银 指导教师:李立成 设计日期: 2014.6.9~2014.6.20 成绩:

1概述 本实验旨在通过控制STC89C52芯片,实现对四相步进电机的转动控制。具体功能主要是控制电机正转10s、反转10s,连续运行1分钟,并用1602液晶显示屏显示出来。 具体工作过程是:给系统上电后,按下启动开关,步进电机按照预先 实验具体用到的仪器:STC89C52芯片、开关单元、四项步进电机、等硬件设 备。 实验具体电路单元有:单片机最小系统、步进电机连接电路、开关连接电路、1602液晶显示屏显示电路。 2四相步进电机 2.1步进电机 步进电机是一种将电脉冲转化为角位移的执行机构。电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 2.2步进电机的控制 1.换相顺序控制:通电换相这一过程称为脉冲分配。 2.控制步进电机的转向控制:如果给定工作方式正序换相通电,步进 电机正转,如果按反序通电换相,则电机就反转。

3.控制步进电机的速度控制:如果给步进电机发一个控制脉冲,它就 转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。 2.3步进电机的驱动模块 ABCD四相工作指示灯指示四相五线步进电机的工作状态 2.4步进电机的工作过程 开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动, 1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,

2H42B步进电机驱动器说明书

2H42B 细分步进电机驱动器使用手册 V ersion 2.0 版权所有不得翻印 【使用前请仔细阅读本手册,以免损坏驱动器】 东莞市一能机电技术有限公司 DONGGUAN ICAN-TECH CO.,LTD 地址:东莞市万江区新和工业区瑞联振兴工业园B栋4楼 https://www.wendangku.net/doc/1710906600.html,/ Email:tech@https://www.wendangku.net/doc/1710906600.html,

2H42B 步进电机驱动器 一、 2H42B 步进电机驱动器产品简介 1.1概述 2H42B 步进电机驱动器是一款高性价比的细分两相步进电机驱动器。最大可提供2.0A 的电流输出。由于采用了双极性恒流斩波控制技术,与市面上同类型步进电机驱动器相比,其对步进电机噪声和发热均有明显改善。适用于尺寸为28,35,39,42等各类2相或4相混合式步进电机,具有体积小,使用简单方便等特点。 1.2特点 ◆低噪声,高速大转矩特性 ◆光电隔离差分信号输入,响应频率最高200K ◆供电电压12VDC-36VDC ◆细分精度1,2,4,8,16,32,64,128, ◆输出电流峰值可达2.0A 倍细分可选 ◆静止时电流自动减半 ◆外形尺寸小(96*60*24mm ) ◆可选择脉冲上升沿或下降沿触发 ◆电流设定方便,八档可选 ◆可驱动4、6、8线二相、四相步进电机 ◆具有过流,过温保护功能 1.3应用领域 适用于各类型自动化设备或仪器,如雕刻机、打标机、切割机、激光照排、绘图仪、数控 机床、机械手,包装机械,纺织机械等,极具性价比和竞争力。 二、 2H42B 步进电机驱动器 电气、机械和环境指标 1 网址:www https://www.wendangku.net/doc/1710906600.html, 2.2 2H42B 步进电机驱动器使用环境及参数 图1.安装尺寸图 2.4加强散热方式 1) 2H42B 步进电机驱动器的可靠工作温度通常在60℃以内,电机工作温度为80℃以内; 2) 建议使用时选择自动半流方式 (即电机停止时电流自动减至60% ),以减少电机和驱动器的发热; 3) 安装步进电机驱动器时请采用立式侧面安装,使散热面向易于空气对流的方向,必要时在机箱内靠近驱动器处应安装排气风扇,进行强制散热,从而保证驱动器在可靠工作温度范围内工作。 2 网址: www https://www.wendangku.net/doc/1710906600.html,

步进电机脉冲数量与运动距离的计算 (1)

步进电机一个脉冲运动距离怎么算? 步进电机一个脉冲运动距离怎么算?能不能给个公式在举个例子? 答案: 用360度去除以步距角,就是电机转一圈的脉冲数,当然如果细分的话,还要乘以细分倍数。电机转一圈丝杠前进一个导程,用导程除以一圈的脉冲数就是脉冲运动距离。 第一步确定步进电机的步距角,这个电机上会标明的。比如说,1.8度,则一个圆周360/1.8=200,也就是说电机旋转一周需要200个脉冲。 第二步确定电机驱动器设了细分细分没有,查清细分数,可以看驱动器上的拨码。比如说4细分,则承上所述,200*4=800,等于说800个脉冲电机才旋转一周。第三步确定电机轴一周的长度或者说导程:如果是丝杠,螺距*螺纹头数=导程,如果是齿轮齿条传动,分度圆直径(m*z)即为导程,导程/脉冲个数=一个脉冲的线位移。 什么是细分呢?和几相是一个意思吗?和几相没关系吗? 细分和相数没关系。以1.8度为例,原来一个脉冲走1.8度,现在改为4细分,那么现在一个脉冲只能走1.8/4度了。细分越多,每个脉冲的步进长度越短。细分的多少可由驱动器设置。 控制步进电机转多少最主要你得通过步进电机步距角度计算出电机转一圈需要多少脉冲,比如步距角度为0.9°则电机转一圈需要给步进电机驱动器360/0.9=400个脉冲,转半圈就是200个脉冲。步进电机驱动器资料你先了解下! 步进电机转速则通过改变脉冲频率来控制,用plc的pwm输出控制是比较方便的,速度的快慢不影响步进电机的行程,行程多少取决于脉冲数量。 注意一点步进电机速度越快转矩越小,请根据你的应用调节速度以防失步,造成走位不准确。步进电机是接收步进驱动器给过来的脉冲信号,比如两相的步进,AB相分别轮流输出正反脉冲(按一定顺序),步进电机就可以运行了,相当于一定的脉冲步进马达对应走一定旋转角度。而PLC也可以发出脉冲,但脉冲电压不够,所以需要把PLC输出的脉冲给步进驱动器放大来驱动步进驱动器,相当于PLC的脉冲就是指令脉冲。一般PLC驱动步进时候有两路信号,一路是角度脉冲,另外一路是方向脉冲,PLC里边一般配所谓位移指令,发梯形脉冲给步进驱动器,这样可以缓冲启动带来的力冲击。 51单片机控制两相四线步进电机的问题 单片机为AT89S52。。步进电机为:57HS5630A4步进电机。链接:Error! Hyperlink reference not valid.步进电机驱动器为:M542中性步进电机驱动器。链接:Error! Hyperlink reference not valid. 现在的问题是:步进电机我已经和驱动器连接好了,现在步进电机驱动器有6 个线和51单片机相连,分别是PUL+、PUL-、DIR+、DIR-、ENA+、ENA- 。我想知道的是,比如这六个和单片机的P1.X口相连。怎么在单片机上控制步进电机正转反转,转的角度,转的速度。 答案: 首先,六根线的三根负线可以全部接地..和单片机P1相连的只需三根即可..这三根线为了保证能驱动起步进电机驱动器,应该分别上拉2K电阻.. 然后,在驱动器上的拨码处设置细分,,所谓细分是指电机转一圈所需多少脉冲..例如设置为800细分,即为电机转一圈需要800个脉冲..那么一个脉冲就会对应0.45度..单片机发出的脉冲频率高,那么电机转的就快..让电机转多少角度,就发出相应的脉冲数即可,例如转45度,就发出100个脉冲即可,在0.125s内发出100个脉冲,那转速就为1转/s。。

步进电机控制系统设计

文理学院芙蓉学院课程设计报告 课程名称:专业综合课程设计 专业班级:自动化1001班学号:40 学生:志航 指导教师:建英 完成时间: 2013年 6月13 日 报告成绩: 芙蓉学院教学工作部制

摘要 本文先介绍了混合式步进电机的结构和工作原理,分析了细分驱动对于改善步进电机运行性能的作用,论述了正弦波细分驱动可以实现等步距角、等力矩均匀细分驱动的原理,提出了一种基于H桥和其他分立元件分配脉冲的驱动技术,该方案可实现步进电机的单拍、半拍、双拍三种工作方式。本文采用控制电路主要由AT89C51单片机、晶振电路、地址锁存器、译码器、液晶显示电路组成,单片机是控制系统的核心。文中对整个系统的架构及硬件电路和驱动软件的实现都做了详细的介绍。 关键词:单片机;正弦脉宽调制;混合式步进电机;细分驱动

Abstract In this paper, the working principle and configuration of three-phase hybrid Stepper are introduced, then based on technologies such as stepper motor controller, PWM inverter and microcontroller. In the thesis, we develop a single chip computer -based digital controlling system for a three-phase hybrid stepper motor that is mainly constructed from a AT89C51 single chip computer and ST7920IC which is used as the core of control parts. The system's whole architecture, the design of hardware and software are introduced in detail. KEY WORDS: Microcontroller,SPWM,Hybrid stepper motor,Micro-stepping driver

基于单片机的步进电机控制系统的设计_毕业设计

本科毕业设计 基于单片机的步进电机控制系统的设计

摘要 随着自动控制系统的发展和对高精度控制的要求,步进电机在自动化控制中扮演着越来越重要的角色,区别于普通的直流电机和交流电机,步进电机可以对旋转角度和转动速度进行高精度控制。步进电机作为控制执行元件,是机电一体化的关键组成之一,广泛应用在各种自动化控制系统和精密机械等领域。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 本系统介绍了一种基于单片机的步进电机控制系统的设计,包括了硬件设计和软件设计两部分。其中,硬件设计包括单片机最小系统、键盘控制模块、LCD显示模块、步进电机驱动模块、位置检测模块共5个功能模块的设计。系统软件设计采用C语言编写,包括主程序、数字键处理程序、功能键处理程序、电机驱动处理程序、显示模块、位置采集模块。 本设计采用STC89C52单片机作为主控制器,4*4矩阵键盘作为输入,LCD1602液晶作为显示,ULN2003A芯片驱动步进电机。系统具有良好的操作界面,键盘输入步进电机的运行距离;步进电机能以不同的速度运行,可以在不超过最大转速内准确运行到任意设定的位置,可调性较强;显示设定的运行距离和实际运行距离;方便操作者使用。关键词:单片机步进电机液晶显示键盘驱动

Design of the Stepping Motor Control System Based on SCM Qiu Haizhao (College of Engineering, South China Agricultural University, Guangzhou 510642,China) Abstract:With the development of automatic control system and the requirements of high-precision control, stepping motor control in automation is playing an increasingly important role, different from the common DC and AC motor, stepper motor rotation angle and rotational speed can be high-precision controlled. Stepper motor as a control actuator is a key component of mechanical and electrical integration, widely used in a variety of automated control systems and precision machinery and other fields. Stepper motor is the open-loop control components changing electric pulse signals into angular displacement or linear displacement .In the case of non-overloaded, the motor speed, stop position depends only on the pulse frequency and pulse number, regardless of load changes, that is, to add a pulse motor, the motor is turned a step angle. This system introduces a design of stepper motor control system based on single chip microcomputer, including hardware design and software design in two parts. Among them, the hardware design, including single chip minimal system, keyboard control module, LCD display module, the stepper motor drive module, position detection module five functional modules. System software design using C language, including the main program, process number keys, the key of function processes, motor driver handler, the display module, position acquisition module. This design uses STC89C52 microcontroller as the main controller, 4 * 4 matrix keyboard as an input, LCD1602 LCD as a display, ULN2003A chip as stepper motor driver. System has a good user interface, keyboard input stepper motor running distance; Stepper motor can run at different speed, and run to any given position accurately in any speed without exceeding the maximum speed, with a strong adjustable ; Display the running distance and the actual running distance, which is more convenient for the operator to use. Key words: SCM stepper LCD keyboard driver

步进电机的控制电路和程序

步进电机的控制电路和程序 先看一下我们将要使用的51单片机综合学习系统能完成哪些实验与产品开发工作:分别有流水灯,数码管显示,液晶显示,按键开关,蜂鸣器奏乐,继电器控制,IIC总线,SPI总线,PS/2实验,AD模数转换,光耦实验,串口通信,红外线遥控,无线遥控,温度传感,步进电机控制等等。 上图是我们将要使用的51单片机综合学习系统硬件平台,本期实验我们用到了综合系统主机、步进电机,综合系统其它功能模块原理与使用详见前几期《电子制作》杂志及后期连载教程介绍。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。 步进电机分类与结构 现在比较常用的步进电机分为三种:反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)。本章节以反应式步进电机为例,介绍其基本原理与应用方法。反应式步进电机可实现大转矩输出,步进角一般为1.5度。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。常用小型步进电机的实物如图1 所示。 图1步进电机实物图 图 2 步进电机内部图 步进电机现场应用驱动电路 综合系统使用的是小型步进电机,对电压和电流 要求不是很高,为了说明应用原理,故采用最简单 的驱动电路,目的在于验证步进电机的使用,在正 式工业控制中还需在此基础上改进。一般的驱动电 路可以用图3的形式。 图3 一般驱动电路 在实际应用中一般驱动路数不止一路,用上图的分立电路体积大,很多 场合用现成的集成电路作为多路驱动。常用的小型步进电机驱动电路可以用 ULN2003或ULN2803。本书配套实验板上用的是ULN2003。ULN2003是高压大电流达林顿晶体管阵列系列产品,具有电流增益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类要求高速大功率驱动的系统。ULN2003A由7组达林顿晶体管阵列和相应的电阻网络以及钳位二极管网络构成,具有同时驱动7组负载的能力,为单片双极型大功率高速集成电路。ULN2003内部结构及等效电路图如图4:

步进电机全闭环控制

半导体器件应用网 https://www.wendangku.net/doc/1710906600.html,/news/194498.html 步进电机全闭环控制 【大比特导读】步进电机由于体积精巧、价格低廉、运行稳定,在低端行业 应用广泛,步进电机运动控制实现全闭环,是工控行业的一大难题。 步进电机由于体积精巧、价格低廉、运行稳定,在低端行业应用广泛,步进电机运动控 制实现全闭环,是工控行业的一大难题。 主要问题有两个,原点的不确定性和失步,目前,采用高速光电开关作为步进系统的原点,这个误差在毫米级,所以在精确控制领域,是不能接受的。另外,为了提高运行精度, 步进系统的驱动采用多细分,有的大于16,假如用在往复运动过程中,误差大的惊人。已 经不能适应加工领域。 为此,提出步进电机全闭环控制系统,以适应目前运动控制领域的需求。 1、硬件连接 硬件连接加装编码器,根据细分要求,采用不同等级的解析度编码器进行实时反馈。 2、原点控制 根据编码器的Z信号,识别、计算坐标原点,同数控系统相同,精度可以达到2/编码器解 析度×4。 3、失步控制 根据编码器的反馈数据,实时调整输出脉冲,根据失步调整程度,采取相应办法。 下图是电路原理 4、电路原理描述

半导体器件应用网 电路采用超大规模电路FPGA,输入、输出可以达到兆级的相应频率,电源3.3V,利用2596 开关电源,将24V转为3.3V,方便实用。输入脉冲与反馈脉冲进行4倍频正交解码后计算,及时修正输出脉冲量和频率。 5、应用描述 本电路有两种模式,返回原点模式和运行模式。当原点使能开关置位时,进入原点模式,反之,进入运行模式。 在原点模式,以同步于输入脉冲的频率输出脉冲,当碰到原点开关后,降低输出脉冲频率,根据编码器的Z信号,识别、计算坐标原点。返回原点完成后,输出信号。此信号及其数据在不断电的情况下,永远保持。 在运行模式,以同步于输入脉冲的频率输出脉冲,同时计算反馈数据,假如出现误差,及时修正。另外,大惯量运行时,加减速设置不合理的情况下,可能会及时反向修正。 6、技术指标 (1)输入输出相应频率:≤1M; (2)脉冲同步时间误差:≤10ms;(主要延误在反向修正,不考虑反向修正,≤10us) (3)重定位电气精度:≥2/编码器解析度×4/马达解析度×细分) (4)重定位原点电气精度≥2/编码器解析度×4/马达解析度×细分) (5)适应PNP,NPN接口 (6)适应伺服脉冲控制 (7)适应各种编码其接口 步进电机运动控制一旦解决上述问题,增加数百元成本的情况下可以实现全闭环控制,毫不逊色于伺服系统。特别是其价格低廉、控制简单、寿命长久的特点在某些场合,可能优于伺服系统。

步进电机控制系统设计.

毕业设计论文 论文题目:基于单片机的步进电机控制电路板设计 摘要 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 步进电机是一种能将电脉冲信号转换成角位移或线位移的机电元件,步进电机控制系统主要由步进控制器,功率放大器及步进电机等组成。采用单片机控制,用软件代替上述步进控制器,使得线路简单,成本低,可靠性大大增加。软件编程可灵活产生不同类型步进电机励磁序列来控制各种步进电机的运行方式。 本设计是采用AT89C51单片机对步进电机的控制,通过IO口输出的时序方波作为步进电机的控制信号,信号经过芯片ULN2003驱动步进电机;同时,用 4个按键来对电机的状态进行控制,并用数码管动态显示电机的转速。 系统由硬件设计和软件设计两部分组成。其中,硬件设计包括AT89C51单片机的最小系统、电源模块、键盘控制模块、步进电机驱动(集成达林顿ULN2003)模块、数码显示(SM420361K数码管)模块、测速模块(含霍尔片UGN3020)6个功能模块的设计,以及各模块在电路板上的有机结合而实现。软件设计包括键盘控制、步进电机脉冲、数码管动态显示以及转速信号采集模块的控制程序,最终实现对步进电机转动方向及转动速度的控制,并将步进电机的转动速度动态显示在LED数码管上,对速度进行实时监控显示。软件采用在Keil软件环境下编辑

************* 第1章绪论 1.1 课题背景 当今社会,电动机在工农业生产、人们日常生活中起着十分重要的作用。步进电机是最常见的一种控制电机,在各领域中得到广泛应用。步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,其优点是结构简单、运行可靠、控制方便。尤其是步距值不受电压、温度的变化的影响、误差不会长期积累的特点,给实际的应用带来了很大的方便。它广泛用于消费类产品(打印机、照相机、雕刻机)、工业控制(数控机床、工业机器人)、医疗器械等机电产品中。研究步进电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。控制核心采用C51芯片,它以其独特的低成本,小体积广受欢迎,当然其易编程也是不可多得的优点为此,本文设计了一个单片机控制步进电机的控制系统,可以实现对步进电机转动速度和转动方向的高效控制。 1.2 设计目的及系统功能 本设计的目的是以单片机为核心设计出一个单片机控制步进电机的控制系统。本系统采用AT89C51作为控制单元,通过键盘实现对步进电机转动方向及转动速度的控制,并且将步进电机的转动速度动态显示在LED数码管上。 1

步进电机运动控制器设计

一、项目概述: 用步进电机作为X-Y移动平台的执行机构,实现开环位置控制。采用四相步进电机,一相激励时步距角为1.8°,由步进电机驱动器接受控制器的控制信号,采用单四拍方式,每拍为一步,可正反转。步进电机的转动带动丝杆,将旋转运动转换为直线运动,步进电机的每一走步传递到X或Y方向的移动距离为0.02mm.系统中步进电机工作频率为500Hz--4KHz。运动要求是: (1)当按键K1按下时,X方向步进电机正向运转,X正向移动1mm; 当按键K2按下时,X方向步进电机反向运转,X反向移动1mm; 当按键K3按下时,Y方向步进电机正向运转,Y正向移动1mm; 当按键K4按下时,Y方向步进电机反向运转,Y反向移动1mm;(2)按键按住不放,连续运动直到按键释放,停止运转。 (3)控制器实时显示步进电机转过的步数和X或Y向移动的距离。(4)系统供电电源为36 VDC。 二、系统设计: 设计思想: 1、用两台步进电机分别控制x、y方向的运动; 2、采用动态显示方式,实时显示步数和距离; 3、采用4个并行口输出控制信号以及采集开关输入信号。 总体方案: 采用AT89C51作为控制器: P0口读入开关输入信号;P1口接步进电机驱动器ULN2003A;P2、

P3口控制动态显示电路。 三、硬件设计: 1、AT89C51晶振电路和手动复位电路: 晶振电路:采用12MHz的晶振,其中电容C1,C2可在5—60pF之间选择,这两个电容的大小对振荡频率有微小的影响,可起频率微调的作用。 复位电路:当按键弹起时,相当于一个上电复位电路;当按键压下时,相当于RST端通过电阻与+5V的电源相连,提供足够宽度的阈值电压完成复位。 2、开关量读入: 由P0口的低4位读入开关量信号。 3、步进电机控制电路:

步进电机及其驱动电路

第三节步进电动机及其驱动 一、步进电机的特点与种类 1.步进电机的特点 步进电机又称脉冲电机。它是将电脉冲信号转换成机械角位移的执行元件。每当输入一个电脉冲时,转子就转过一个相应的步距角。转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步。只要控制输入电脉冲的数量、频率以及电机绕组通电相序即可获得所需的转角、转速及转向。 步进电动机具有以下特点: ?工作状态不易受各种干扰因素(如电压波动、电流大小与波形变化、温度等)的影响; ?步进电动机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零” ; ?由于可以直接用数字信号控制,与微机接口比较容易; ?控制性能好,在起动、停止、反转时不易“丢步”; ?不需要传感器进行反馈,可以进行开环控制; ?缺点是能量效率较低。 就常用的旋转式步进电动机的转子结构来说,可将其分为以下三种: (1)可变磁阻(VR-Variable Reluctance),也叫反应式步进电动机 (2)永磁(PM-Permanent Magnet)型 (3)混合(HB-Hybrid)型 (1)可变磁阻(VR-Variable Reluctance) 结构原理:该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称作反应式步进电动机。其结构原理如图3.5定子1 上嵌有线圈,转子2朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁阻型。

图3.6 可变式阻步进电机 可变磁阻步进电机的特点: 反应式电动机的定子与转子均不含永久磁铁,故无励磁时没有保持力; 需要将气隙作得尽可能小,例如几个微米; 结构简单,运行频率高,可产生中等转矩,步距角小(0.09~9°) 制造材料费用低; 有些数控机床及工业机器人上使用。 (3)混合(HB-Hybrid)型 结构原理 这类电机是PM式和VR式的复合形式。其定子与VR类似,表面制有小齿,转子由永磁铁和铁心构成,同样切有小齿,为了减小步距角可以在结构上增加转子和定子的齿数。其结构如图3.7所示。 混合式步进电机特点: HB兼有PM和VR式步进电机的特点: 步距角可以做得较小(0.9~3.6°); 无励磁时具有保持力; 可以产生较大转矩,应用较广。

步进电机控制系统课程设计

河北xxxxxx学院 课程设计说明 书 题目:步进电机控制系统 学院(系): 年级专业: 学号: 学生姓名: 同组学生: 指导教师:

步进电机控制系统 设计者:xxxxx 指导老师:xxxx 1摘要: 由于步进电机自身的特点、不需要位置、速度等信号反馈,只需要脉冲发生器产生足够的脉冲数和合适的脉冲频率,就可以控制步进电机移动的距离和速度。步进电机的运转方向的控制为输入电机各绕组的通电顺序。例如,一个三相步进电机的通电顺序为:a—ab—b—bc—c—ca—a--.....,此时点击正转,若通电顺序改为:a—ac—c—cb—b—ba—a--.....时点击反转。既可以通过改变环形分配器的脉冲输出顺序,也可以通过编程改变输出脉冲的顺序,来改变输入到各绕组的通电顺序,达到控制电击方向的目的。 关键词:步进电机 PLC 步进电机驱动器 引言步进电机是一种常用的电气执行原件,一种多相或单相同步点击,在数控机床、包装机械等自动控制及检测仪表等方面得到广泛运用。随着plc的不短发展。其功能越来越强大,除了有简单的逻辑功能和顺序控制外,运算功能的加入、pid和各类高速指令、使得plc对复杂和特殊系统的控制应用更加广泛。Plc与数控技术的结合产生了各种不同类型的数控设备。 2 任务与要求 (1) 了解步进电机的原理 (2) 熟练使用PLC控制步进电机,了解步进电机驱动器原理 3 装置原理介绍 3.1控制系统功能框图 在步进电机控制系统中,首先控制步进电机使之稳步启动,然后高速运动,接近制定位置时,减速之后低速运动一段时间,在准确地停在预定的位置上,最后步进电机停留2s后,按照前进时的加速—高速—减速—低速的步骤返回到起始点,其运动状态转换过程平稳,其功能框图如图3.1所以,其简单工作过程如图3.2所示。 由于步进电机本身的结构特性决定了它要实现高速运转必须有加速过程,如果在启动时突然加载高频脉冲,电机会产生啸叫、失步甚至不能启动,在停止阶段也是这样,当高频脉冲突然降到零时,电机会产生啸叫和振动,所以在启动和停止时,都必须有一个加速和减速过程。 3.2步进电机控制系统硬件设计 由于步进电机的硬件结构特性,所以对输入的脉冲的频率有所限制,对于低频的脉冲输出时,plc可以利用定时器来完成。若要求步进电机的速度较快时,就需要用plc的高速脉冲输出指令,这时就需要在程序中设置相应的步骤来完成对步进电机的控制。 3.21 组建器材 (1)主机plc 根据系统的控制要求,采用三菱FX系统系列的plc作为控制器。(2)限位开关此系统中共用了两个限位开关:左限位开关和右限位开关。这两个限位开关的作用是控制物体的位置,防止物体超出合理的工作范围。 (3)步进电机步进电机是该系统的执行机构

步进电机控制系统的研究

步进电机控制系统的研究 杨杰1李学佳2崔二华3韩永清4 英利能源(中国)有限公司河北省保定市071051 摘要:步进电动机由于用共组成的开环系统既简单、廉价,又非常可行,因此在打印机等办公自动化设备以及各种控制装置等众多领域有着极其广泛的应用。 关键词:步进电机电机控制系统 中图分类号:TM3文献标识码:A文章编号: 前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 一、步进电机概述 步进电机是一种将电脉冲信号转换成相应的角位移或线位移的电磁机械装置,是一种输出与输入数字脉冲对应的增量驱动元件,具有快速启动和停止的能力。当负荷不超过步进电机所提供的动态转矩值时,它就可能在一瞬间实现启动和停止。它的步矩角和转速不受电压波动和负载变化的影响,也不受环境条件(如温度、气压、冲击和振动等)的影响,仅与脉冲频率有关。它每转l周都有固定的步数,在不丢步的情况下运行,其步距误差不会长期积累。 正是因为步进电机具备上述优点,它已经被广泛地用于自动控制系统中作为执行元件。但大多数设计人员常常习惯于用逻辑电路实现复杂的步进电机的控制,虽然已经取得很大成效,但实现起来成本高、费时多,而且一旦组成了电路,就很难再改动,因此不得不完全重新设计控制器。 微处理器与微计算机的先进技术和低廉的价格,给步进电机的控制开创了一个新的局面。人们完全可以借助于软件来对步进电机实施控制,从而实现复杂而

步进电机驱动器说明书

TB6600升级版 两相步进驱动器 使用说明书 [使用前请仔细阅读本手册,以免损坏驱动器]

目录 一、产品简介 (3) 概述 (3) 特点 (3) 二、接口和接线介绍 (3) 信号输入端 (3) 电机绕组连接 (3) 电源电压连接 (4) 状态指示 (4) 接线方式 (4) 接线要求 (5) 三、电流、细分拨码开关设定 (5) 细分设定 (5) 工作(动态)电流设定 (6) 四、机械和环境指标 (6) 使用环境及参数 (6) 机械安装图 (7) 五、电机适配 (7) 电机适配 (7) 电机接线 (8) 供电电压和输出电流的选择 (8) 五、常见问题 (9) 应用中常见问题和处理方法 (9) 六、保修条款 (10)

一、产品简介 ◆概述 TB6600升级版驱动器是一款专业的两相混合式步进电机驱动器,可适配国内外各种品牌,电流在4.0A及以下,外径39,42,57mm的四线,六线,八线两相混合式步进电机。适合各种小中型自动化设备和仪器,例如:雕刻机、打标机、切割机、激光照排、绘图仪、数控机床、拿放装置等。在用户期望低成本、大电流运行的设备中效果特性。 ◆特点 ※信号输入:单端,脉冲/方向 ※细分可选:1/2/4/8/16/32细分 ※输出电流:0.5A-4.0A ※输入电压:9-42VDC ※静止时电流自动减半 ※可驱动4,6,8线两相、四相步进电机 ※光耦隔离信号输入,抗干扰能力强 ※具有过热、过流、欠压锁定、输入电压防反接保护等功能 ※体积小巧,方便安装 ※外部信号3.3-24V通用,无需串联电阻 二、接口和接线介绍 ◆信号输入端 PUL+ PUL-脉冲输入信号。默认脉冲上升沿有效。为了可靠响应脉冲信号,脉冲宽度应大于1.2us。 DIR+ DIR-方向输入信号,高/低电平信号,为保证电机可靠换向,方向信号应先于脉冲信号至少5us建立。电机的初始运行方向与电机绕组接线有关,互换任一相绕组(如A+、A-交换)可以改变电机初始运行方向。 ENA+ ENA-使能输入信号(脱机信号),用于使能或禁止驱动器输出。使能时,驱动器将切断电机各相的电流使电机处于自由状态,不响应步进脉冲。当不需用此功能时,使能信号端悬空即可。 ◆电机绕组连接 A+,A-电机A相绕组。 B+,B-电机B相绕组。

基于单片机的步进电机运动控制系统设计

基于单片机的步进电机运动控制系统设计 2009年5月24号

摘要 摘要 单片微型计算机简称单片机。它是把组成微型计算机的各功能部件:中央处理器、CPU、随机存取存储器RAM、只读存储器ROM、I/O接口电路、定时器/计数器以及串行通信接口等制作在一块集成芯片中,构成一个完整的微型计算机。单片机主要应用于控制领域,由于其具有可靠性高、体积小、价格低、易于产品化等特点,因而在智能仪器仪表、实时工业控制、智能终端、通信设备、导航系统、家用电器等自控领域获得广泛应用。 步进电机是一种能将电脉冲信号转换成角位移或线位移的机电元件,实质上是一种数字/角度转换器步进电机控制系统主要由步进控制器,功率放大器及步进电机等组成.步进控制器由缓冲寄存器,环形分配器,控制逻辑及正,反转控制门等组成,能把输入的脉冲转换成环形脉冲,以便控制步进电机,并能进行正反向控制.但由于步进控制器线路复杂.成本高.采用单片机控制,用软件代替上述步进控制器,使得线路简单,成本低,可靠性大大增加,灵活改变步进电机的控制方案,无需逻辑电路组成时序发生器.软件编程可灵活产生不同类型步进电机励磁序列来控制各种步进电机的运行方式并可实现一台单片机控制多台电机.提供灵活多样的控制手段和提高控制精度对复杂繁琐的控制易于实现,尤其在本系统中更显示出微机控制的优越性。 本设计采用单片机AT89C51对步进电机进行控制,通过IO口输出的具有时序的方波作为步进电机的控制信号,信号经过芯片L298N驱动步进电机,通过PWM脉宽调制解调技术对步进电机调速,同时,用键盘来对电机的状态进行控制,并用数码管显示电机的转速,采用CD4511作为5位单个数码管的显示驱动显示步进电机的转速和步距角。 关键词:单片机;步进电机;PWM脉宽调制;CD4511;L298N

步进电机控制系统设计

课程设计任务书 设计题目:微机步进电机控制系统设计 设计目的: 1.巩固和加深课堂所学知识; 2.学习掌握一般的软硬件的设计方法和查阅、运用资料的能力; 3.通过步进电机控制系统设计与制作,深入了解与掌握步进电机的运行方式、方向、速 度、启/停的控制。 设计任务及要求:(在规定的时间内完成下列任务) 任务:控制四相步进电机按双八拍的运行方式运行。按下开关SW1时启动步进电机,按ESC键停止工作。采用循环查表法,用软件来实现脉冲循环分配器的功能 对步进电机绕组轮流加电。 要求对题目进行功能分析(四项功能:快速顺时针旋转,慢速顺时针旋转, 快速逆时针旋转和慢速逆时针旋转),进行步进电机远程控制系统硬件电路设 计,画出电路原理图、元器件布线图、实验电路图;绘制程序流程图,进行 步进电机控制程序设计(采用8086汇编语言);系统调试、运行,提交一个 满足上述要求的步进电机控制系统设计。 时间安排:(部分时间,某些工作可以自己安排重叠进行) 具体要求:设计报告撰写格式要求(按提供的设计报告统一格式撰写), 具体内容如下: ①设计任务与要求②总体方案与说明 ③硬件原理图与说明④实验电路图与说明 ⑤软件主要模块流程图 ⑥源程序清单与注释 ⑦问题分析与解决方案(包括调式记录、调式报告,即在调式过程中遇到的主要问 题、解决方法及改进设想); ⑧小结与体会 附录:①源程序(必须有简单注释)②使用说明③参考资料 指导教师签名:08 年12 月01 日 教研室主任(或责任教师)签名:年月日

目录 第1章需求分析 (1) 1.1课程设计题目 (1) 1.2步进电机介绍 (1) 1.3课程设计任务及要求 (1) 1.4软硬件运行环境及开发工具 (1) 第2章概要设计 (2) 2.1设计原理及实现方法 (2) 2.1.1 步进电机控制原理 (2) 2.1.2微机步进电机控制系统原理图 (2) 2.1.3 运行方式与方向的控制——循环查表法 (3) 2.1.4步进电机的启/停控制——设置开关 (4) 2.2微机步进电机控制系统设计流程图 (4) 第3章详细设计 (5) 3.1 硬件设计与实现 (5) 3.2软件设计 (5) 3.2.1正向慢转子程序 (5) 3.2.2正向快转子程序 (6) 3.2.3反向慢转子程序 (6) 3.2.4反向快转子程序 (6) 3.2.5长延时子程序 (7) 3.2.6短延时子程序 (7) 第4章系统调试与操作说明 (7) 4.1系统调试 (7) 4.2 操作说明 (8) 第5章课程设计总结与体会 (8) 参考文献 (9) 附录微机步进电机控制系统源程序 (9)

相关文档
相关文档 最新文档