文档库 最新最全的文档下载
当前位置:文档库 › 太阳光谱介绍

太阳光谱介绍

太阳光谱介绍
太阳光谱介绍

太阳光谱介绍(描述分类AM0, AM1.5)

太阳表面温度接近6000K,因此其放射光谱几乎等同于该温度下的黑体辐射,并且光谱照射是并无方向性的,地球与太阳相距约一亿5千万公里远,而能到达地球表面的光子,几乎只有正向入射至地球表面的光谱所贡献,到达地球大气圈表面的光谱辐射能量定义为太阳常数(solar constant),其数值大约1.353

kW/m2,因此大气圈外的太阳光谱定义为AM0,其中大气质量(air mass)用来估量因为大气层吸收后,所导致影响太阳光谱表现与总体能量值,而这些能量值亦是地球表面应用的太阳电池组件所能运用的。图二说明大气质量的计算方法,大气质量数值常是使用Air Mass =1/cos θ来计算的,其中θ=0所代表的是太阳光线从头顶上方直射下来,而由上述的计算市中可知,地球表面用以衡量太阳光谱的大气质量值是大于等于1,目前被惯以使用的太阳光谱AM1.5,即是太阳光入射角偏离头顶46.8度,当太阳光照射到地球表面时,由于大气层与地表景物的散射与折射的因素,会多增加百分之二十的太阳光入射量,抵达地表上所使用的太阳电池表面,其中这些能量称之为扩散部份(diffusion component),因此针对地表上的太阳光谱能量有AM1.5G (global)与AM1.5D(direct)之分,其中

AM1.5G即是有包含扩散部分的太阳光能量,而AM1.5D则没有。图三所表示的即是大气圈外(AM0)与地表上(AM1.5)太阳光能量光谱。

图二、大气质量的计算方法示意图

图三、大气圈外(AM0)与地表上(AM1.5)太阳光能量光谱

太空用的太阳电池组件电性量测所使用的标准光谱是以AM0,而地面上应用的太阳电池组件电性量测所使用的标准光谱,依其应用性之不同,可采用AM1.5G 或是AM1.5D,其中AM1.5G光谱的总照度为963.75W/m2,而AM1.5D光谱的总照度为768.31W/m2,在量测计算应用上方便,常会将此二值做归一化(normalize)至1000 W/m2。

太阳光源仿真器

太阳电池组件的电性量测,是可分别于户外(outdoor)或是室内(indoor)来进行的,而太阳电池组件会有容易受到温度、照度影响与地利位置等因素的影响,所以在户外进行量测所得到的数据不易有再现性与可比较性,虽不利于太阳电池的研究开发之用,但对于已完成的太阳电池模块的实际发电效率监控却是有莫大的帮助,基于前述理由,目前主要的太阳电池组件量测工作,大多数都于室内来进行测试,组件电性量测过程所需的太阳光线,是利用太阳光仿真器(solar simulator)来提供近似太阳光谱的光源,同时因为太阳电池组件的电力输出,与太阳光频谱有着密不可分的关系。因此太阳光仿真器的优劣,即会大大影响组件的测试结果,因此有美国标准量测规范ASTM E927、IEC 60904-9 与JIS C8912 等标准来规范太阳光仿真器的等级区分,综合光源的照射强度均匀性(No uniformity of total irradiance)、照射不稳定性(Temporal instability of irradiance)、光谱合致度(spectral match),将太阳光仿真器等级分为A、B、C三个等级,如表一所示。目前常用的单一光源太阳光仿真器有卤素灯泡(tungsten–halogen lamp, ELH)

与Xe灯泡(Xenon lamp)为主,卤素灯泡搭配dichroic filter所组成的太阳光仿真器属于C级,主要是因为其在波长0.7~0.8μm范围能量过高,在0.4~0.5μm范围能量却不足,而使用Xe灯与合适AM1.5G filter所组成的太阳光仿真器,其光谱波长短于0.8μm范围可达A级,而在0.8~1.2μm波长范围有着强烈的原子放射波段(atomic line),虽无法达到完全近似太阳光谱,但对于传统的单一接面(single junction)太阳电池组件电性量测来说是足够的。

表一、太阳光仿真器分级标准

太阳电池光谱响应量测

太阳电池组件的光谱响应特性,直接影响着组件能量转换效率表现,而太阳电池光谱响应量测(spectrum response measurement)的物理意义是测试太阳电池所产生光电流对应吸收光谱波段范围,因此对于研究开发太阳电池而言,了解组件对太阳光谱的响应特性是相当重要的,不仅是可用于太阳电池组件的电性量测输出特性的修正,亦是做为多接面太阳电池(multi-junction solar cell)组件设计重要

信息,因为多接面的太阳电池是以串联结构设计,目的是着眼于如何有效的运用太阳光谱来得到更多的可用电力输出,所以藉由太阳电池光谱响应特性,可以协助研发人员设计出更高转换效率的组件,图四为用于太阳电池光谱响应研究的量测设备结构示意图。

图四、用于太阳电池光谱响应研究的量测设备结构示意图

太阳电池量测值修正

目前用来评估太阳电池电性输出主要是使用太阳光仿真器(solar simulator method)与标准参考电池法(reference cell method),但由于利用太阳光仿真器所产生光源的光谱与实际自然太阳光连续光谱仍有些微差距,并且选用的标准参考电池的光谱响应与所用测试的太阳电池的光谱响应也不尽相同,因此藉由上述的测试方法所的组件电性特征值会与真实太阳光下操作的特性输出有异,因此有必要进行修正,修正方法是根据ASTM E973所规范的,主要的修正是要找出频谱不吻合参数(spectral mismatch parameter)。若待测太阳电池组件的频谱响应特性与标准参考电池组件特性相同,或太阳光仿真器光谱与标准参考光谱相同时,这样对太阳电池组件的量测将显得相当简易,但往往事实未如此简单,因为通常待测太阳电池组件的频谱响应与标准参考太阳电池不尽相同,所以需要藉由推算出频谱不吻合参数值,可藉此调整太阳光仿真器光源强度。

目前无论是业界或研究单位在进行太阳电池组件的量测,皆采取太阳光仿真器与标准参考太阳电池方法,由于不同的太阳电池组件对于太阳光频谱响波段亦不相同,因此在进行相关组件效率评估时,皆需要取得该太阳电池组件的频谱响应特性,提供后续太阳电池组件测量值修正之用,藉以得到精确的组件特性表现。

太阳能自动跟踪系统方案

摘要 人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,但是太阳能又存在着低密度、间歇性、空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高。太阳光线自动跟踪装置解决了太阳能利用率不高的问题。本文对太阳能跟踪系统进行了机械设计和自动跟踪系统控制部分设计。 第一,机械部分设计: 机械结构主要包括底座、主轴、齿轮和齿圈等。当太阳光线发生偏离时,控制部分发出控制信号驱动步进电机1带动小齿轮1转动,小齿轮带动大齿轮和主轴转动,实现水平方向跟踪;同时控制信号驱动步进电机2带动小齿轮2,小齿轮2带动齿圈和太阳能板实现垂直方向转动,通过步进电机1、步进电机2的共同工作实现对太阳的跟踪。 第二,控制部分设计: 主要包括传感器部分、信号转换电路、单片机系统和电机驱动电路等。系统采用光电检测追踪模式实现对太阳的跟踪。传感器采用光敏电阻,将两个完全相同的光敏电阻分别放置于一块电池板东西方向边沿处下方。当两个光敏电阻接收到的光强度不相同时,通过运放比较电路将信号送给单片机,驱动步进电机正反转,实现电池板对太阳的跟踪。 关键词太阳能;跟踪;光敏电阻;单片机;步进电机

Abstract Human being is seriously threatened by exhausting mineral fuel, such as coal and fossil oil. As a kind of new type of energy sources, solar energy has the advantages of unlimited reserves, existing everywhere,using clean and economical .But it also has disadvantages ,such as low density,intermission,change of space distributing and so on.These make that the current series of solar energy equipment for the utilization of solar energy is not high. In order to keep the energy exchange part to plumb up the solar beam,it must track the movement of solar.In this paper, the solar tracking system of the mechanical part and control system part are designed. First,the mechanical part is designed. Mechanical structure mainly includes the main spindle, stepping motors, gears and gear ring, and so on. When the sun's rayshas a deviation, small gear arerotated by stepper motor according to the control signal from MCU. And the large gear and main spindle is rotated by small gear in order to track to achieve the level direction.At the same time, another small gear is rotated by another stepper motor according to the control signal.And the large gear and the solar panels are rotated by the small gear in order to track to achieve the vertical direction. Solar is tracked by the two stepper motors together. Second, control system part is designed. Control system mainly includesthe sensors part, stepper motor, MCU system and the corresponding external circuit, and so on. Photoelectric detection systemisused to track solar. Sensors use photosensitive resistance. The two same photosensitive resistances were placed in east and west direction of the bottom edge .When the two photosensitive resistances receiveddifferent light at the same time, the signal from comparison circuit is sent to MCU in order to rotate stepping motors. Keywords Solar energyTrackingPhotosensitive resistance SCMSteppingmotor

太阳光谱中的暗线

原子吸收光谱法之 任务 5 原子吸收光谱法基本原理 教学任务 p解释原子吸收光谱法的基本原理和原子吸收分光光度计的结构设计; p解释共振线、分析线、谱线轮廓、积分吸收、峰值吸收等基本概念; p说明谱线轮廓变宽的主要原因和吸光度与待测元素浓度的关系:原子吸收现象发现;原子吸 收法特点;分析流程;原子吸收产生;分析线轮廓;定量关系 教学方法 p教师讲解 教学学时 p以 40 人为学习组,需 4 学时 教学设计 p问题引入,教师讲解,学生讨论,教师总结 问题:如何测定天体的组成? 天文学研究中经常需要测定各种恒星、行星的组成、结构,然而,这些星球距离我们非常遥远 并且恒星表面具有极高的温度使我们无法接近,不可能直接取样进行测定,天文学家是如何知道天 体组成的呢? 原子吸收光谱的发现与发展 早在 1802 年,伍朗斯顿(W.H.Wollaston)在研究太阳连续光谱时,就发现了太阳连续光谱中 出现的暗线,图 4-1。 1859 年,克希荷夫(G.Kirchhoff)与本生(R.Bunson)在研究碱金属和碱土金属的火焰光谱 时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起钠光的吸收,并且根据钠发射线与暗线

在光谱中位置相同这一事实,断定太阳连续光谱中的暗线,正是太阳外围大气圈中的钠原子对太阳 光谱中的钠辐射吸收的结果。 1955 年澳大利亚的瓦尔西(A.Walsh)发表了他的著名论文”原子吸收光谱在化学分析中的应 用”奠定了原子吸收光谱法的基础。 50 年代末和 60 年代初,Hilger, Varian Techtron 及 Perkin-Elmer 公司先后推出了原子吸收 光谱商品仪器,发展了瓦尔西的设计思想。到了60 年代中期,原子吸收光谱开始进入迅速发展的时 期。 1959 年,苏联里沃夫提出了电热原子化技术。电热原子吸收光谱法的绝对灵敏度可达到 10 -12 -10 -14 g,使原子吸收光谱法向前发展了一步。 近年来,塞曼效应和自吸效应扣除背景技术的发展,使在很高的的背景下亦可顺利地实现原子吸 收测定。 近年来,计算机、微电子、自动化、人工智能技术和化学计量等的发展,各种新材料与元器件 的出现,大大改善了仪器性能,使原子吸收分光光度计的精度和准确度及自动化程度有了极大提高, 使原子吸收光谱法成为痕量元素分析的灵敏且有效方法之一,广泛地应用于各个领域。使用连续光 源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子 吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪 器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变 化。联用技术(色谱-原子吸收联用、流动注射-原子吸收联用)日益受到人们的重视。色谱-原子吸收 联用,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重 要的用途,是一个很有前途的发展方向。 通过上面的介绍,请讨论原子吸收现象如何应用到分析化学领域。 (教师可以以原子吸收测定水中镁、铜为例引导学生原子吸收与浓度的关系) 原子吸收法概述 依据原子蒸气对特征谱线的吸收进行定量分析测定对象:金属元素及少数非金属元素 (利用仪器操作软件上的元素选择功能显示原子吸收测量的所有元素) 原子吸收光谱法的特点和应用范围 原子吸收光谱法是基于测量蒸气中基态原子对特征光波的吸收,测定化学元素含量的方法。 根据基态原子对特征波长光的吸收,测定试样中待测元素含量的分析方法。是上世纪 50 年代中 期出现并在以后逐渐发展起来的一种新型的仪器分析方法,它在地质、冶金、机械、化工、农业、

基于LMLC控制的太阳能自动跟踪系统

基于L M L C控制的太阳能自动跟踪系统 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

基于L M P L C控制的太阳能自动跟踪系统 2011年08月24日 10:25 本站整理作者:网络 关键字: 摘要为了更好的利用太阳能,自动越来越多的应用于太阳能行业中。基于可编程逻辑控制器(PLC)的太阳能电池板自动跟踪系统,包括硬件和软件两部分,其中硬件包括PLC输入输出端口、信号处理单元、驱动部分;软件包括PLC的控制和监控程序两部分。太阳能电池板自动跟踪系统使光伏电池板能实时跟踪太阳关照,从而最大限度的获得太阳能,有效地提高太阳能的利用率和光伏发电系统的效率,降低了光伏并网发电成本,具有理论研究意义和应用推广价值。 1 引言 据测试,在太阳能电池板阵列中,相同条件下采用自动跟踪系统发电设备要比固定发电设备的发电量提高35%左右。 所谓太阳能跟踪系统是能让太阳能电池板随时正对太阳,让太阳光的光线随时垂直照射太阳能电池板的动力装置,能显着提高太阳能光伏组件的发电效率。目前市场上所使用的跟踪系统按照驱动装置分为单轴太阳能自动跟踪系统和双轴太阳能自动跟踪系统。 从制手段上系统可分为传感器跟踪和视日运动轨迹跟踪(程序跟踪)。传感器跟踪是利用光电传感器检测太阳光线是否偏离电池板法线,当太阳光线偏离电池板法线时,传感器发出偏差信号,经放大运算后控制执行机构,使跟踪装置从新对准太阳。这种跟踪装置,灵敏度高,但是遇到长时间乌云遮日则会影响运行。视日运动轨迹跟踪,是根据太阳的实际运行轨迹,按照预定的程序调整跟踪装置。这种跟踪方式能够全天候实时跟踪,其精度不是很高,但是符合运行情况,应用较广泛。 从主控单元类型上可以分为PLC控制和单片机控制。单片机控制程序在出厂时由专业人员编写开发,一般设备厂家不易再次进行开发和参数设定。而学习使用PLC比较容易,通过PLC厂家技术人员的培训,设备使用厂家的技术人员可以很方便的学会简单的调试和编写,并且PLC能够提供多种通讯接口,通讯组网也比较方便简单。 2 系统硬件设计 本系统是以PLC主控单元的视日运动轨迹控制(程序控制)双轴自动跟踪系统,视日运动轨迹跟踪就是利用PLC控制单元相应的公式和算法,计算出太阳的实时位置:太阳方位角和太阳高度角,然后发出指令给执行机构,从而驱动太阳能跟踪装,以达到对太阳实时跟踪的目的。 太阳在天空中的位置可以由太阳高度角和太阳方位角来确定。太阳高度角又称太阳高度、太阳俯仰角,是指太阳光线与地表水平面得之间的夹角。太阳方位角即太阳所在的方位,是指太阳光线在地平面上的投影与当地子午线的夹角,可以近似看作是树立在地面上的直线在阳光下的阴影与正南方向的夹角。太阳方位角和高度角的实时数值可以通过地理经纬度、时区参数利用公式计算出来。 主控单元是太阳能跟踪系统的核心部件,系统选用结构紧凑。配置灵活、指令丰富的和利时LM PLC。选用的配置包括LM 3108CPU模块和LM 3310扩展模块。LM3108集成为数字量24DI和16DO,能满足要求,通讯集成有RS232和RS485两个通讯接口,RS232用于与上位文本显示器通讯,RS485可用于组网使用。LM 3310为四通AI模块,可用于采集风速等保护数据。配合和利时HD2400L文本显示器使用,能够监视运行状态、改变参数设置,以达到控制目的。 本文所设计跟踪调整装置其结构如下图所示:它主要由底座、立轴、横轴、两台旋转电机、传动齿轮等组成。其中旋转电机1驱动横轴,支撑太阳能电池板绕横轴运动,跟踪高度角运行。旋转电机2驱动水平轴,以跟踪方位角变化。 在一天的整个过程中,跟踪器能够获得最优的高度角和方位角,电池板能够接收到最大太阳日辐射量。系统用一套公式由PLC计算出实际时刻太阳所在的高度角和方位角,根据实时太阳高度角

对太阳光谱中神秘图谱的解释

光学 波动说 托马斯·杨出生在英国索默塞特郡(Somersetshire)的米尔弗顿(Milverton),我们要感谢他,因为他复兴了被忽略了一个世纪之久的光的波动说。这位伟大的科学家有一个非凡的幼年时代。在他两岁时他就能很流畅地读书,当他4岁时,他已通读了两遍圣经;当他6岁时,他能整篇地背诵“哥德斯密思的荒村”( Goldsndth′s Deserted Village)。他一目数行,贪婪地阅读各种书籍,无论是古典的、文学的或是科学上的著作;说出奇怪,在他的发育成长中,他的体力和智力并没有减退。在他约16岁时,由于他反对贩卖奴隶,他戒用食糖。在他19岁时,他开始先在伦敦、而后在爱丁堡、哥丁根、最后在剑桥学医。1800年他开始在伦敦行医。第二年他接受了皇家研究院自然哲学教授的职务,这个研究院是由伦福德伯爵在这之前一年建立的京城科学院。他担任这个职务有两年之久。从1802年的1月到5月,他作了一系列讲演。这些讲演和后来的一系列讲演以《关于自然哲学和机械工艺的讲演》(Lectures on Natural Philosophy and the Mechanical Arts)为题在 1807年出版,这本论丛今天还值得一读。1802年他被委任为皇家研究院的外事 秘书。他担任这个职务直到他生命的最后一刻为止。 杨的最早研究是关于眼睛的构造和光学特性。而后,1801—1804年是他光学发现的第一个时期。他的学说受到嘲笑,于是他着手其他的研究工作。连续有12个年头,他花费在医疗职业和语言学的研究上,特别是辨读象形文字的著作。然而,当法国菲涅耳开始光学实验并且特别突出杨的理论时,杨才重新恢复他早期的研究,进人了他的光学研究的第二个时期。 1801年,杨在皇家学会宣读了关于薄片颜色的论文,他在这里表示他自己强烈地倾向光的波动说。干涉原理的引人是这篇文章跨出的重大一步。“两个在方向上或者是完全一致或者是很接近的不同光源的波动,它们的联合效应是每一种光的运动的合成。”这个原理的不完全的暗示曾出现在胡克的《显微术》(Mcrogrophia)中,但杨直到他独自取得新见解之后才知道这些暗示。杨第一次彻底地用干涉原理解释了声和光。他以这个原理解释了薄片的色彩和刻条纹的表面或“条纹面”的衍射颜色。杨的观察是以极大的精密度作的,但是,他说明这些观测事实的方式,正如他的大部分论文一样,是简洁而有点模糊不清的。他的包含有重要的干涉原理的论文成为自牛顿的时代以来发行的最重要的物理光学出版物。但它们并未在科学界留有印象。布鲁厄姆在《爱丁堡评论》(Edinburgh Review)第Ⅱ期和第Ⅳ期上对这些论文发起了猛烈的攻

太阳光谱的连续偏振

太阳光谱的连续偏振(加主页资料扣扣免财富值) 摘要:我们提出一个由可见太阳光谱中的辐射散射引起的连续偏振的理论研究。比较了来自九个不同的太阳模型大气的结果。断定了中心—边缘变化(CLV)以及依赖于连续偏振的波长,并且确定了模型大气依赖的来源。关键的物理量是散射系数和偏振形成层的温度梯度。 这里发展了可见光每个波长的接近理论连续偏振CLV的一个简单解析函数。假设产生偏振的散射层光学性地稀薄,并位于连续强度的形成层,然后建立在第一近似值上。解析函数的应用范围从偏振规模有用的零电平测定到使用经验性的中心—边缘曲线来约束太阳模型大气的诊断工作。 1.简介 最近的观察显示了太阳结构丰富的偏振,被称为“第二个太阳光谱”,因为它与普通未极化的强度谱没有丝毫相似之处,因此包含至少部分互补信息。这个结构是由于来自连续介质和线条同样重要的混合影响。连续谱通过辐射散射获得线性极化,主要是来自中性氢的瑞利散射和自由电子的汤森散射在。谱线的极化是由于原子束缚跃迁的相干散射引起的,并且由普遍存在的磁场而发生改变。 为了充分理解涉及到的不同的物理过程,我们需要解决它们。在本文中我们从连续谱开始。除了更好地理解物理学,这样一个研究在限制太阳模型大气和决策观测的极化规模零水平上很有用处。 利用太阳模型大气,输入通过数值解决偏振辐射的传输方程来获得的连续介质极化。不同的模型大气给出了不同程度的极化。因此和实验数据的比较可以使我们在几个太阳大气模型中进行选择。这种从4500?到8000?对于连续介质窗口的具有10-5的偏振灵敏度的观测在计划中但尚未提供。 对于具有汉勒效应的湍流磁场的诊断,需要精确知道真正的极化规模的零水平。汉勒效应,一个发生在当前磁场中的相干散射的相干现象在,导致了谱线核心的去极化。由于谱线和连续介质的极化通常是同一个数量级的,因此不能使用连续水平作为线性极化的参考。真正的极化零水平必须作为参考。由于仪器影响,真正的极化规模的零水平不具备足够的精度。然而,从理论思考中了解连续介质的极化程度,观察中的零水平可以确定。 在第二节中我们将描述相关的物理理论,数值技术和太阳模型大气的使用。在第三节中给出了两个计算机代码的测试。在第四节中我们通过阐述吸收,散射系数和温度梯度的角色,加强了对有关数量物理性的深刻理解。这是特别重要的是要知道连续介质极化形成层,因为它通常被假定位于连续介质强度形成层的上面。我们将说明这两层实际上是重叠的。最后,在第五节中,用以描述整个可见光谱范围连续介质极化的中心—边缘变化(CLV)的一个简单解析表达式被推导出并与理论数据作了拟合,提供整套计算极化值的一个便捷的近似算法表示。 2.理论方法 2.1.相关物理过程 为了定量描述辐射传输,物理过程必须被理解。传统上的区别是由纯吸收和散射之间产生的。这里我们关注导致连续谱的流程。 辐射场能量的纯吸收部分转换成气体的动能,从而被热化。作为第一次被Wildt 提出的,氢阴离子H?主宰了太阳光球中的连续介质吸收,也就是可见的连续介质

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计 解决方案: 跟踪系统驱动器接口电路 步进电机驱动电路 限位信号采集电路 太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及,如何提高太阳能利用装置的效率,始终是人们关心的话题,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。 跟踪太阳的方法可概括为两种方式:光电跟踪和根据视日运动轨迹跟踪。光电跟踪是由光电传感器件根据入射光线的强弱变化产生反馈信号到计算机,计算机运行程序调整采光板的角度实现对太阳的跟踪。光电跟踪的优点是灵敏度高,结构设计较为方便;缺点是受天气的影响很大,如果在稍长时间段里出现乌云遮住太阳的情况,会导致跟踪装置无法跟踪太阳,甚至引起执行机构的误动作。 而视日运动轨迹跟踪的优点是能够全天候实时跟踪,所以本设计采用视日运动轨迹跟踪方法和双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪机构进行水平、俯仰两个自由度的控制,实现对太阳的全天候跟踪。该系统适用于各种需要跟踪太阳的装置。该文主要从硬件和软件方面分析太阳自动跟踪系统的设计与实现。 系统总体设计 本文介绍的是一种基于单片机控制的双轴太阳自动跟踪系统,系统主要由平面镜反光装置、调整执行机构、控制电路、方位限位电路等部分组成。跟踪系统电路控制结构框图如图1所示,系统机械结构示意图如图2所示。

任意时刻太阳的位置可以用太阳视位置精确表示。太阳视位置用太阳高度角和太阳方位角两个角度作为坐标表示。太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角。太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。系统采用水平方位步进电机和俯仰方向步进电机来追踪太阳的方位角和高度角,从而可以实时精确追踪太阳的位置。上位机负责任意时刻太阳高度角和方位角的计算,并运用软件计算出当前状况下俯仰与水平方向的步进电动机运行的步数,将数据送给跟踪系统驱动器,单片机接收上位机送来的数据,驱动步进电机的运行。系统具有实现复位、水平方位的调整,俯仰方向的调整,太阳的跟踪及手动校准等功能。 硬件电路设计 1跟踪系统驱动器接口电路

光伏相关标准信息汇总

中国标准服务网 https://www.wendangku.net/doc/1411051637.html, 一、中国标准 建筑物电气装置.第7-712部分:特殊装置或场所的要求.太阳能光伏(PV)电源供电系统 GB/T 17683.1-1999 Solar energy--Reference solar spectral irradiance at the ground at different receiving conditions--Part 1: Direct normal and hemispherical solar irradiance for air mass 1.5 太阳能在地面不同接收条件下的太阳光谱辐照度标准第1部分;大气质量1.5的法向直接日射辐照度和半球向日射辐照度 GB/T 18210-2000 Crystalline silicon photovoltaic(PV) array-On-site measurement of I-V characteristics 晶体硅光伏(PV)方阵I-V特性的现场测量 GB/T 18479-2001 Terrestrial photovoltaic(PV) power generating systems General and guide 地面用光伏(PV)发电系统概述和导则 GB/T 18911-2002 Thin-film terrestrial photovoltaic(PV) modules--Design qualification and type approval 地面用薄膜光伏组件设计鉴定和定型 GB/T 18912-2002 Salt mist corrosion testing of photovoltaic(PV) modules 光伏组件盐雾腐蚀试验 GB/T 19064-2003 Solar home system specifications and test procedure 家用太阳能光伏电源系统技术条件和试验方法 GB/T 19115.1-2003 Off-grid type wind-solar photovoltaic hybrid generate electricity system of household-use Part 1: Technology condition 离网型户用风光互补发电系统第1部分;技术条件

太阳光谱介绍

太阳光谱介绍(描述分类AM0, AM1.5) 太阳表面温度接近6000K,因此其放射光谱几乎等同于该温度下的黑体辐射,并且光谱照射是并无方向性的,地球与太阳相距约一亿5千万公里远,而能到达地球表面的光子,几乎只有正向入射至地球表面的光谱所贡献,到达地球大气圈表面的光谱辐射能量定义为太阳常数(solar constant),其数值大约1.353 kW/m2,因此大气圈外的太阳光谱定义为AM0,其中大气质量(air mass)用来估量因为大气层吸收后,所导致影响太阳光谱表现与总体能量值,而这些能量值亦是地球表面应用的太阳电池组件所能运用的。图二说明大气质量的计算方法,大气质量数值常是使用Air Mass =1/cos θ来计算的,其中θ=0所代表的是太阳光线从头顶上方直射下来,而由上述的计算市中可知,地球表面用以衡量太阳光谱的大气质量值是大于等于1,目前被惯以使用的太阳光谱AM1.5,即是太阳光入射角偏离头顶46.8度,当太阳光照射到地球表面时,由于大气层与地表景物的散射与折射的因素,会多增加百分之二十的太阳光入射量,抵达地表上所使用的太阳电池表面,其中这些能量称之为扩散部份(diffusion component),因此针对地表上的太阳光谱能量有AM1.5G (global)与AM1.5D(direct)之分,其中 AM1.5G即是有包含扩散部分的太阳光能量,而AM1.5D则没有。图三所表示的即是大气圈外(AM0)与地表上(AM1.5)太阳光能量光谱。 图二、大气质量的计算方法示意图 图三、大气圈外(AM0)与地表上(AM1.5)太阳光能量光谱

太空用的太阳电池组件电性量测所使用的标准光谱是以AM0,而地面上应用的太阳电池组件电性量测所使用的标准光谱,依其应用性之不同,可采用AM1.5G 或是AM1.5D,其中AM1.5G光谱的总照度为963.75W/m2,而AM1.5D光谱的总照度为768.31W/m2,在量测计算应用上方便,常会将此二值做归一化(normalize)至1000 W/m2。 太阳光源仿真器 太阳电池组件的电性量测,是可分别于户外(outdoor)或是室内(indoor)来进行的,而太阳电池组件会有容易受到温度、照度影响与地利位置等因素的影响,所以在户外进行量测所得到的数据不易有再现性与可比较性,虽不利于太阳电池的研究开发之用,但对于已完成的太阳电池模块的实际发电效率监控却是有莫大的帮助,基于前述理由,目前主要的太阳电池组件量测工作,大多数都于室内来进行测试,组件电性量测过程所需的太阳光线,是利用太阳光仿真器(solar simulator)来提供近似太阳光谱的光源,同时因为太阳电池组件的电力输出,与太阳光频谱有着密不可分的关系。因此太阳光仿真器的优劣,即会大大影响组件的测试结果,因此有美国标准量测规范ASTM E927、IEC 60904-9 与JIS C8912 等标准来规范太阳光仿真器的等级区分,综合光源的照射强度均匀性(No uniformity of total irradiance)、照射不稳定性(Temporal instability of irradiance)、光谱合致度(spectral match),将太阳光仿真器等级分为A、B、C三个等级,如表一所示。目前常用的单一光源太阳光仿真器有卤素灯泡(tungsten–halogen lamp, ELH) 与Xe灯泡(Xenon lamp)为主,卤素灯泡搭配dichroic filter所组成的太阳光仿真器属于C级,主要是因为其在波长0.7~0.8μm范围能量过高,在0.4~0.5μm范围能量却不足,而使用Xe灯与合适AM1.5G filter所组成的太阳光仿真器,其光谱波长短于0.8μm范围可达A级,而在0.8~1.2μm波长范围有着强烈的原子放射波段(atomic line),虽无法达到完全近似太阳光谱,但对于传统的单一接面(single junction)太阳电池组件电性量测来说是足够的。 表一、太阳光仿真器分级标准 太阳电池光谱响应量测 太阳电池组件的光谱响应特性,直接影响着组件能量转换效率表现,而太阳电池光谱响应量测(spectrum response measurement)的物理意义是测试太阳电池所产生光电流对应吸收光谱波段范围,因此对于研究开发太阳电池而言,了解组件对太阳光谱的响应特性是相当重要的,不仅是可用于太阳电池组件的电性量测输出特性的修正,亦是做为多接面太阳电池(multi-junction solar cell)组件设计重要

太阳能自动跟踪装置设计报告

吉林铁道职业技术学院 电子制作职业技能大赛(论文) 题目太阳能自动跟踪装置设计

参赛人姓名王志会张卫国朱峰所在系电气工程系 指导教师陈冬鹤 完成时间2013年5月26日

吉林铁道电子制作职业技能大赛设计报告 题目:太阳能自动跟踪装置设计 主要内容、基本要求等: ◆主要内容:加强大学生动手操作能力,促进集体荣誉感。 ◆基本要求:1,利用单片机控制实现太阳能电池板随着太阳(光源)的位置变 化而调整自身相应的姿态,以达到太阳光能的最佳利用。 2,实现一定的姿态控制精度。 3,以低成本、低功耗完成设计并实现目标电路的组装。 ◆主要参考资料:电路基础、电工技术、电子手工焊接、单片机原理及应用、传感器原理与应用。 完成日期:2013年5月26日 指导教师:陈冬鹤 实验组组长:王志会 2013年 6 月 5 日

太阳能自动跟踪装置 研制目的 人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,太阳能光伏发电是改善生态环境、提高人类生存质量的绿色能源之一,但由于传统太阳能板方向固定,受光时间有限。因此研制可随光移动的太阳能跟随系统。

一自动跟踪系统整体设计 1.1 系统总体结构 本系统包括光电转换器、步进电机、89C5系列单片机以及相应的外围电路等。太阳能电池板可以360度自由旋转。控制机构将分别对水平方向进行调整。单片机加电复位后,首先由TRCT5000构成的定位系统对整个系统进行预置定位,然后单片机将对两光敏电阻采样进来的两个电平进行比较,电平有高电平和低电平两种,若两电平相等则电池板停止转动,若不等单片机将对两电平进行比较判定,驱动步进电机让太阳能板与之相对应转动,实现电池板对太阳的跟踪。图1-1所示: 1.2 光电转换器

太阳能光伏标准

太阳能光伏标准 IEC_61646-1996 Thin-film terrestrial photovoltaic (PV) modules IEC_61730-1_(2004-10) Photovoltaic (PV) module safety qualification –Part 1 Requirements for construction IEC_61730-2_(2004-10)Photovoltaic (PV) module safety qualification –Part 2 R equirements for testing GB 2297-1989 太阳光伏能源系统术语 GB 11009-1989 太阳电池光谱响应测试方法 GB 11011-1989 非晶硅太阳电池电性能测试的一般规定 GB 12632-1990 单晶硅太阳电池总规范 GBT2296-2001太阳电池型号命名方法-2001 GBT14009-92太阳电池组件参数测量方法 GBT18210-2000晶体硅光伏(PV)方阵I-V特性的现场测量 GBT18911-2002地面用薄膜光伏组件设计鉴定和定型 GBT 5586-1998 电触头材料基本性能试验方法 GBT 6495.1-1996 光伏器件第1部分:光伏电流-电压特性的测量 GBT 6495.2-1996 光伏器件第2部分:标准太阳电池的要求 GBT 6495.3-1996光伏器件第3部分:地面用光伏器件的测量原理及标准光谱辐照度数据 GBT 6495.4-1996 光伏器件第4部分:晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法 GBT 6495.5-1996 光伏器件第5部分:用开路电压法确定光伏(PV)器件的等效电池温度(ECT) GBT 14008-1992 海上用太阳电池组件总规范 GBT 19064-2003家用太阳能光伏电源系统技术条件和试验方法 GB-T 6497-1986地面用太阳电池标定的一般规定 GB-T 9535-1998地面用晶体硅光伏组件设定鉴定和定型 GB-T 18479-2001 地面用光伏(PV)发电系统概述和导则

太阳自动跟踪系统模板

绪论 21世纪是太阳能时代。在未来的40年中,人类可以实现100%的可再生能源供电。不再需要中东的石油、西伯利亚的天然气以及澳大利亚的铀。实际上,目前在我们家门口就已经获得了未来能源的载体:太阳、风力、水力、地热能,以及来自农田和林地的生物能。根据欧盟报告,2050年全球能源供给分配应当为:40%太阳能,30%生物能,巧%风能,10%水能,5%原油。报告论述了如何达到这种经济、环保、和平并且可持续的能源供给状态。跨国石油公司,比如壳牌、惠普等,已经在向着这种能源供给状态发展。 地球上的万物生长都依赖于太阳的存在,太阳给我们提供了巨大的能量源,地球上大部分的能源归根结蒂也来自于太阳。比如石油、煤炭等化石能源都是过去的动植物通过吸收太阳能不断的生长,后来这些动植物被掩埋在土壤下形成的能源,这其实是太阳能一种形式的转换,并被存储了下来,直到今天被人类开采使用。太阳能开发利用的潜力是相当巨大,据统计,全世界人们一年所使用的能量总和仅仅相当于太阳辐射到地球能量的数万分之一。在化石能源即将枯竭的未来,在未来能源方面,太阳能给人类带来新的生机。 太阳在一天中不断改变位置,这造成太阳能存在着密度低、间歇性的特点,且光照方向和度随时间不断变化。传统太阳能电池板固定在一个角度,不能时刻工作在最大效率处,而采用双轴太阳能跟踪系统的太阳能电池板在功率保持一定的情况下可以提升36% 的发电量,提高太阳能的利用率。

第一章跟踪系统的控制方案 目前光跟踪技术主要是两种方法:1.视日运行轨道跟踪方法。2.光电自动跟 踪方法。 1.1视日运行轨道跟踪 视日运行轨道跟踪技术是一种根据理论计算的太阳运行的轨迹而采取的一 种跟踪技术,根据跟踪的方位它主要分为两种:单轴跟踪和双轴跟踪。 1.1.1单轴跟踪 单轴跟踪分为三种方式:1.倾斜布置东西追踪;2.焦线南北水平布置,东西跟踪;3.焦线东西水平布置,南北跟踪。它们跟踪原理是相同,即电池阵列绕单一轴转动,其转动方向为自东向西或者南北方向,自东向西单轴跟踪方式是跟踪太阳方位角变化,驱动电池阵列转动,使电池阵列方位角与太阳方位角相同。这类跟踪方式结构简单,控制容易,在光照强度大和光照相当稳定的地方实施这类跟踪方式比较适宜。但这类跟踪方式存在一个最大缺点是除了正午这个时刻外在其他时侯不能保持电池阵列接收光辐射面与太阳光线垂直,这样大大降低了光的吸收效率,造成了能量的流失大,影响了整个光伏发电的效率。 1.1.2双轴跟踪 双轴跟踪是一种全方位的跟踪技术,它弥补了单轴跟踪的不足之处,目前视日运动轨迹的双轴跟踪主要分为两种方式:极轴跟踪方式,高度一方位角太阳轨迹跟踪方式。 极轴跟踪方式:是聚光镜的一轴指向地球北极,即与地球自转轴相平行,故称为极轴;另一轴与极轴垂直,称为赤纬轴。工作时反射镜面绕极轴运转,其转速的设定与地球自转角速度大小相同方向相反用以追踪太阳的视日运动;反射镜围绕赤纬轴作俯仰转动是为了适应赤纬角的变化,通常根据季节的变化定期调整。这种追踪方式并不复杂,但在结构上反射镜的重量不通过极轴轴线,极轴支承装置的设计比较困难。 高度一方位角太阳轨迹跟踪是一种地平坐标系统跟踪方式,它是当今比较先进的一种跟踪方式,跟踪精度较高。高度一方位角跟踪方式通过计算具体地点和具体时刻的太阳运动轨迹(高度角和方位角表示运行轨迹),根据光伏电池阵列的具体位置,先沿着垂直轴转动弥补方位角偏差,然后沿水平轴转动弥补高度角偏差,以保证电池阵列与太阳运行轨迹一致。这种方式受天气季节性影响较小属于一种理论计算轨迹程序控制跟踪方式。由于理论计算轨迹与实际运行轨道误差小,因此该跟踪方式跟踪精度较高,这种方式缺点是受跟踪系统机械影响比较大,在系统长期运行或者外力影响造成机械误差后,会造成跟踪偏差变大,影响了跟踪精度。

太阳自动跟踪装置控制系统的研究(精)

第2期(总第147期 2008年4月机械工程与自动化 M ECHAN I CAL EN G I N EER I N G &AU TOM A T I ON N o 12 A p r 1 文章编号:167226413(20080220140203 太阳自动跟踪装置控制系统的研究 徐东亮,任超 (武汉理工大学机电学院,湖北武汉430070 摘要:为了更充分、高效地利用太阳能,人们普遍采用跟踪太阳的方式以最大限度地获得更多的光能。介绍了太阳自动跟踪装置控制系统的控制原理及硬件、软件的设计方法。该系统控制软件运行后,PC 机通过串行端口发送和接收脉冲信号以驱动步进电机,实现对太阳运动轨迹的自动跟踪。整个系统结构简单、价格低廉、性能可靠、跟踪精度高。本控制系统基于PC ,具有丰富的软件资源、良好的人机界面以及强大的数据处理能力。关键词:太阳跟踪装置;自动控制;串口通讯;步进电机中图分类号:T P 273文献标识码:A 收稿日期:2007208213;修回日期:2007211201 作者简介:徐东亮(19702,男,福建人,副教授,博士,研究方向为机械电子工程、检测技术与自动化装置。 0引言 太阳能是一种洁净的可再生资源,有着矿物能源不可比拟的优越性,而且太阳能资源十分丰富,是目前可再生能源中应用范围最广泛、发展前景最远大的清洁能源。

虽然太阳能总能量很大,但由于太阳能的能量密 度比较低,在大气层外的平均密度约为1135k W m 2 ,再考虑通过大气层的损耗等因素,当到达地面时,只 有不到1k W m 2 。因此为了更充分、高效地利用太阳能,人们普遍采用跟踪太阳的方式以最大限度地获得更多的光能。本文介绍的是基于二维太阳跟踪装置的控制系统,该系统采用视日运动轨迹跟踪的方法计算太阳的高度角和方位角,进而通过PC 控制步进电机,实现全自动、全天候、高精度的太阳跟踪。由于采用在V C ++610环境下通过PC 机串口直接控制步进电机的方法,因此整个系统成本低、简单实用、可靠性高,且具有良好的人机界面,能够广泛应用于气象监测、环境能源利用等领域。1太阳运行轨迹的算法 太阳的运行轨迹,即太阳相对地球的位置可由两种坐标系来描述:赤道坐标系和地平坐标系。111赤道坐标系 赤道坐标系是人在地球以外的宇宙空间里看太阳相对于地球的位置,这时太阳相对于地球的位置是相对于赤道平面而言,用赤纬角和时角这两个坐标表示。11111赤纬角? 太阳中心与地球中心的连线(即太阳光线在地球表面直射点与地球中心的连线与此连线在赤道平面上的 投影间的夹角称为太阳赤纬角(或称太阳赤纬。它描述地球以一定的倾斜度绕太阳公转而引起二者相对位置的变化。一年中,太阳光线在地球表面上的垂直照射点的位置在南回归线、赤道和北回归线之间往复运动,使该直射点与地心连线在赤道面上的夹角也随之重复变化。赤纬角?(o 在一年中的变化用下式计算: ?=23145sin (2Πd

光伏工业国家标准和行业标准汇总

光伏工业国家标准和行业标准汇总 太阳能电池 GB2297-89 太阳能光伏能源系统术语; GB2296-2001 太阳能电池型号命名方法; GB12632-90 单晶硅太阳能电池总规范; GB6497-1986 地面用太阳能电池标定的一般规定; GB6495-86 地面用太阳能电池电性能测试方法; IEEE 1262-1995 光伏组件的测试认证规范; GB/T 14007-92 陆地用太阳能电池组件总规范; GB/T 14009-92 太阳能电池组件参数测量方法; GB 9535 陆地用太阳能电池组件环境试验方法; GB/T 14008-92 海上用太阳能电池组件总规范; GB11011-89 非晶硅太阳能电池性能测试的一般规定; GB/T6495.1-1996 光伏器件第1部分:光伏电流-电压特性的测量; GB/T6495.2-1996 光伏器件第2部分:标准太阳能电池的要求; GB/T6495.3-1996 光伏器件第3部分:地面用光伏器件的测量原理及标准光谱辐照度数据; GB/T6495.4-1996 晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法 SJ/T11127-1997 光伏(PV)发电系统过电压保护—导则 GB/T9535-1998 地面用晶体硅光伏组件设计鉴定和定型 GB/T18210-2000 晶体硅光伏(PV)方阵I-V特性的现场测量 GB/T18479-2001 地面用光伏(PV)发电系统概述和导则 GB/T19064-2003 家用太阳能光伏电源系统技术条件和试验方法 配套产品 光伏系统专用控制器和逆变器的地方标准 DB62/T 517-1997 家用太阳能光伏电源――甘肃省地方标准; DB63/245-1996 TDZ系列太阳能光伏户用直流电源――青海省地方标准。 与光伏系统相关的蓄电池国家标准 GB 13337.1-91 《固定型防酸式铅酸蓄电池技术条件》; GB 5008.1-85 《起动用铅酸蓄电池技术要求和试验方法》; GB 9368-88 《镉镍碱性蓄电池》; YD/T 799-1996 《通信用阀控式密封铅酸蓄电池技术要求和检验方法》; GB/T14162-93 《产品质量监督计数抽样程序及抽样表》; JIC8707-1992 《阴极吸收式密封固定型铅蓄电池标准》; 沪G/G1107-90 《免维护全密封铅酸蓄电池》; SJ/T 10417-93 《6V、12V小型密封铅蓄电池》;

太阳光自动跟踪设计_图文(精)

摘要 通过分析全国日照时数表得出:开环系统在太阳能光伏工程中效率不高而并不适合采用。为合理地利用太阳能,提高其跟踪效率而采用混合控制系统。文中着重分析了双轴跟踪的原理,提出了手动式方位角跟踪和自动式八方位高度角跟踪,引出了分级接收跟踪原理,设计了软件流程并和一套任意方位跟踪系统。运行结果表明,该系统能实现太阳光任意方位检测并迅速跟踪,有效降低系统运行功耗,减少机械结构损耗,跟踪精度可调,可望在太阳能光伏工程中获得应用。并促进太阳光的接收效率。 【关键词】太阳能跟踪系统;时空控制;光强控制;跟踪传感器 Abstract The open system is not suitable for adoption in solar photovoltaic engineering because of its inefficiency through analyzing the national sunshine duration https://www.wendangku.net/doc/1411051637.html,ing the mixture control system can enhance its track efficiency and make full use of solar energy reasonably.The paper analyzed the two axle track principle emphatically,then proposed the manual azimuth tracking and the automatic altitude angle tracking of 8 positions,educed hierarchical receive track principle,designed the software flow and a suit of arbitrariness azimuth track system.Running results indicated that the system can accomplish solar arbitrariness azimuth detection and tracking rapidly,fall running power consume efficiently,reduce consume of mechanical structure,and have adjustable tracking precision.It may obtain applications in solar photovoltaic engineering. 【Key words】 solar Automatic tracking system;time and space control;light intensity control;solar tracking sensor 目录 第一章引言 1

相关文档