文档库 最新最全的文档下载
当前位置:文档库 › 第二章(4-3)频谱搬移

第二章(4-3)频谱搬移

简易频谱分析仪

简易频谱分析仪[ 2005年电子大赛二等奖] 摘要:本设计以凌阳16位单片机SPCE061A为核心控制器件,配合Xilinx Virtex-II FPGA及Xilinx公司提供的硬件DSP高级设计工具System Generator,制作完成本数字式外差频谱分析仪。前端利用高性能A/D对被测信号进行采集,利用FPGA高速、并行的处理特点,在FPGA内部完成数字混频,数字滤波等DSP 算法。 SPCE061A单片机是整个设计的核心控制器件,根据从键盘接受的数据控制整个系统的工作流程,包括控制FPGA工作以及控制双路D/A在模拟示波器屏幕上描绘频谱图。人机接口使用128×64液晶和4×4键盘。本系统运行稳定,功能齐全,人机界面友好。 关键字:SPCE061A 简易频谱分析仪 一、方案论证 频谱分析仪是在频域上观察电信号特征,并在显示仪器上显示当前信号频谱图的仪器。从实现方式上可分为模拟式与数字式两类方案,下面对两种方案进行比较: 方案一:模拟式频谱分析仪 模拟方式的频谱仪以模拟滤波器为基础,通常有并行滤波法、顺序滤波法,可调滤波法、扫描外差法等实现方法,现在广泛应用的模拟频谱分析仪设计方案多为扫描外差法,此方案原理框图如图1.1:

图 1.1 模拟外差式频谱仪原理框图 图中的扫频振荡器是仪器内部的振荡源,当扫频振荡器的频率在一定范围内扫动时,输入信号中的各个频率分量在混频器中产生差频信号 (),依次落入窄带滤波器的通带内(这个通带是固定的),获得中频增益,经检波后加到Y放大器,使亮点在屏幕上的垂直偏移正比于该频率分量的幅值。由于扫描电压在调制振荡器的同时,又驱动X放大器,从而可以在屏幕上显示出被测信号的线状频谱图。这是目前常用模拟外差式频谱仪的基本原理。模拟外差式频谱仪具有高带宽和高频率分辨率等优点,但是模拟器件调试复杂,短期实现有难度,尤其是在对频谱信息的存储和分析上,逊色于新兴的数字化频谱仪方案。 方案二:数字式频谱分析仪 数字式频谱仪通常使用高速A/D采集当前信号,然后送入处理器处理,最后将得到的各频率分量幅度值数据送入显示器显示,其组成框图如图1.2: 图 1.2 数字式频谱仪组成框图

超外差频谱分析仪的原理及组成

显示器 扫描产生器 3.1 超外差式频谱分析仪的原理及组成 3.1.1 超外差频谱分析仪的原理结构图 图3-1所示,为超外差频谱分析仪的简单原理结构图。 图3-1 超外差频谱分析仪的简单原理结构图 由图3-1可知:超外差频谱分析仪一般由射频输入衰减器、低通滤波器或预选器、混频器、中频增益放大器、中频滤波器、本地振荡器、扫描产生器、检波器、视频滤波器和显示器组成。 超外差频谱分析仪的工作原理是:射频输入信号通过输入衰减器,经过低通滤波器或预选器到达混频器,输入信号同来自本地振荡器的本振信号混频,由于混频器是一个非线性器件,因此其输出信号不仅包含源信号频率(输入信号和本振信号),而且还包含输入信号和本 第3章 超外差式频谱分析仪的原理

振信号的和频与差频,如果混频器的输出信号在中频滤波器的带宽内,则频谱分析仪进一步处理此信号,即通过包络检波器、视频滤波器,最后在频谱分析仪显示器CRT 的垂直轴显示信号幅度,在水平轴显示信号的频率,从而达到测量信号的目的。 3.1.2 RF 输入衰减器 超外差频谱分析仪的第一部分就是RF 输入衰减器。可变输入衰减器的作用是保证混频器有一个合适的信号输入电平,以防止混频器过载、增益压缩和失真。由于衰减器是频谱分析仪的输入保护电路,因此基于参考电平,它的设置通常是自动的,但是也可以用手动的方式设置频谱分析仪的输入衰减大小,其设置步长是10dB 、5dB 、2dB ,甚至是1dB ,不同频谱分析仪其设置步长是不一样的。如Agilent 8560系列频谱分析仪的输入衰减的设置步长是10dB 。 图3-2是一个最大衰减为70dB ,步长为2dB 的输入衰减器电路的例子。电路中的电容器是用来避免频谱分析仪被直流信号烧毁,但可惜的是它不仅衰减了低频信号,而且使某些频谱分析仪最小可使用频率增加到100Hz ,而其他频谱分析仪增加到9kHz 。 图3-2 RF 输入衰减器电路 图3-3所示,当频谱分析仪RF 输入信号和本振信号加到混频器的输入时,可以调整RF 输入衰减器,使混频器的输入信号电平合适或最佳,这样就可以提高测量精度。 0到70dB 衰减,步长2dB 电容器

用DFT进行频谱分析及其误差问题研究

. 目录 1. 引言 (1) 2. 利用 DFT 对有限长序列进行谱分析 (1) 2.1谱分析原理 (1) 2.2 实验结果及分析 (2) 3. 利用 DFT 对周期序列进行谱分析 (2) 3.1 谱分析原理 (2) 3.2 实验结果及分析 (3) 4. 利用 DFT 对连续时间非周期信号进行谱分析 (4) 4.1 谱分析原理 (4) 4.2 实验结果及分析 (5) 5. 利用 DFS 对连续时间周期信号进行谱分析 (5) 5.1 谱分析原理 (5) 5.2实验结果及分析 (6) 6. 利用DFT进行谱分析的误差问题及其参数选择 (7) 6.1谱分析的误差分析 (7) 6.2谱分析的近似性问题 (7) 6.3谱分析的参数选择 (8) 7. 利用DFT进行谱分析的误差仿真 (9) 7.1混叠效应仿真 (9) 7.2栅栏效应仿真 (9) 7.3频谱泄露效应仿真 (10) 8. 结束语 (14) 参考文献 (15) 致谢 (16)

1 引言 随着信息时代和数字世界的到来,数字信号处理己成为当今一门极其重要的学科和技术领域,数字信号处理在通信、语音、图像、自动控制、医疗和家用电器等众多领域得到了广泛的应用。任意一个信号都具有时域与频域特性,信号的频谱完全代表了信号,因而研究信号的频谱就等于研究信号本身。通常从频域角度对信号进行分析与处理,容易对信号的特性获得深入的了解。因此,信号的频谱分析是数字信号处理技术中的一种较为重要的工具。[1] 众所周知,傅里叶变换和Z变换是信号处理中常用的重要数学变换。对于有限长序列,还有一种更加重要的数学变换即离散傅里叶变换(Discrete Fourier Transform,DFT)。DFT[2]之所以重要,是因为其实质是有限长序列傅里叶变换的有限点离散采样,从而实现了频域离散化,使得数字处理可以在频域采用数值运算的方法进行,这样就大大加大了数字信号处理的灵活性。 信号的频谱分析的实质,就是通过信号的傅立叶变换(FT)来分析信号的频谱结构,信号的FT 可以借助于DFT用计算机仿真方法实现。一般地,信号按时间是否连续可分为连续时间信号和离散时间信号,按周期性可分为周期信号和非周期信号,在时域内信号可分为4 大类:离散非周期信号(有限长序列)、离散周期信号(周期序列)、连续非周期信号(一般模拟信号)、连续周期信号。 2 利用DFT 对有限长序列进行谱分析 2.1谱分析原理 假设x(n)为长度为L 的有限长序列,其FT和N 点DFT分别为 ∑-=- = 1 ) ( ) ( L n n j j e n x e Xω ω(1) ∑-=- = 1 2 ) ( ) ( N n kn N j e n x k X π (k=0,1…,-1)(2)

频谱分析仪的工作原理

频谱分析仪的工作原理 频谱分析仪对于信号分析来说是不可少的。它是利用频率域对信号进行分析、研究,同时也应用于诸多领域,如通讯发射机以及干扰信号的测量,频谱的监测,器件的特性分析等等,各行各业、各个部门对频谱分析仪应用的侧重点也不尽相同。下面结合我台DSNG卫星移动站的工作特点,就电视信号传输过程中利用频谱分析仪捕捉卫星信标,监控地面站工作状态等方面,简要介绍一下频谱分析仪的工作原理。 科学发展到今天,我们可以用许多方法测量一个信号,不管它是什么信号。通常所用的最基本的仪器是示波器,观察信号的波形、频率、幅度等。但信号的变化非常复杂,许多信息是用示波器检测不出来的,如果我们要恢复一个非正弦波信号F,从理论上来说,它是由频率F1、电压V1与频率为F2、电压为V2信号的矢量迭加(见图1)。从分析手段来说,示波器横轴表示时间,纵轴为电压幅度,曲线是表示随时间变化的电压幅度。这是时域的测量方法,如果要观察其频率的组成,要用频域法,其横坐标为频率,纵轴为功率幅度。这样,我们就可以看到在不同频率点上功率幅度的分布,就可以了解这两个(或是多个)信号的频谱。有了这些单个信号的频谱,我们就能把复杂信号再现、复制出来。这一点是非常重要的。 对于一个有线电视信号,它包含许多图像和声音信号,其频谱分布非常复杂。在卫星监测上,能收到多个信道,每个信道都占有一定的频谱成份,每个频率点上都占有一定的带宽。这些信号都要从频谱分析的角度来得到所需要的参数。 从技术实现来说,目前有两种方法对信号频率进行分析。 其一是对信号进行时域的采集,然后对其进行傅里叶变换,将其转换成频域信号。我们把这种方法叫作动态信号的分析方法。特点是比较快,有较高的采样速率,较高的分辨率。即使是两个信号间隔非常近,用傅立叶变换也可将它们分辨出来。但由于其分析是用数字采样,所能分析信号的最高频率受其采样速率的影响,限制了对高频的分析。目前来说,最高的分析频率只是在10MHz或是几十MHz,也就是说其测量范围是从直流到几十MHz。是矢量分析。 这种分析方法一般用于低频信号的分析,如声音,振动等。 另一方法原理则不同。它是靠电路的硬件去实现的,而不是通过数学变换。它通过直接接收,称为超外差接收直接扫描调谐分析仪。我们叫它为扫描调谐分析仪。

实验:典型信号频谱分析

实验3.2 典型信号频谱分析 一、 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并能够从信号频谱中读取所需的信息。 2. 了解信号频谱分析的基本方法及仪器设备。 二、 实验原理 1. 典型信号及其频谱分析的作用 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本次实验利用DRVI 快速可重组虚拟仪器平台可以很方便的对上述典型信号作频谱分析。 2. 频谱分析的方法及设备 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时—频关系转换分析。 傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 3. 周期信号的频谱分析 周期信号是经过一定时间可以重复出现的信号,满足条件: dt e t x f X ft j ?+∞ ∞--=π2)()(

频谱分析

2.1频谱分析原理 时域分析只能反映信号的幅值随时间的变化情况,除单频率分量的简单波形外,很难明确提示信号的频率组成和各频率分量大小,而频谱分析能很好的解决此问题。由于从频域能获得的主要是频率信息,所以本节主要介绍频率(周期)的估计与频谱图的生成。 2.2.1DFT与FFT 对于给定的时域信号y,可以通过Fourier变换得到频域信息Y。Y可按下式计算 式中,N为样本容量,Δt = 1/Fs为采样间隔。 采样信号的频谱是一个连续的频谱,不可能计算出所有的点的值,故采用离散Fourier变换(DFT),即 式中,Δf = Fs/N。但上式的计算效率很低,因为有大量的指数(等价于三角函数)运算,故实际中多采用快速Fourier变换(FFT)。其原理即是将重复的三角函数算计的中间结果保存起来,以减少重复三角函数计算带来的时间浪费。由于三角函数计算的重复量相当大,故FFT能极大地提高运算效率。 2.2.2 频率、周期的估计 对于Y(kΔf),如果当kΔf = 时,Y(kΔf)取最大值,则为频率的估计值,由于采样间隔的误差,也存在误差,其误差最大为Δf / 2。 周期T=1/f。 从原理上可以看出,如果在标准信号中混有噪声,用上述方法仍能够精确地估计出原标准信号的频率和周期,这个将在下一章做出验证 2.2.3 频谱图 为了直观地表示信号的频率特性,工程上常常将Fourier变换的结果用图形的方式表示,即频谱图。 以频率f为横坐标,|Y(f)|为纵坐标,可以得到幅值谱;

以频率f为横坐标,arg Y(f)为纵坐标,可以得到相位谱; 以频率f为横坐标,Re Y(f)为纵坐标,可以得到实频谱; 以频率f为横坐标,Im Y(f)为纵坐标,可以得到虚频谱。 根据采样定理,只有频率不超过Fs/2的信号才能被正确采集,即Fourier 变换的结果中频率大于Fs/2的部分是不正确的部分,故不在频谱图中显示。即横坐标f ∈[0, Fs/2] 2.5.运行实例与误差分析 为了分析软件的性能并比较时域分析与频域分析各自的优势,本章给出了两种分析方法的频率估计的比较,分析软件的在时域和频域的计算精度问题。2.5.1标准正弦信号的频率估计 用信号发生器生成标准正弦信号,然后分别进行时域分析与频域分析,得到的结果如图 4所示。从图中可以看出,时域分析的结果为f = 400.3702Hz,频域分析的结果为f = 417.959Hz,而标准信号的频率为400Hz,从而对于标准信号时域分析的精度远高于频域分析的精度。 2.5.2 带噪声的正弦信号的频率估计 先成生幅值100的标准正弦信号,再将幅值50的白噪声信号与其混迭,对最终得到的信号进行时域分析与频域分析,结果如图 5所示,可以看出,时域分析的结果为f = 158.9498Hz,频域分析的结果为f = 200.391Hz,而标准信号的频率为200Hz,从而对于带噪声的正弦信号频域分析的精度远高于时域分析的精度。 2.5.3 结果分析与结论

调制就是将基带信号的频谱搬移到信道通带中或者其中的某个频段上的过程,而解调是将信道中来的频带信号恢复

调制就是将基带信号的频谱搬移到信道通带中或者其中的某个频段上的过程,而解调是将信道中来的频带信号恢复为基带信号的反过程。 调制的目的是把要传输的模拟信号或数字信号变换成适合信道传输的信号,这就意味着把基带信号(信源)转变为一个相对基带频率而言频率非常高的带通信号。该信号称为已调信号,而基带信号称为调制信号。调制可以通过使高频载波随信号幅度的变化而改变载波的幅度、相位或者频率来实现。调制过程用于通信系统的发端。在接收端需将已调信号还原成要传输的原始信号,也就是将基带信号从载波中提取出来以便预定的接受者(信宿)处理和理解的过程。该过程称为解调。 根据所控制的信号参量的不同,调制可分为: 调幅,使载波的幅度随着调制信号的大小变化而变化的调制方式。 调频,使载波的频率随调制信号的大小变化而变化,而幅度保持不变的调制方式。 调相,利用原始信号控制载波信号的相位。 一、FM信号的频谱 1、消息信号是[-5,5]之间均匀分布的随机整数,产生的的时间间隔为1/10s,消息信号采用FM调制载波cos2*pi*fc*t。假设fc=250,t=[0,10],kf=50。画出消息信号和已调信号的频谱。 clear all ts=0.001; %信号抽样时间间隔 t=0:ts:10-ts; %时间向量 fs=1/ts; %抽样频率 df=fs/length(t); %fft的频率分辨率 msg=randint(100,1,[-3,3],123); %生成消息序列,随机数种子为123

msg1=msg*ones(1,fs/10); %扩展成取样信号形式msg2=reshape(msg1.',1,length(t)); Pm=fft(msg2)/fs; %求消息信号的频谱 f=-fs/2:df:fs/2-df; subplot(2,1,1) plot(t,fftshift(abs(Pm))) title('消息信号频谱') int_msg(1)=0; %消息信号积分 for ii=1:length(t)-1 int_msg(ii+1)=int_msg(ii)+msg2(ii)*ts; end kf=50; fc=250; %载波频率 Sfm=cos(2*pi*fc*t+2*pi*kf*int_msg); %调频信号 Pfm=fft(Sfm)/fs; % FM信号频谱subplot(2,1,2) plot(f,fftshift(abs(Pfm))) % 画出已调信号频谱title('FM信号频谱') Pc=sum(abs(Sfm).^2)/length(Sfm) %已调信号功率 Ps=sum(abs(msg2).^2)/length(msg2) %消息信号功率 fm=50; betaf=kf*max(msg)/fm % 调制指数 W=2*(betaf+1)*fm % 调制信号带宽 2、正弦波信号的频谱 clear all ts=0.001; %信号抽样时间间隔 t=0:ts:10-ts; %时间向量 fs=1/ts; %抽样频率 df=fs/length(t); %fft的频率分辨率 msg=sawtooth([0:1:99]*pi/8,0.5); msg1=msg.'*ones(1,fs/10); %扩展成取样信号形式 msg2=reshape(msg1.',1,length(t));

频谱分析方法

频谱分析方法 频谱分析方法是在设备故障诊断中最常使用的方法。常用的频谱是功率普和幅值谱。 功率谱表示振动功率随振动频率进行分布的情况,物理意义比较清楚; 幅值谱表示对应于各频率的谐波振动分量所具有的振幅,应用时比较直观。幅值谱上谱线高度就是该频率分量的振幅大小。 频谱分析的目的就是将构成信号的各种频率成分都分解开来,以便于识别振源。 1.进行频谱分析首先要了解频谱的构成成分,依据故障的推理方式的不同,对频谱的构成成分的了解可按不同的层次进行。(1). 按高、中、低三个频段进行分析,初步了解主故障发生的部位; (2). 按:工频、超谐波、次谐波、进行分析,用以确定故障的范围:对中、平衡、松动类故障均与工频(也称:基频、 转频)的整数倍或分数倍有着密切的关联; (3). 按频率成分的来源进行分析。如:零部件共振的频率成分、随机噪声干扰成分、非线性调制生成的和差频成分等等; (4). 按特征频率进行分析。振动特征频率是各振动零部件有故障时必定产生的的频率成分。如:不平衡必定产生工频,

气流在叶片间流动必定产生通过频率,齿轮啮合时有啮合 频率,过临界转速时有共振频率,零部件受冲击时会被激 发出固有频率等等。 2. 对主振成分进行频谱分析时,首先要关注幅值较高的谱峰,因为其量值对振动的总水平影响较大。如:工频成分突出,往往是不平衡所致,要加以区别的是轴弯曲、共振、角不对中、基础松动、定/转子同心度不良等故障。2倍频为平行不对中、转轴有横裂纹。(0.42~0.48)倍频过大,为涡动失稳。(0.5~0.8)倍频是流体旋转脱离。特低频是喘振。整数倍频是叶片故障。啮合成分高是齿轮表面接触不良。谐波丰富是松动。边频是调制。分频是流体激振、摩擦等等。 3. 做频谱对比发现异常时、在分析和诊断过程时应注意从它们的发展变化(趋势)中得出准确的结论,单独一次测量往往很难对故障做出准确的判断。 有些振动成分虽然较大,但很平稳、不随时间变化,对机器运行不构成威胁。 一些较小的频率成分,特别是那些增长较快的分量常常预示故障的发展,应于重视。 特别注意的是,不存在的或比较弱的频率分量突然出现并扶摇直上,可能在较短时间内破坏机器的正常工作。

基于频谱搬移原理的谐波电流检测方法研究

基于频谱搬移原理的谐波电流检测方法研究 吴宝刚,刘金琪 哈尔滨工业大学电气工程学院,哈尔滨 (150001) E-mail :wbg19830923@https://www.wendangku.net/doc/1010914101.html, 摘 要:谐波的实时准确检测是实现谐波治理的前提条件,也是有源电力滤波器应用的关键技术之一。本文利用时频分析中的频谱搬移原理,以三相交流斩波调压器输出谐波为例,用Simulink 仿真。理论分析和仿真结果表明了该算法的精确性和实时性,且较ip-iq 法不需坐标变换,数学概念清晰,易于理解,为电力系统中的谐波检测和分析提供了一种有效的算法,同时为谐波抑制的实施奠定了基础。 关键词:谐波检测;频谱搬移;有源电力滤波器;斩波调压 中图分类号:TM46 1.引言 随着电力电子装置的广泛应用,电能的利用率得到了很大提高,但同时由于开关电源、电压型逆变器等非线性设备的大量使用也使电能质量问题日益突出。有源电力滤波器(Active Power Filter )作为动态抑制谐波的电力电子装置,以其良好的补偿特性得到迅速的 发展和深入的研究[1]。 因为电力系统中的谐波具有非线性、随机性、分布性、非平稳性、影响因素的复杂性等特征,所以在APF 的设计应用中,补偿电流的准确实时检测是关键技术之一。传统的电力系统谐波检测方法主要分为时域理论和频域理论两大类。其中时域理论中的采用基于瞬时无功功率理论的ip-iq 法以其实时性好,易于数字化实现而得到广泛采用,但是基于时频分析的其它谐波检测算法目前研究还很少。 频谱搬移原理在通信系统中的调制、解调及频分复用,加解密技术,语音信号、视频信号的处理与转换中得到广泛应用。本文以频谱搬移原理为基础,提出一种新的用于APF 谐波检测的实用方法。该方法思路简单,不需要坐标变换,更易于理解和实现。 2.频谱搬移谐波检测原理 2.1 频谱搬移的基本原理 傅立叶变换可以将信号分解成幅值分量和频率分量,进而对时域信号进行频域分析,在物理学、信号处理、概率统计、密码学、声学、光学等领域都有着广泛的应用。信号的频谱搬移分为线性搬移和非线性搬移两类,其中线性搬移是指,一个信号的频谱形状不变,只是频谱中的每条谱线从原来频率整体搬移到另一个频率附近。信号的频谱搬移特性在傅立叶变换中描述为: 若)()(ωj F t f ?,则)]([)(00ωωω?j F e t f j ?± (1) 如图1所示,若要对瞬时复信号()f t 中频率为ω的信号进行滤波处理,只要对该信号进行频率左移ω变换,然后对变换后的信号中的直流信号进行滤波处理即可。经低通滤波器后得到复信号,再经过频率右移()u t ()v t ω变换,滤波后的复函数信号计算式为(3),整个过程实现了频谱的复原[2] 。 ()()j t u t f t e ω?= (2) ()()j t o f t v t e ω= (3) 图1 信号的频谱搬移Fig.1 The process of Spectru 2.2 谐波检测算法推导 : 过程 m Modification 设待检测的三相电流为

基于Matlab的频谱搬移

基于Matlab的频谱搬移 %9-21 R=0.005; t=-1.2:R:1.2; tao=2; x=rectpuls(t,tao); figure(1);plot(t,x);axis([-2 2 0 1]); y=x.*cos(10*pi*t); %X=fourier(x); %Y=fourier(y); figure(2); subplot(2,2,1);plot(t,x); axis([-2,2,0,1.2]) xlabel('t');ylabel('x(t)'); subplot(2,2,3);plot(t,y); xlabel('t');ylabel('y(t)=x(t)*cos(10*pi*t)'); W1=40; N=1000; k=-N:N; W=k*W1/N; X=x*exp(-j*t'*W)*R; X=real(X); Y=y*exp(-j*t'*W)*R; Y=real(Y); subplot(2,2,2);plot(W,X) xlabel('w');ylabel('X(w)'); subplot(2,2,4);plot(W,Y) xlabel('w');ylabel('Y(w)');

-2 -1.5 -1 -0.5 0.5 1 1.5 2 00.10.20.30.40.50.60.70.80.9 1 -2 -1 012 00.5 1 t x (t ) -2 -1 012-1-0.500.5 1t y (t )=x (t )*c o s (10*p i *t ) -40 -20 02040 -10 1 2 w X (w ) -40 -20 02040 -0.500.51 1.5w Y (w )

相关文档
相关文档 最新文档