文档库 最新最全的文档下载
当前位置:文档库 › 发动机热管理系统

发动机热管理系统

发动机热管理系统
发动机热管理系统

发动机热管理系统

节油原理

发动机热管理系统能够从节能降耗、运行更可靠、延长发动机及附件使用寿命三个方面起到降低油耗,减少维修费用的目的,并保障车辆的可靠运行。

1、燃油燃烧更充分(节能降耗)

通过优化客车发动机进排气系统,对发动机进排气阻力进行优化,给发动机最佳的空气燃油比例,实现燃油的更充分的燃烧,提升了燃油使用率,达到节省燃油的目的。通过改进发动机温控系统,保证发动机在最适宜的温度环境80°C-95°C下工作,从而最大限度地发挥动力效能,并有效延长发动机寿命。

2、仓体散热更科学(运行可靠)

通过对发动机仓体空气流动路径的测量与仓体内结构布置的改进,提高车辆通过结构来改善仓体散热的能力,尽量减少附属件做工。根据运行中车辆仓体内部温度分布的研究,将易高温老化的零部件的位置进行优化,提高发动机仓体内各部件的寿命。

3、动力利用更有效(延长使用寿命)

通过对发动机附件的优化管理,使发动机所产出的能量,在冷却风扇、气泵、空调压缩机等附属耗能设备中得以最合理的分配、应用,减少了能量的无效损耗,将更多能量集中供给客车行驶。

世界发动机热管理系统的发展状况

目前,世界对于发动机热管理技术的研究主要集中在使用电子智能化控制、改变发动机部件结构、使用新型材料等方法和手段,如:

1、1992年,Valeo Engine Cooling(VEC)公司开发出了一种由电控水泵、电控节温器和电动风扇组成的发动机冷却系统,可以通过控制冷却液流量来控制

冷却液温度,可以达到5%左右的节油效果。

2、2007年,郑州宇通集团有限公司自主研发了客车用发动机热管理技术,该技术由冷却智能控制模式、风扇智能控制模式2个系统组成,能够精确控制发动机冷却水温度86-95℃,百公里油耗降低5%-10%。

3、1995年,美国Argonne国家实验室的Choi等提出纳米流体概念,Choi 等在流体中加入1%体积浓度的Cu纳米微粒,可以提高流体导热率40%,而加入1%C纳米管可以提高流体导热率250%。

由于发动机热管理系统的复杂性,目前发动机热管理系统的研究和利用,基本上都对汽车原本结构进行了比较复杂的变动,甚至有的研究对汽车的结构进行了大幅度的改动,如美国T-VEC技术公司(T-VEC T echnologies,Inc.)针对汽车前段换热器越来越多的特点研制出全新布局的发动机热管理系统,将换热器由风冷改为水冷,从汽车前段移到发动机罩下,研发难度大,并且改造成本昂贵,不宜大面积推广。

国内行业发展趋势

一.深圳德力发科技有限公司

深圳市德力发科技有限公司研制的电动汽车驱动电机散热系统(ECU),采用PWM调频方式控制电子风扇的无级变速,从而使电机温度衡定在38度左右(温度可自由设定),可显示出水口温度,可设定温度报警,每路输出电流20A;所有输出自带短路自动保护无须加装保险丝;短路时、传感器断线及损坏时有故障指示灯方便维修;(ECU)达到一级防水的要求安装位置不受限制,适用DC8V---DC42V车辆安装。电动水泵技术参数:工作电压:12-24V,电流:2.5A,进、出水口外径尺寸22-45mm,静态扬程:4米,静态流量:20-50L/min,工作温度:95度。

相关合作单位:东风汽车制造有限公司,重庆恒通客车有限公司、广州市弘燊汽车配件有限公司、扬州市双羊汽车科技有限公司、北京中瑞蓝科电动车技术有限公司、盛能动力科技(深圳)有限公司、湖北雷迪特汽车冷却系统有限公司、温州市西山汽配厂、西虎

汽车工业有限公司、江淮汽车制造有限公司和宁波波导汽车制造有限公司(原神马汽车制造有限公司)青年客车

二.广州大华德盛热管理科技有限公司

广州大华德盛热管理科技有限公司,前身是广州大华德盛科技有限公司,注册资本1000万元人民币,是集科技创新和产业化于一体的高科技公司,公司专业从事热管理系统技术研究、开发与生产,是国内第一家研究热管理系统技术的公司,是国内目前唯一具有热管理系统技术研发能力并实现产业化的公司,将热管理系统技术成功应用于军工与能源领域,在国际上第一个成功解决了工程车辆在海拔4500米以上的高原过热问题;將能源系统、换热技术、热管技术、新型燃料替代技术、节能与环保技术及设备、系统分析与集成技术成功融合于热管理,也可应用于电站,节约能源与运行费用,大大降低了污染物的排放。

公司与清华北大等科研院所紧密合作,拥有技术实力雄厚、管理经验丰富的团队,设有博士后科研工作站,长期在公司工作的博士超过4人;公司现有员工80人,其中技术人员35人,高级职称以上人员12人。开发的液压驱动风扇热系统产品作为部队重大科研成果正在全军列装,被列入国家火炬推广计划。

公司现有热管理产品生产设备30多台,热系统实验设备8台,有国内第一个热系统现实模拟试验台、国内第一台热系统在线检测设备,有与清华大学合作的热系统模拟仿真系统以及目前世界上最先进的铜硬钎焊热交换器制造技术。公司特别重视质量管理,通过了GB/T19001-2008及国军标GJB9001A-2001质量管理体系认证、三级保密资格认证、军品生产资格认证。同时,公司于2010年通过了国家高新技术企业认定和市级企业技术中心认证。

公司总部位于广州市白云区广州民营科技园内,紧邻广州新白云机场,离北二环高速公路出口只有1公里,交通十分便利。公司将以更好的技术、更高的品质,与客户共谋发展。

三.武汉杜曼智能科技有限公司

武汉杜曼智能科技有限公司是“国家自主创新示范区“---武汉东湖新技术

开发区内的高科技企业,是武汉“3551人才计划”和科技型企业创新基金的重点扶持企业。所开发的发动机热管理系统智能控制器(ECU)为国内第一品牌,拥有独特的10大关键技术:

1、高频PWM无级调速技术,实时满足各种热管理的控制需求

2、温度、冷却能力双闭环控制技术,平滑调节冷却能力满足各种温控要求

3、大功率驱动技术,可驱动各种大功率的电子风机或液驱风机等负载

4、自动扩展技术,系统自由剪裁,可驱动多达20路的冷却风机

5、独有的全过程软启技术,保证整个电气系统的平稳

6、全系统的故障自诊断技术,可准确判断和定位故障点

7、强大的实时监控,对系统信息进行全方位的监控和采集,方便进一步的处理和研究

8、最为专业和强大的热管理策略配置系统,确保达到最佳的热管理控制效果

9、CAN2.0B的现场总线通信技术

10、宽温高防护的全汽车级设计

合作单位:东风汽车股份有限公司、东风商用车公司、东风襄樊旅行车有限公司、三一重工股份有限公司、湖北雷迪特汽车冷却系统有限公司、中国人民解放军总装备部热平衡研发基地、广州大华德盛热管理科技有限公司

公司地址:武汉东湖高新技术开发区大学园路

四.郑州宇通客车

郑州宇通集团有限公司(简称“宇通集团”)是以客车为核心,以工程机械、汽车零部件、房地产为战略业务,兼顾其他投资业务的大型企业集团,总部位于河南省郑州市。2009年,宇通集团以第308位的排名,连续第七年荣列国家统计局发布的“中国最大500 家企业集团”,继续领跑中国客车行业。2009 年宇通集团销售大中型客车、工程机械、专用车合计35194台,较2008年同比增长11.1%,实现营业收入150.26亿元,较2008年同比增长6.7%,企业规模、销售业绩在行业继续位列第一。公司主要经济指标连续十余年快速增长,连续十二年获得中国工商银行AAA级信用等级。2009年,宇通集团客车产品销售

28186辆,同比增长2.3%,同年宇通品牌价值达到78.96亿元,继续位列中国客车企业之首。

针对日益冲高的油价和国家节能减排的主流趋势,宇通客车研发出具有显著节油效果的发动机热管理系统。装载该系统的客车投入使用后可实现节油5%-10%。宇通市场部人员介绍,自发动机热管理系统推广一年以来,用户在实际使用过程中的数据显示,安装该系统后油耗普遍降低了1~3升,节油效果明显。他们希望通过此次悬赏活动能获得更多的用户反馈,以更加完善自主研发技术的更新,继续为客户创造更大的价值。

汽车热管理系统及其研究进展

一.汽车热管理的内涵

运用热力学原理提高整个系统或装置的能量利用率,减少废热损失、提高系统的稳定性和可靠性的相关技术,从整体的角度来管理热量称为热管理。热管理是从被动地控制温度到主动地管理能量的思想转变,是提高热力系统设计整体性的重要研究方法。热管理的概念提出多年,已在汽车、集成电路、高能激光器、飞机、大型航天器和空间站中应用。汽车热管理是在能源危机的出现、日益严格的汽车排放法规以及人们对汽车舒适性高要求的背景下应运而生的。汽车热管理是从系统集成和整体角度,统筹热管理系统与热管理对象、整车的关系,采用综合控制和系统管理的方法,将各个系统或部件如冷却系统、润滑系统、空调系统集成一个有效的热管理系统,控制和优化汽车的热量传递过程,保证各关键部件和系统安全高效运行,完善的管理并合理利用热能,降低废热排放,提高能源利用效率,减少环境污染。热管理在汽车节能、环保和安全等方面具有突出的战略地位,热管理技术成为汽车节能、提高经济性和保障安全性的重要措施。

二.汽车热管理的研究内容与研究现状

汽车热管理的主要研究内容包括热管理对象热特性研究、热管理系统集成以及热能综合利用等;广泛意义上包括对所有车载热源系统进行综合管理与优

化,其中车载热源系统包括发动机的冷却系统、润滑系统、进排气系统和发动机机舱空气流动系统以及驾驶室的空调暖风系统等等,综合考虑空气侧与车载热源系统之间热量传递过程。涉及到冷却介质、热交换器、风扇、泵、底盘空气流动、传感器与执行机构、材料与加工、整车空气动力学、安全性、可靠性、环保性及系统建模仿真等方面的研究。现阶段主要从以下几个方面进行汽车热管理研究。

2.1按需求控制系统各部件运行参数

机械驱动式冷却水泵和冷却风扇使冷却介质流量取决于发动机转速,无法按需求调节冷却介质的流速以及通过散热器的空气流速,从而难以使发动机在最佳的温度下工作,导致燃料经济性和发动机性能不佳。将冷却介质流速与发动机转速解耦,用电控比例流量阀代替蜡式节温器,根据汽车的运行工况来动态调整冷却量,实现电控化和智能化是冷却系统优化的重要部分。电控冷却系统对发动机性能的影响:(1)根据运行工况动态调整冷却量,避免冷却过度和冷却不足,改善冷却效果;(2)机械驱动式冷却系统的散热设计标准是满足全负荷时散热需求,因而在部分负荷工况下冷却过度导致发动机功率浪费,运用电控冷却系统能有效的提高发动机的工作温度,提高热效率,从而改善燃油经济性;(3)根据运行工况动态调整电控泵和电控风扇的转速,其能耗要低于机械驱动式的冷却系统,即使考虑到电能的转换效率只有机械能效率的一半,燃油经济性仍得到改善;

(4)Kyung-Wook Choi 等人研究电控冷却系统对发动机起动和排放性能的影响,结果表明较高的冷却介质温度和较低的冷却介质流速时HC 和CO 排放量减少,但NOx 排放量有所增加;在较低的冷却介质流速下能取得较高的暖车效率[12]。目前冷却系统的电控化已在实际应用中体现出优势。韩国现代汽车公司生产的某型轿车,对散热器冷却风扇和冷凝器冷却风扇分别电控,对冷却液温度和空调冷凝器温度进行多级联合控制,结果减少了风扇功率消耗的90%,节省燃油10%[13]。

Johnson Elecrtic 公司开发一种散热器冷却风扇模块,把风扇、电机、控制电路等封装在一起,可以通过编程精确控制发动机、散热器、发动机舱室的温度。2006 年杨小强对某型推土机的冷却系统进行改造,分离油水散热,冷却水、变矩器油、液压油都采用各自散热器,用电控液压马达驱动冷却风扇系统,成功解决系统过热问题。机械驱动式油泵的压力润滑系统功耗大,不易调节。设计出可

控供油量和供油定时的发动机润滑系统,实现按需分配机油可提高环保性和经济性。2001 年,Zoz 等人研制了发动机润滑系统流动与传热模型,给出置现已在船用柴油机上使用;德国的SchwaderlappM 提出在压力润滑系统采用可调型元件的设想,并运用一种可调型机油泵,取得很好的试验效果[17]。Masahiko Makino 等人开发了应用于汽车空调系统的小型高效的电控压缩机和相应的变换器,与带式传动压缩机相比,效率更高,特别在怠速情况下温度更加稳定[18]预测滑油箱温度的模型[16];MANB&W 公司设计了Alpha ACC 电子定时气缸注油装置现已在船用柴油机上使用;德国的SchwaderlappM 提出在压力润滑系统采用可调型元件的设想,并运用一种可调型机油泵,取得很好的试验效果[17]。Masahiko Makino 等人开发了应用于汽车空调系统的小型高效的电控压缩机和相应的变换器,与带式传动压缩机相比,效率更高,特别在怠速情况下温度更加稳定[18]。

2.2设计改进废热回收装置,提高废热利用率

热平衡实验显示大多数内燃机仅有30%左右的燃料热量用于做功,而其余的70%作为废热被冷却介质、排气等带走。如何合理有效的利用废热是热管理技术的主要研究内容之一。(1)利用冷却系统中的热量。N.S.Ap 等人对冷却系统进行改进,取消散热器风扇,在暖气风箱增加鼓风机,将冷却液中的废热用于驾驶室供暖;设计的可调暖通装置适用于一年四季各种不同的外部热环境,很大程度上提高废热的利用[19]。(2)利用排气热量。Peter Diehl 等人运用热电转换等相关技术设计排气热回收装置,进行仿真和试验研究,结果表明排气热回收系统可行有效[20-22]。Masayoshi Mori 等研究汽车排气废热利用的热电转换技术,实验和计算表明在当前的技术条件下,通过热电转换技术来提高汽车的燃油经济性并不可行,指出要想通过热电转换技术来提高燃油经济性,仅仅通过提高热电转换效率是不够的,还要提高热交换器等相关设备的性能[23]。(3)热量综合利用。X. Zeng 等人运用热泵、暖风循环和暖通空调模块设计构成混合加热系统(hybrid heating system),并比较该系统在不同的运行工况和外部环境下的能效特性及运行模式,为混合加热系统的优化指明方向[24]。V alerie H.分析金属氢化物制冷系统(metal hydride cooling systems)、吸收式热泵(absorption heat pumps)、沸石热泵(zeoliteheat pumps)以及热声制冷(thermo acoustic cooling)等发动机废热利用装置的性能、对材料特性的要求、优缺点及研究现状[25]。Y oshiaki Takano 等人运用空调系统的一些部件设计了热气加热器(hot gasheater),改善汽车暖通系统的性能

[26]。

2.3改进系统部件设计,改善部件热特性

探明整个系统的热流分布,结合空气侧的流动与传热,对部件的结构和安装方式进行优化,改善系统部件热特性,使系统热量合理分布。(1)对空调、冷却系统的改进研究。SatomiMuto 等人把散热器和压缩机合二为一,形成单个冷却模块并进行改进,分析结果表明冷却模块的尺寸和重量都大幅减小,而散热器和压缩机的性能都得到提升[27]。Ngy Srun Ap 等人对Renault CLIO 1.6 L和VOLVO S80 2.4 L 两种车型,对车辆前部的风扇和导风罩对压缩机和散热器的影响进行研究,计算和实验表明在中高速情况下,导风罩的存在反而使空气流速降低[28]。德尔福公司提出中置风扇配置,冷却风扇置于冷凝器后和散热器前,显著改善空气侧的温度分布,获得较高的空气流速[29]。Rajesh A Tand Sharad Pol 利用仿真和试验分析方法,研究后置式客车发动机冷却系统的性能,发现在低速工况时可以通过提高散热器风扇的功率来提高散热器的效率,而在高速工况时,散热器散热效果受风扇功率影响不大,提出利用偏转板把底盘空气导向散热器提高散热效率的方法[30]。Kohei Nakashima 等人研究空冷式摩托车发动机冷却肋片的迎风锥度,试验表明采用有锥度的冷却肋片能提高冷却效果,减小发动机的重量[31]。E. Abu-Ramadan 等研究发动机冷却风扇的定子和支撑臂的空气动力学性能,提出相应的优化策略[32]。Ken T. Lan 研究散热器的热风回流问题,运用CFD 分析前端导风罩对散热器的空气流速,压力分布的影响[33]。(2)对车辆结构的研究。陈振明等分析汽车前部、客舱、尾部、底部、附加装置和车轮对汽车空气动力学性能的影响,从汽车空气动力学设计的角度优化汽车造型,进而提高汽车的安全性、经济性和舒适性[34]。2009 年蓝国勇等人针对五菱之光微型汽车冬季除霜除雾效果不佳的问题,改进风管结构和出风口的位置,进行仿真计算和实车模拟试验,成功解决该类问题[35]。

2.4改善驾驶室热环境,提高汽车舒适性

车辆室内热环境直接影响乘员的舒适感,结合人体的感官模型,对驾驶室的流动与传热进行研究,是改善车辆的舒适性,提高汽车性能的重要手段。Ward Atkinson 从车身结构设计出发,从空调排风口、受阳光辐射影响的汽车玻璃及整

个车身的设计,结合空调系统考虑对乘员舒适性的影响[36]。ChaoA.Zhang 在R134a 的汽车空调系统中应用内置式换热器,提高系统性能[37]。Rom McGuffin 和LinjieHuang 等人建立了人体生理模型(physiologicalmodel)、心理舒适度模型(psychological comfortmodel)和暖体假人模型(thermal manikin),运用CFD 分析汽车驾驶室内流动和传热,研究如何提高乘客舒适性[38,39]。Daniel Turle 等人运用数值方法分析高级绝热材料和车窗传热技术在汽车热管理中的应用,减少阳光辐射和外部热环境对驾驶室的影响,提高汽车的舒适性[40]。

2.5测试技术

热管理系统需要采集大量的参数,如温度、压力、转速、行驶速度等等。先进的测试手段、高精度的传感器以及合理地布置测点是准确测试车辆工作参数的基础。Helmut Berneburg 研究将激光多普勒测速仪和其它测量技术应用于发动机舱内空气速度分布的测量[41]。VALEO 发动机冷却实验室在散热器两侧合理布置测点,有效地在环境气候风洞中实现对车载散热器两侧的冷却水和空气的流速、温度和压力等的测量[42]。Scott P. Dudley 设计了一种直径仅为26mm 的半球形传感器,用于直接测量车辆底盘的局部传热系数[43]。Victor Reinz 公司在发动机气缸衬垫中嵌入温度传感器,与传统装在缸盖水套中的传感器相比,离燃烧室更近,对温度变化的测量更加可靠和快捷[44]。Martin Liess 等人设计了新型测温计,运用相应的补偿算法减小热量传递的“滞后效应”引起的测量误差[45]。Alaa E. El-Sharkawy研究热电偶在温度测量中的温度响应及其影响因素,给出了理论分析结果和实验结果[46]。

2.6控制技术

控制系统把各运行部件、传感器、微处理器和执行机构等组织起来,根据行车状况、环境气候、冷却介质温度等参数,实现各部件的多元联合控制,自动调节,保证发动机和整车处于最佳工作状态,减少传热损失和功率损耗。Matthieu 等人对汽车冷却系统进行建模分析和实验,并应用42/14V 双电压控制系统[47]。2005 年PradeepSetlur 用集总参数模型法来分析冷却系统,建立了智能节温器、变速泵和变速风扇的数学模型,设计了非线性控制器来实现对冷却介质流速的控制,实验表明在各种工况下,控制器能很好的实现对系统的控制[48]。2008 年

Mohammad H.等人设计了由伺服电机控制的冷却系统,用基于Lyapunov 的非线性控制算法来控制缸套温度,仿真和试验结果表明他们设计的四种控制策略都能很好实现对缸套温度的控制,最大稳态偏差范围在1.1%以内[49]。

2.7热管理材料

热管理材料在热管理系统中占有重要地位,先进的热管理材料会很大程度上提高热管理系统的性能。2004 年李强研究了纳米流体增强导热的机理[50]。Taha Aldoss 研究将相变材料应用于汽车LED灯光系统的冷却[51]。另外,散热器材料、空调循环介质、保温隔热(车体隔热保温,发动机机舱隔热,空调风道隔热) 材料也取得一定的研究进展。

三.汽车热管理的仿真与试验研究

3.1汽车热管理的仿真研究

汽车热管理是一个复杂的流动与传热耦合系统,早期的仿真研究多采用无量纲化解析方法或作一维流动的假定,随着计算机硬件性能、数值计算格式和方法、湍流模型及计算可视化等学科分支的发展,三维流动和传热数值模拟方法得到大量的应用。流固耦合方法可以将相互作用(流动和传热)的流体和固体同时建立模型并离散各自的传热控制微分方程,将原来复杂的外边界条件变为内边界条件,并由软件进行边界自动耦合,进而可以得到更加精确的计算结果。Steve Zoz 等人分别运用一维仿真、三维仿真和原型实验三种方法比较发动机冷却水泵的设计和性能预测,分析了各自优缺点[52]。M. R. Jones 等人把汽车前部的热交换器拆分成一维软件flowmaster 中的标准组件建模,按各组件的热力学和流体力学特性来进行分析和实验[53]。Linjie Huang 等人运用3维CFD 软件与Virtual Thermal Comfort Engineering建模进行耦合计算,实验表明计算结果较准确[38]。为了对热管理系统集成于整车的实际性能进行分析和预测,使用软件数据接口进行1D/3D 联合仿真,是当前热管理的研究方向之一。采用BOOST进行气路循环模拟,用FLOWMASTER 模拟发动机冷却液循环和油路循环,用KULI、TILL或SWIFT进行空气侧流场和舱室模拟,用FIRE 模拟发动机缸内燃烧和水套的流动

和传热,用ABAQUS 或NASTRAN 模拟固体结构温度分布。将CRUISE 置于整个模型的最顶层,实现各软件的数据交换[54]。目前国内的研究仍侧重于某个子系统的仿真研究,对热管理集成研究较少。曹旭应用AMESim 软件对发动机的润滑系统和冷却系统的各组件进行建模,利用发动机台架进行验证,通过仿真计算优化相关组件设计[1]。齐斌利用整车热管理仿真软件KULI 建立某型号商用车系统模型和发动机瞬态模拟模型,计算风扇的功率消耗对整车热管理系统的影响,分析发动机起动暖车的效率[55-56]。罗建曦建立散热器内、外流动与传热耦合效应模型、风扇旋转效应模型,建立适用于热管理系统与整车集成的汽车内外复杂流动与传热分析数学模型;仿真研究热管理系统空气侧流速分布、温度分布等流场结构对热管理系统性能的影响机理。

3.2汽车热管理的试验研究

试验研究是汽车热管理的基本研究方法之一,通过试验可以找出或验证各种热管理对象的热负荷特性、热管理系统的流动与传热特性以及外部环境与汽车热量传递的规律。汽车热管理的试验研究可分为部件级、系统级、整车级试验等。试验平台是汽车热管理系统研究和开发的基础设施。Clemson 大学已建成的专门研究电子控制冷却系统的试验平台。2004 年清华大学杨胜采用物理模拟和仿真模拟相结合的方法,建立了半物理仿真试验平台,并针对热管理系统与整车的合理集成进行专项技术试验研究[4]。2005 年谭建勋以ZL50G 装载机为对象,建立由整车工况模拟系统、数据测试和处理系统组成的热管理系统试验平台,可实现对冷却系统各个参数,如变矩散热器、液压油散热器、发动机冷却液以及风道空气的温度、流量、压力等参数的实时测量与控制。

四.汽车热管理集成研究

热管理系统集成技术,是热管理研究的主要难点和核心关键技术。热管理系统与整车的集成研究,主要通过研究汽车热管理系统空气侧复杂流动和传热过程机理,探讨汽车总体布置设计、热管理系统集成方式以及行驶工况等因素对热

管理系统性能的影响,从系统工程观点和综合指标出发,进行热管理与汽车结构和总体布置的集成设计和匹配优化,控制汽车热管理系统空气侧流场结构,提高热管理系统的实际运行性能。热管理可从功能、能量、控制和硬件等方面进行系统集成[4]:(1)功能集成:各系统之间共享资源,减少回路,减小硬件的种类和数量等,使得系统既满足动力系统整体热管理的性能需要,又从各方面消除潜在的功能重复现象;(2)能量集成:将各种热能进行综合调配,尽可能回收废热,减小能量浪费,提高能量利用效率;(3)控制集成:充分共享各系统的控制资源与信息,综合协调热管理系统与其他系统的控制需求;(4)硬件集成:综合利用硬件设备之间的相互作用,优化硬件设备结构和系统匹配。

总结

随着对汽车节能环保的要求越来越高,各汽车厂商十分重视汽车热管理技术的研究。现阶段的研究主要是侧重于系统部件和子系统的热管理,在一定程度上提高了部件的性能,并在实际应用中产生效益;但是对整车的热管理集成研究比较少,部件和子系统的实际工作性能,很大程度上取决于整个汽车热管理系统的集成方式。针对国内外的研究现状,进一步的汽车热管理研究可以做以下方面的工作:(1)深入研究汽车的流动与传热机理,掌握热流传递规律;(2)对汽车的热对象特性进行研究,找出在不同工况下,热对象的最佳工作温度值,明确控制依据;(3)设计相应的控制策略,合理组织热流流动,优化热量分布,优化汽车的结构;(4)废热回收利用,提高燃料利用率;(5)提高系统工作效率,降低能耗。只有深入研究系统部件的流动与传热机理,然后从整车热管理集成高度来进行优化匹配设计,综合利用废热,才能发挥出汽车热管理系统的最大优势。

汽车发动机连杆螺栓热处理工艺设计

金属材料热处理原理与工艺课程设计40Mn发动机连杆螺栓热处理工艺设计 专业班级:材料132601班 设计人:焦攀龙 设计题目:发动机连杆螺栓选材与加工工艺设计 指导教师:职称 专业: 班级: 完成时间:

摘要 综述了发动机连杆螺栓的工作环境,使用性能,失效形式,连杆螺栓材料的选择,热处理工艺等。主要就连杆螺栓的热处理工艺做了详细的分析,通过大量的实验得出了连杆螺栓材料热处理后的金相组织图等资料。分别对球化退火、淬火、回火过程中组织、硬度的的变化做了分析。并就实验中出现的问题作了分析,以供参考。 关键词:连杆螺栓热处理;等温退火;淬火;回火;问题分析

目录 摘要............................................................................................................................................. I 前言. (1) 1 连杆螺栓的使用性能 (1) 2 材料选择及技术要求 (1) 2.1.螺栓的热处理工艺规范 (2) 2.2材料的选择 (2) 3 热处理工艺及目的 (3) 3.1退火 (3) 3.2正火 (3) 3.3淬火 (4) 3.4回火 (4) 4 设计说明 (4) 4.1失效形式 (4) 4.2工作要求 (4) 4.3结构钢40M N的化学成分 (5) 4.3.1 主要特性 (5) 4.3.2 材料分析 (5) 4.3.3 力学性能要求 (6) 4.3.4 基于材料的零件设计 (6) 4.5热处理工艺说明 (7) 5 设计方案 (8) 5.1正火 (8) 5.2调质处理 (8) 5.3回火的制定 (9) 6 螺栓的热处理质量检测 (9) 6.1硬度计 (9) 6.2外观检测与金相组织检验 (9) 7 螺栓热处理回火缺陷的原因及解决方案 (10) 参考文献 (11)

实验一 发动机综合性能检测实验

实验一: 发动机的检测与诊断实验 ——发动机综合性能检测实验 适用专业:汽车服务工程专业车辆工程专业实验时数:2学时设计性实验——汽车发动机性能综合测定 一、实验目标:1) 掌握实验设计、实验数据处理和分析的基本方法; 2) 掌握发动机性能综合分析仪和汽车性能检测仪的接线方法和基本操作; 3) 了解发动机性能综合分析仪和汽车性能检测仪的主要功能; 二、实验仪器:发动机综合性能分析仪 被测车辆: 三、实验内容:1)测试设备的安装、调试; 2)数据采集、分析; 3)故障排除和检验。 四、实验要求:1) 在理论指导下,根据实验目的,在指导教师的指导下完成实验设计,对 实验路线和方法的可行性进行分析论证; 2) 根据实验设计和实验内容的要求,熟悉掌握所需仪器的结构、原理、操 作规范等; 3) 根据实验室安排,独立完成实验数据的采集等实操环节; 4) 对实验结果进行科学的分析和论证,得出科学的结论; 5) 撰写实验报告、答辩。 五、发动机综合性能检测的基本内容及特点 发动机是汽车的动力源,是汽车的心脏,汽车的一些基本技术性能都直接或间接地与发动机的相关性能相联系。因此发动机综合性能的检测对整车性能的了解至关重要。 发动机综合性能检测与发动机台架试验不同,后者是发动机拆离汽车以测功机吸收发动机的输出功率对诸如功率和扭矩以及油耗和排放等最终性能指标进行定量测定,而发动机综合性能检测装置主要是在检测线上或汽车调试站内就车对发动机各系统的工作状态,如点火、喷油、电控系统和传感元件以及进排气系统和机械工作状态等的静态和动态参数进行分析,为发动机技术状态判断和故障诊断提供科学依据,有专家系统的发动机综合分析仪还具有故障自动判断功能,有排气分析选件的综合分析仪还能测定汽车排放指标。

发动机热管理系统优化外文文献翻译、中英文翻译、外文翻译

Optimization of engine thermal management system Engine thermal management is from the angle of the whole system, integrated control engine, turbocharger and exhaust, cooling system and engine cabin heat transfer etc., improve circulation efficiency, reducing heat load, change control engine components of high and low temperature limit, temperature distribution and regularity, improves the cooling capacity of the engine's colleagues, keep the engine in good power nature, economy and emission performance and reliability. Application of engine thermal management system technology, can effectively heat transfer system involved in the engine as a comprehensive system of consideration and get the accurate boundary parameters of the engine each fluid system, precise control of temperature and heat flux of each system, can guarantee the safe and efficient operation of the key components and system control. And the optimization of the heat transfer process, reduce the size and power consumption of cooling system, reasonable utilization of heat energy, reduce waste emissions, improve energy efficiency, reduce environmental pollution. There is significant difference between engine thermal management and traditional engine cooling system. From engine cooling to engine thermal management is not only a technological progress, but also a breakthrough in management and design ideas. Engine thermal management technology has become an important measure of engine energy saving, emission reduction, power performance, reliability and engine life. The cooling fan mechanical drive cooling system in the traditional fan from the engine crankshaft through a belt drive, the cooling air depends on engine speed and engine speed is proportional to, rather than the actual engine operation cooling capacity, unable to accurately control the air flow through the radiator, thereby it is difficult to make the engine work in the best temperature, resulting in emissions is too high, the fuel economy and engine performance deterioration. In addition to the outside of the traditional cooling fan cooling sensitivity adjustment is not high, the power loss is also large, serious power consumption, such as power consumption of the fan can reach the total output power of the engine 10%. In order to

曲轴热处理工艺

汽车发动机曲轴的热处理工艺设计 ●摘要 通过对12缸、四冲程、水冷高速大功率柴油机曲轴材质及调质后各项性能指标的分析,可知通过选用优质合金结构钢40Cr,加合适的热处理工艺,可以最大限度地提高高速大功率柴油机曲轴性能。 ·关键字:发动机;曲轴;选材;热处理工艺

目录 1.绪论 (3) 2.曲轴服役条件和性能指标 (3) 2.1 服役条件 (3) 2.2 技术要求 (4) 2.2.1 调质技术要求 (4) 2.2.2 渗氮技术要求 (4) 3.原材料状态和加工工序 (4) 3.1材料原始状态 (4) 3.1.1材料 (4) 3.1.2 锻造工艺 (5) 3.2 加工工序 (5) 4.热处理工艺 (5) 4.1 调质工艺 (5) 4.2 去应力回火工艺 (5) 5. 选材用材分析 (6) 6. 结论 (10)

1.绪论 发动机是汽车的“心脏”,而曲轴是发动机的关键部位。现代化的发动机对曲轴毛坯提出了有6拐、呈120°分布、带12个整体平衡块的要求。在机型改造的过程中,首先遇到的问题就是曲轴强度不足,一般是通过加粗轴颈、优选材质和表面强化等方法来增大曲轴强度,从而满足功率提高的要求。加粗轴颈在生产实践中受到各方面条件的限制,应用范围较窄,所以选择合适的材料和适宜的表面强化方法是解决曲轴强度的主要途径。曲轴在工作中承受交变载荷,圆角过渡处属于薄弱环节,主轴颈和连杆颈的过渡处更为严重。如果机械加工不当,润滑保养不好或柴油机运行受力不当,圆角部位的附加应力超过了界限值,就会在此部位产生疲劳源,逐渐扩展形成裂纹,最终发生疲劳断裂。所以曲轴表面强化处理主要是通过对曲轴圆角的强化来提高曲轴的疲劳强度[1]。。曲轴在发动机中承担最大负荷和全部功率,承受着强大的、方向不断变化的弯矩及扭矩,同时经受着长时间高速运转的磨损,因此要求曲轴材质具有较高的刚性、疲劳强度和良好的耐磨性能。 2.曲轴服役条件和性能指标 2.1 服役条件 曲轴工作过程中,往复的惯性力和离心力使之承受很大的弯曲和扭转应力,轴颈表面容易磨损。疲劳断裂是曲轴的主要破坏形式,

发动机管理系统习题2

第一章习题 一、填空题 1.电控燃油喷射系统用英文表示为____________,怠速控制系统用英文表示为___________。 2.目前,应用在发动机上的子控制系统主要包括电控燃油喷射系统、____________和其他辅助控制系统。 3.在电控燃油喷射系统中,除喷油量控制外,还包括喷油正时控制、______________和_____________控制。 4.电控点火系统最基本的功能是________________。此外,该系统还具有_____________控制和______________控制功能。 5.排放控制的项目主要包括废气再循环控制、活性炭罐电磁阀控制、氧传感器和___________、____________控制等。 6.传感器的功用是____________________________________________。 7.凸轮轴位置传感器作为_____________控制和_______________控制的主控制信号。 8.爆燃传感器是作为_____________控制的修正信号。 9.电子控制单元主要是根据__________确定基本的喷油量。 10.执行元件受________控制,其作用是__________________。 11.电控系统由、、三大部分组成。 12.电控系统有、两种基本类型。 13.应用在发动机上的电子控制技术有:电控燃油喷射系统、、、、、进气控制系统、增压控制系统、巡航控制系统、警告提示、自诊断与报警系统、失效保护系统、应急备用系统。 14._________________是采集并向ECU输送信息的装置。 15.__________________是发动机控制系统核心。 16.汽车电控系统的执行元件主要有、、、、____________________元件。 17.STA信号主要作用是______________________________________。 18.STA信号和起动机的电源连在一起,由__________________控制。 19.动力转向开关信号表示_____________________________________的信息。 20.空挡起动开关信号的作用是____________________________________________。 二、判断题 1.现代汽车广泛采用集中控制系统,它是将多种控制功能集中到一个控制单元上。() 2.在电控燃油喷射系统中,喷油量控制是最基本也是最重要的控制内容。() 3.电子控制系统中的信号输入装置是各种传感器。() 4.闭环控制系统的控制方式比开环控制系统要简单。() 5.开环控制的控制结果是否达到预期的目标对其控制的过程没有影响。() 6.空气流量计可应用在L型和D型电控燃油喷射系统中。() 7.空气流量计与进气管绝对压力传感器相比,检测的进气量精度更高一些。() 8.曲轴位置传感器只作为喷油正时控制的主控制信号。() 9.发动机集中控制系统中,一个传感器信号输入ECU 可以作为几个子控制系统的控制信号。() 10.点火控制系统还具有通电时间控制和爆燃控制功能。() 11.ECU收不到点火控制器返回的点火确认信号时,失效保护系统会停止燃油喷射。()

汽车发动机活塞销的选材与热处理工艺课程设计

1 汽车发动机活塞销的零件图如下 Y///////////////A V///////////////A-------- 苇------ * 80^0,1 耳 图1汽车发动机活塞销零件尺寸图 连杆

2 服役条件与性能分析 活塞销(英文名称:Piston Pin),是装在活塞裙部的圆柱形销子,它的中部穿过连杆小头孔,用来连接活塞和连杆,把活塞承受的气体作用力传给连杆。为了减轻重量,活塞销一般用优质合金钢制造,并作成空心。塞销的结构形状很简单,基本上是一个厚壁空心圆柱。其内孔形状有圆柱形、两段截锥形和组合形。圆柱形孔加工容易,但活塞销的质量较大;两段截锥形孔的活塞销质量较小,且因为活塞销所受的弯矩在其中部最大,所以接近于等强度梁,但锥孔加工较难。本次设计选用内孔为原形的活塞销。 服役条件:(1)高温条件下承受周期性强烈冲击和弯曲、剪切作用(2)销表面承受较大的摩擦磨损。 失效形式:由于承受周期性的应力,使其发生疲劳断裂和表面严重磨损。性能要求:(1)活塞销在高温条件下承受很大的周期性冲击负荷,且由于活塞销在销孔内摆动角度不大,难以形成润滑油膜,因此润滑条件较差。为此活塞销必须有足够的刚度、强度和耐磨性,质量尽可能小,销与销孔应该有适当的配合间隙和良好的表面质量。在一般情况下,活塞销的刚度尤为重要,如果活塞销发生弯曲变形,可能使活塞销座损坏;(2)具有足够的冲击韧性;(3)具有较高的疲劳强度。 3 技术要求 活塞销技术要求: ①活塞销全部表面渗碳,渗碳层深度为0.8?1 . 2mm渗碳层至心部组织应 均匀过渡,不得有骤然转变。 ②表面硬度58?64 HRC,同一个活塞销上的硬度差应w 3 HRC。 ③活塞销心部硬度为24 ?40 HRC。 ④活塞销渗碳层的显微组织应为细针马氏体,允许有少量均匀分布的细小粒状碳化物,不得有针状和连续网状分布的游离碳化物存在。心部的针状应是低碳马氏体及铁素体。

发动机管理系统

发动机管理系统 Company Name 公司名 排名 研发中心 工厂 Bosch 博世 1 苏州 联合电子(上海、西安和无锡)、无锡博世威孚(柴油) Delphi 德尔福 2 上海 北京德尔福发动机、北京德尔福万源 Continental 大陆汽车 3 上海 原SiemensVDO 的芜湖、长春工厂;原Freescale 的天津工厂Magnetti Marelli 马瑞利 4 芜湖工厂、上海工厂 Visteon 伟世通 5 上海 重庆工厂 Hitachi 日立 6 Denso 电装 7 仅供Toyota Valeo 法雷奥 8 Eontronic 意昂神州 美国 北京总部、上海分部 TroiTec 锐意泰克 Vagon 华夏龙晖 阳光泰克 Woodward 伍得沃德 成都汪氏威特电喷 成都易控高科 中联汽车电子 无锡油泵油嘴研究所 美国MotoTron 公司是Woodward 公司的子公司,主要从事发动机电控 系统的开发与生产。该公司针对汽油发动机设计了一套完整的控制策略 快速开发平台,此平台从设计开发到生产贯穿一体,可有效地缩短开发 时间,加速产品化进程,降低开发费用。 美国精确技术公司(Accurate Technologies Inc)是车载嵌入式电控系统 ECU 开发、标定与测试工具技术的知名提供商。该公司的ECU 标定系统 (VISION)功能强大,好学易用,而且和Matlab/Simulink 开发平台无缝连接, 多年来被福特(Ford)汽车公司、德尔福公司(Delphi)、沃尔沃卡车公司等指 定为标准匹配标定系统。该公司的No-Hooks 软件是ECU 控制策略快速开 发领域的重大突破。用户只用标定文件(*.a2l 与*.hex 文件),而不需要控制 策略源代码即可对控制逻辑进行修改。修改过的代码自动灌装进原来的 ECU 内进行测试运行。该技术已在美国、欧洲与日本得到了广泛的应用。 美国RMS(Rinehart Motion System)是一家专门从事功率驱动产品与方案 的公司。该公司提供或定制5-500KW 级应用于混动或纯电动控制系统、能 源贮藏系统和大功率设备的电机驱动器、静变流器、DC/DC, DC/AC, AC/DC 等产品。现有客户主要为军工、汽车或跑车、农业机械、工业控制 等行业的世界知名制造公司或主机厂。RMS 与意昂科技将为国内客户提供 产品技术、项目咨询、定制开发等服务。 美国Drivven, Inc, 公司自2003年起提供汽车控制和数据采集解决方案, 已经成为发动机和车辆电子系统开发新标准的领导者之一。基于FPGA 汽

汽车发动机活塞销地选材与热处理实用工艺课程设计

实用文档 1 汽车发动机活塞销的零件图如下 图1 汽车发动机活塞销零件尺寸图

2 服役条件与性能分析 活塞销(英文名称:Piston Pin),是装在活塞裙部的圆柱形销子,它的中部穿过连杆小头孔,用来连接活塞和连杆,把活塞承受的气体作用力传给连杆。为了减轻重量,活塞销一般用优质合金钢制造,并作成空心。塞销的结构形状很简单,基本上是一个厚壁空心圆柱。其孔形状有圆柱形、两段截锥形和组合形。圆柱形孔加工容易,但活塞销的质量较大;两段截锥形孔的活塞销质量较小,且因为活塞销所受的弯矩在其中部最大,所以接近于等强度梁,但锥孔加工较难。本次设计选用孔为原形的活塞销。 服役条件:(1)高温条件下承受周期性强烈冲击和弯曲、剪切作用 (2)销表面承受较大的摩擦磨损。 失效形式:由于承受周期性的应力,使其发生疲劳断裂和表面严重磨损。 性能要求:(1)活塞销在高温条件下承受很大的周期性冲击负荷,且由于活塞销在销孔摆动角度不大,难以形成润滑油膜,因此润滑条件较差。为此活塞销必须有足够的刚度、强度和耐磨性,质量尽可能小,销与销孔应该有适当的配合间隙和良好的表面质量。在一般情况下,活塞销的刚度尤为重要,如果活塞销发生弯曲变形,可能使活塞销座损坏;(2)具有足够的冲击韧性;(3)具有较高的疲劳强度。 3 技术要求 活塞销技术要求: ①活塞销全部表面渗碳,渗碳层深度为0.8 ~ 1.2mm,渗碳层至心部组织应均匀过渡,不得有骤然转变。 ②表面硬度58 ~ 64 HRC,同一个活塞销上的硬度差应≤3 HRC。 ③活塞销心部硬度为24 ~ 40 HRC。 ④活塞销渗碳层的显微组织应为细针马氏体,允许有少量均匀分布的细小粒状碳化物,不得有针状和连续网状分布的游离碳化物存在。心部的针状应是低碳马氏体及铁素体。

汽车发动机管理系统检修

第8 次课模块一发动机管理系统的检修 项目1.8 发动机管理系统的仪器诊断? 目的要求掌握使用故障检测仪对发动机管理系统进行检测与诊断。 ? 教学重点使用故障检测仪对发动机管理系统进行检测与诊断。 ? 学习难点 使用故障检测仪对发动机管理系统进行检测与诊断。 ? 教具及工具 桑塔纳轿车 2辆,各种传感器若干,通用工具 2 套,万用表 2 块,汽车诊断仪 2 台。 ? 教学内容及时间安排( 180分钟) 1. 问题的引入约 10 分钟 2.汽车电控系统诊断方法约 40 分钟 3.使用 1552 对上海大众桑塔纳 2000 型轿车进行检测与诊断 约 130 分钟

教学内容组织与过程设计备注

课程引入(约10分钟) 汽车电控系统诊断方法(约40分钟) 一、汽车故障诊断新技术 2.3.1案例法 传统的故障诊断中大部分是(,基于规则推理)、(,模式推理)的专家系统技术的研究。由于这些传统的专家系统是基于模型化驱动的(基于模型的诊断方法使用诊断对象的结构、行为和功能模型等深知识进行诊断推理),在模型的构建、信息的获取、信息的处理方面存在严重不足,有一些难以克服的缺点,如系统领域知识的规则提取困难;规则库、模式库的创建和管理复杂艰巨;推理过程中规则与模式难以准确选取等。 整个汽车故障诊断系统主要由知识库、故障案例库、征兆数据库和推理系统构成。其中主要部分的内容和功能描述如下: a)知识库。问题求解的知识、经验的集合,主要由专家提供,包括

汽车故障的分类信息及不同种类故障需要的各种关键特征属性及其权值,并以此构建故障案例库和征兆数据库。 b)故障案例库。由用户根据汽车故障日志和维修日志等历史数据填写的关于汽车故障的各种信息 ,是存储案例和产生新案例的仓库,为新问题的解决提供参考依据。 c)征兆数据库。汽车发生故障时经过数据采集的故障征兆数据 信息 ,是指故障发生的潜在特征 ,即故障发生时汽车运行状态发生的变 化,通常是故障发生时以汽车运行状态参数表示的特征属性。 d)推理系统。整个系统的核心,由案例检索、匹配,案例调整、 学习组成。它决定了诊断效率的高低以及对知识处理的高低 ,实现从已 有的案例集中找到与当前故障问题最为相似的案例 ,并提供相应的解决 方案(即故障维修方案)。同时不断获取新知识和改进旧知识 , 生成 新的维修方案 ,并按一定的存储策略添加到案例库中。这样 ,通过不断 地学习新案例和修改案例库中的旧案例 ,使案例库得到扩充和完善。 2.3.2 故障树分析法 故障树分析法—()是一种将系统故障形成原因按树枝状逐级细化的图形演绎方法,是 60 年代发展起来的用于大系统可靠性、安全性分析和风险评价的一种方法。它通过对可能造成系统故障的各种因素(包括硬件、软件、环境、人为因素等)进行分析,画出逻辑框图(即故障树),再对系统中发生的故障事件,作由总体至部分按树枝状逐级细化的分析,并对系统在方案与初步设计阶段进行可靠性、安全性分析,常用于系统的故障分析、预测和诊断,找出系统的薄弱环节,以便在设计、制造和使用中采取相应的改进措施。 基于故障树的诊断 ,采用面向对象的基于故障树的框架和广义规则的混合知识表示 ,把整个故障树当作一个对象 ,把故障树上所有子、父结点间形成的广义规则封装在一个独立的框架内 ,如某故障树上有结点异常 ,则启动与该故障树对应的框架 ,诊断时只把该框架内的广义规则调入内存 ,提高了诊断速度 .此外 ,该方法还可诊断多故障,因为在推理过程中采用反向遍历搜索 ,可找出所有故障及可能故障的部件 .对可能故障的部件 ,按照其与顶事件形成的通路的权值的大小进行排序 ,权值最大的元素其优先级最高 ,有利于诊断信息不足条件下的对故障源的最优搜索 ,为故障预测和快速维修指明方向 . 2.3.3 专家系统 专家系统是一种基于特定领域内大量知识与经验的智能程序系统,应用人工智能技术模拟人类专家求解问题的思维过程解决领域内的各种问题,是人工智能的一个重要分支。

发动机热管理系统及其优化

发动机热管理系统优化 1.发动机热管理系统概述 发动机热管理(ETMS, Engine Thermal Management System)是从系统整体角度,集成控制发动机的燃烧、增压与进排气、冷却系统和发动机舱等的传热,提高循环效率,减低热负荷,控制发动机部件高低温极限、温度分布及其规律变化,在提高发动机的冷却能力的同事,保持发动机良好的动力性、经济性、排放性能和可靠性。 应用发动机热管理系统技术,可以有效的将发动机中所涉及到的传热系统当作一个大的综合系统进行考虑并得到发动机各个热流系统的精确的边界参数,从而对各个热流系统的温度进行精确的控制,可以保证关键部件和系统安全高效运行,控制和优化热量传递过程,减小冷却系统的尺寸和功率消耗,合理利用热能,降低废热排放,提高能源利用效率,减少环境污染。发动机热管理与传统发动机的冷却系统有着显著区别。从发动机冷却到发动机热管理,不仅是技术上的进步,更是管理、设计思想的突破。发动机热管理技术已成为发动机节能、降低排放、提高动力性、可靠性及发动机寿命的重要措施。 2.发动机热管理的研究现状 国外大公司对动力系统主要部件及热管理部件如散热器、中冷器的研究已经相当成熟,系统匹配已经综合考虑整车动力性、经济性、排放、乘坐舒适性、可靠性等,并做到了智能化管理。并且国外整车公司于发动机公司都在做这方面的工作。而在国内将发动机热管理当作一个系统来进行考虑的比较少,这方面的工作基本局限于大学,整车企业和发动机企业只是刚开始,基本停留在冷却系统研究的初级阶段。主要还是对各子系统单独考虑,并在此基础上进行一些优化。整车和发动机企业缺乏合作研究,只是各自

发动机管理系统习题1

第三章习题 一、填空题 1.点火提前角的修正方法有_________________ 和________________两种方法。 2.在传统的汽油机点火系中,断电器触点的开闭是由__________________来控制的。 3.点火线圈初级电路的接通时间取决于__________________和_______________。 4.使发动机产生最大输出功率的点火提前角称为_________________。 5.电控点火系统一般由_________、__________ 、_______ 、________、点火线圈、分电器、火花塞等组成。 6.电源一般是由蓄电池和________共同组成。 7._________________是爆燃控制系统的主要元件,其功能是_________________________。 8.电感式爆燃传感器主要由_______ 、__________ 、_________及外壳等组成。 9.电感式爆燃传感器利用________________原理检测发动机爆燃。压电式爆燃传感器利用_______________原理检测发动机爆燃。 10.对应发动机每一工况都存在一个_____________点火提前角。 11.最佳点火提前角应使发动机气缸内的最高压力出现在上止点后_____________。 12.最佳点火提前角的数值与_______、______、______、______ 等很多因素有关。 13.汽油发动机的负荷调节是通过__________________________调节。 14.辛烷值较低的汽油抗暴性较__________。点火提前角则应_________。 15.发动机起动时,按___________________________对点火提前角进行控制。 16.日本丰田车系TCCS系统中,实际的点火提前角等于___________ 、_________ 和________之和。 17.点火提前角的修正方法有______________和____________。 18.点火提前角的主要修正项目有______________ 、__________、__________等。 19.水温修正可分为____________、_____________修正。 20.空燃比反馈控制系统是根据________________的反馈信号调整喷油量的多少来达到最佳空燃比控制的。 21.在传统的点火系中,由____________来控制断电器触点的开闭。 22.在现代电控点火系统中,用灵敏可靠的__________和__________取代了传统点火系中的断电器和分电器凸轮。 23.随发动机转速提高和电源电压下降,初级电流通电时间需__________。 24.爆燃传感器一般安装在_________,其功用是__________________________________。 25.爆燃传感器向ECU输入爆燃信号时,电控点火系统采用__________模式。 26.发动机工作时,ECU根据_______________信号判断发动机负荷大小。 27.蓄电池点火系统又称为____________点火系统。 28.蓄电池点火系统的主要缺点是:________________ 、_____________、______________。 29.火花塞的作用是_______________________________________。 30.起动时点火提前角的控制信号主要是__________________和______________。 31.发动机正常工作必须满足______________ 、____________、____________三方面条件。 32.点火系一般是由___________、__________、_________三部分组成。 33.初级电路包括__________、_____________、_____________及所有相关的电线和接头。 34.在点火系统中必须对____________、____________、___________三方面进行控制。 35.点火提前角随着发动机的负荷增大而________。 36.点火提前角的控制包括___________________ 、________________两种基本工况控制。 37.汽油机电控点火系统的功能主要包括、、及三个方面。

《汽车发动机管理系统》A卷

2019—2020学年 第二学期期末考试试题 《发动机管理系统故障诊断与维修》试卷 A 卷 一、填空题(共10题,每空1分,共20分) 1、汽车故障按丧失工作能力程度进行分类,要分为___________ 和____________。 2、汽车故障的变化规律可分为3个阶段,早期故障期、_________________ 和___________。 3、凸轮轴位置传感器可分为____________、 ____________和光电式三种类型。 4.无分电器点火线圈与一般点火线圈不同,其___________ 与___________没有连接,为互感作用。 5、汽车每行驶___________公里或1至2年,应更换___________滤清器。 6、电控燃油喷射系统按进气量的计算方式不同可分为___________和________型两种。 7、排气再循环控制系统的作用是 。 8、电控燃油喷射系统由 、 、 三个子系统组成。 9、电控燃油喷射系统的类型按喷射时序分类可分为_________________ 、______________ 和______________________三种。 10、电控共轨喷射系统中有一条公共油管,用___________向共轨中泵油,用电磁阀进行压力调节并由压力传感器反馈控制。 二、选择题(共10题,每题2分,共20分) 1、下列哪项不是电控发动机的优点( )。 A 、良好的起动性能 B 、加速性能好 C 、功率大 D 、减速减油或断油 2、火花塞属于点火系统当中的( )。 A 、执行器 B 、传感器 C 、既是执行器又是传感器 D 、控制开关 3、以下哪项是汽车起动困难的机械方面的原因( )。 A 、气缸压缩压力不足 B 、高压火不足 C 、个别重要传感器有故障 D 、起动机故障 4、当汽车处于早期故障期也就是汽车的磨合期时,此时的汽车诊断一般是( )。 A 、总成损坏 B 、材料老化 C 、机械磨损 D 、电子元件损坏 5、标准OBD —II 诊断插座上有( )个插孔。 A 、16 B 、14 C 、12 D 、15 6、气缸内最高压缩压力点的出现在上止点后( )曲轴转角内为最佳。 A 、20°~25° B 、30°~35° C 、10°~15° D 、15°~25° 7 、影响初级线圈通过电流的时间长短的主要因素有( )。 A 、发动机转速和温度 B 、发动机转速和蓄电池电压 C 、发动机转速和负荷 D 、发动机转速和温度 8.电子控制柴油机系统在加注燃油时不小心误加汽油,会造成( )损坏。 A 、喷油器 B 、高压泵 C 、低压泵 D 、燃油泵 9.发动机不能起动,无着车迹象时,应首先进行( )。 A 、检查喷油器及电路 B 、检查高压火花 C 、解码仪读取故障码 D 、传感器 10.锥体形涡流发生器存在于以下( )空气流量传感器中。 A 、叶片式 B 、卡门旋涡式 C 、热线式 D 、热膜式 三、判断题(正确的在括号内画√,错的画×每题2分,共20分) 1.( )能较方便排除的故障,或不影响行驶的故障称为一般故障。 2.( )混合气的分配均匀性好是电控发动机的优点之一。

汽车热管理综述

汽车热管理现状发展综述 自从汽车产生以来,排放以及燃油经济性有关先进科学技术陆续应用到了内燃机上,汽车性能得到了明显的改善。在内燃机燃烧系统、气体热交换系统以及发动机控制系统的发展与改进方面,我们都花费了大量的精力。为了提高发动机的性能,但是,在之后的35年,我们都在发动机及其动力总成上花费了很大的精力,收获却越来越小,成本越来越高。幸运的是,现代工业已经发现并探索出了“最后的领地”—汽车热管理。 何为汽车热管理系统?汽车热管理系统是从系统集成和整体角度出发,统筹热量与发动机及整车之间的关系,采用综合手段控制和优化热量传递的系统。先进的热管理系统设计必须同时考虑发动机冷却系统与润滑系统、暖通空调系统(HV AC)以及发动机舱内外的相互影响,采用系统化、模块化设计方法将这些系统进行设计集成、制造集成,集成为一个有效的热管理系统。其必须能根据行车工况和环境条件,自动调节冷却强度以保持相应的部件在最佳的温度范围内工作,改善汽车各方面的性能,例如燃油经济型、驾驶舒适性等。因此,开发高效可靠的汽车热管理系统已经成为发动机进一步提高功率、改善经济性所必须突破的关键技术问题。因此采用先进的热管理系统设计理念,应用汽车现代设计方法和手段,对汽车热管理系统进行深入研究具有十分重要的意义。 1.国内汽车热管理系统的研究现状 发动机冷却系统作为发动机正常稳定运行的重要辅助系统,国内学者和企业对其研究一直在不断地深入和扩展。在燃烧放热,活塞、缸套、气缸盖温度场与热负荷,缸内气体流动与传热,散热器设计,风扇设计优化,排气系统传热等方面做了大量的研究工作。 目前,国内对汽车整车或者整机的热管理研究并不成熟,还处于初级阶段。国内对整车或者整机的研究主要集中在某几个高校,如同济大学、浙江大学、西安交通大学、清华大学等;而只有几所高校研究发动机的整机热管理,并且还处于起步阶段;而对于整车的热管理研究,国内几乎没有可以承担的。国内大部分企业主要针对某些零部件做单一的研究,并没有把部件统一起来作为整体来考虑。 对于小型轿车来说,冷却系统趋于向高性能方向发展,电控应用技术越来越多;但是对于重型车辆来说,改变并不是很大。重型汽车热管理系统基本结构在过去的40—50年里变化不大,有些部件(冷却液泵和节温器)的设计基本上没改变过。传统的节温器通常采用的是注蜡式节温器,它只能在一定的冷却液温度(80一85℃)内进行单点控制(节温器在85℃时开启,80℃时关闭),不能满足未来的冷却系统对冷却液流量精确控制的要求。研究表明。在25℃大气温度时,路上运行的负载车辆,其节温器打开(大循环)时间仅占总时间的10%。另外,

汽车综合性能检测站能力的通用要求精编版

汽车综合性能检测站能力的通用要求 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

汽车综合性能检测站能力的通用要求1 范围 本标准规定了汽车综合性能检测站开展汽车综合性能检测工作应具备的服务功能、管理、技术能力以及场地和设施的要求。 本标准适用于汽车综合性能检测站建设、运行管理以及对汽车综合性能检测站能力认定、委托检测和监督管理。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 1589?道路车辆外廓尺寸、轴荷及质量限值 GB 7258?机动车运行安全技术条件 GB/T 11798.9平板制动试验台检定技术条件 GB/T 12480客车防雨密封性试验方法 GB/T 12534?汽车道路试验方法通则 GB/T 13563?滚筒式汽车车速表检验台 GB/T 13564滚筒反力式汽车制动检验台

GB/T 15481?检测和校准实验室能力的通用要求 GB/T 15746.1~15746.3?汽车修理质量检查评定标准GB/T 18344?汽车维护、检测、诊断技术规范 GB 18565?营运车辆综合性能要求和检验方法 GB/T 50033?建筑采光设计标准 GB 50034?工业企业照明设计标准 GB 50055?通用用电设备配电设计规范 GB 50057?建筑物防雷设施规范 GBZ1?工业企业设计卫生标准 GA 468?机动车安全检验项目和方法 JT/T 198?营运车辆技术等级划分和评定要求 JT/T 386?汽车排气分析仪 JT/T 445?汽车底盘测功机 JT/T 448?汽车悬架装置检测台 JT/T 478?汽车检测站计算机控制系统技术规范 JT/T 503?汽车发动机综合检测仪 JT/T 504?前轮定位仪 JT/T 505?四轮定位仪 JT/T 506?不透光烟度计 JT/T 507?汽车侧滑检验台 JT/T 508?机动车前照灯检测仪 JT/T 510?汽车防抱制动系统检测技术条件

宇通热管理系统

发动机热管理系统是如何节油的? 发动机热管理系统能够从节能降耗、运行更可靠、延长发动机及附件使用寿命三个方面起到降低油耗,减少维修费用的目的,并保障车辆的可靠运行。 1、燃油燃烧更充分(节能降耗) 通过优化客车发动机进排气系统,对发动机进排气阻力进行优化,给发动机最佳的空气燃油比例,实现燃油的更充分的燃烧,提升了燃油使用率,达到节省燃油的目的。 通过改进发动机温控系统,保证发动机在最适宜的温度环境80°C-95°C下工作,从而最大限度地发挥动力效能,并有效延长发动机寿命。 2、仓体散热更科学(延长使用寿命) 通过对空气流动路径的测量与仓体内结构布置的改进,提高车辆通过结构来改善仓体散热的能力,尽量减少附属件做工。 根据运行中车辆仓体内部温度分布的研究,将易高温老化的零部件的位置进行优化,提高发动机仓体内各部件的寿命。 3、动力利用更有效(运行可靠) 通过对发动机附件的优化管理,使发动机所产出的能量,在冷却风扇、气泵、空调压缩机等附属耗能设备中得以最合理的分配、应用,减少了能量的无效损耗,将更多能量集中供给客车行驶。 发动机热管理系统——降低进排气阻力 发动机进气量的大小决定了发动机燃烧是否充分,较大的进气阻力将导致功率降低、油耗增加。宇通掌握了多种发动机进气系统对油耗的影响规律,极大的满足了发动机对进气阻力的要求,使油耗更低,运营更经济。 进气阻力对整车油耗的影响规律是,在进气阻力远大于发动机要求时,影响作用很大,当进气阻力逐渐减小,对油耗的影响作用也逐渐减小,当进气阻力完全符合发动机要求时,降低油耗的效果递减。 通过对进气阻力的优化改进,在等速行驶过程中,油耗下降2.7升。

德尔福发动机管理系统技术手册模板

德尔福发动机管理系统技术手册

资料内容仅供参考,如有不当或者侵权,请联系本人改正或者删除。 MT20 EMS 系统技术手册 1

资料内容仅供参考,如有不当或者侵权,请联系本人改正或者删除。 目录 第一章系统介绍 第二章58齿同步逻辑及MAPCID 第三章燃油系统 第四章点火系统 第五章怠速系统 第六章空调控制系统 第七章碳罐电磁阀控制 第八章风扇控制 第九章里程累计系统 第十章故障诊断 2

3

第一章系统介绍 德尔福发动机管理系统是以德尔福MT20发动机控制模块(ECM)为核心的系统, 简称为MT20发动机管理系统。 一、发动机控制模块(ECM) 1.MT20发动机控制模块是德尔福专门为中国地区电喷市场开发的 ECM, 设计上运用了最新的电子硬件技术, 并同时采用了低价位的设计结构, 实现了较高的性价比。硬件上采用了16位微处理器( CPU) , 具有充分的内存, 高强的运算速度, 可灵活定义的I/O输入输出口。软件采用德尔福模块化C语言编写的第二代控制软件。MT20具备了满足当前欧3法规所需的所有技术规格。 2.MT20的系统功能包括: 1)速度密度空气计量法; 2)闭环控制多点顺序燃油喷射( 包括MAPCID压力判缸) ; 3)无分电器直接点火, 由ECM内置点火模块驱动分组点火( 也可支持4 缸顺序点火) ; 4)线性EGR控制; 5)步进马达怠速控制; 6)爆震控制; 7)空调、冷却系统控制; 8)里程记忆; 9)电压过高保护; 10)电子防盗; 11)CAN-BUS通讯接口可与自动变速箱控制模块( TCM) 或ABS系统 通讯。 4

曲轴的热处理工艺

曲轴的热处理工艺 曲轴是引擎的主要旋转机件,装上连杆后,可承接连杆的上下(往复)运动变成循环(旋转)运动。是发动机上的一个重要的机件,其材料是由碳素结构钢或球墨铸铁制成的。曲轴的性能在很大程度上影响着汽车发动机的可靠性与寿命。曲轴在发动机中承担着最大的负荷和全部的功率,承担着强大的方向不断变化的弯矩和扭矩,同时承受着长时间的高速运转的磨损,圆角过渡处处于薄弱环节,主轴颈与圆角的过渡处更为严重。因而,需要合适的热处理工艺,以保证其达到所要求的各项性能指标。 在曲轴工作的过程中,往复的惯性力和离心力使之承受很大的弯曲---扭转应力,轴颈表面容易磨损,且轴颈与曲臂的过渡圆角处最为薄弱。除曲轴的材质,加工因素外,曲轴的工作条件(温度、环境介质、负荷特性)等都是影响曲轴服役的。 曲轴的主要失效形式有(1)疲劳断裂:多数断裂时曲柄与轴颈的圆角处产生疲劳裂纹,随后向曲柄深处发展,造成曲柄的断裂,其次是曲柄中部的油道内壁产生裂纹,发展为曲柄处的断裂。(2)轴颈表面的严重磨损。 因此,曲轴的选材十分重要,既需要满足曲轴的力学性能,也需要考虑强度和耐磨性。由于曲轴需要承受交变的弯曲---扭转载荷以及发动机的大的功率,因此,要求其具有高的强度,良好的耐磨、耐疲劳性以及循环韧性等。因而,根据曲轴材料的要求,各项技术要求,及材料的成分,机械性能,淬透性,同时需考虑成本的经济性,最终可以选择40Cr作为汽车发动机的材料。 所以曲轴的大致加工路线是,锻造→正火→机械加工→去应力退火→调质处理→表面热处理(高频淬火+低温回火),其中预备热处理为正火,然后可能有必要进行去应力退火,最终热处理为调质处理和表面热处理的高频淬火和低温回火。 40Cr的显微组织不均匀,且晶粒粗大,需要进行预备热处理来细化晶粒和改善其内部组织。翻阅书籍后我决定采用正火的方法来作为预备热处理。正火温度为Ac3或Acm以上40到60℃,故取正火温度为880℃,来改善晶粒大小,使晶粒细化,可以获得更好的切削加工性能,并为后续热处理工艺打好基础。 正火后组织变成了片状P和片状渗碳体,此时的钢的切削性能较好,硬度较低,便于切削加工。在进行粗加工后组织内部可能会产生一些残余应力,影响后续热处理工艺,于是需要用去应力退火来消除组织应力。一般去应力退火加热温度低于回火温度,故取540℃,再保温2小时,以防止产生新的残余应力。 完成上述工序后40Cr的性能任未满足曲轴的要求,需要进行更进一步的操作,即最终热处理,在这里选择的是调质处理以及表面高频淬火。 对于调质处理,40Cr是亚共析钢,淬火温度为Ac3+30到50℃,所以取淬火温度为830℃,而40Cr淬透性较好,为了避免40Cr钢在淬火时出现淬裂现象,因此选择淬火介质——油,保温10分钟。淬透之后采用高温回火,加热温度在560℃左右,保温两个小时空冷。 实现淬火的必要条件是加热温度必须高于临界点温度以上,以获得奥氏体组织,其冷却速度必须大于临界冷却速度,而淬火得到的组织是马氏体或下贝氏体。对40Cr进行淬火前,其组织状态为珠光体,而淬火后组织为马氏体。马氏体具有很高的硬度,但很脆,所以需要高温回火来提高韧性适当降低硬度。回火后40Cr的组织为回火索氏体,保留了淬火效应,索氏体均匀细密,晶粒细小,具

相关文档
相关文档 最新文档