文档库 最新最全的文档下载
当前位置:文档库 › 【五年经典推荐 全程方略】高三数学 专项精析精炼 考点10 解三角形应用举例

【五年经典推荐 全程方略】高三数学 专项精析精炼 考点10 解三角形应用举例

【五年经典推荐 全程方略】高三数学 专项精析精炼 考点10 解三角形应用举例
【五年经典推荐 全程方略】高三数学 专项精析精炼 考点10 解三角形应用举例

考点10 解三角形应用举例

1.(2010·陕西高考理科·T17)如图,A,B是海面上位于东西方向相距

(

53+海里的两个观测点,现位于A点北偏东45°,B点北偏西60°

的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距

里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?

【命题立意】本题考查了三角恒等变换、正、余弦定理,考查了解决三角形问题的能力,属于中档题.

2.(2010·陕西高考文科·T17)在△ABC 中,已知B=45°,D 是BC 边上的一点, AD=10,AC=14,DC=6,求AB 的长.

【命题立意】本题考查了已知三角函数值求角、正弦定理、余弦定理,考查了解三角形问题

的能力,

属于中档题.

【思路点拨】解三角形△ADC ? cos ADC ∠?∠ADC ?∠ADB ?解三角形△ABD ? AB 【规范解答】在△ADC 中,AD=10,AC=14,DC=6, 由余弦定理得cos ADC ∠=2222AD DC AC AD DC +-=

100361961

21062+-=-??, ∴∠ADC=120°, ∠ADB=60°,

在△ABD 中,AD=10, ∠B=45°, ∠ADB=60°,

由正弦定理得

sin sin AB AD

ADB B

=∠,

∴AB

=

10sin 10sin 60sin sin 45AD ADB B ∠?

==

=?

3.(2010·江苏高考·T17)某兴趣小组测量电视塔AE 的高度H(单位:m ),如示意图,垂直放置的标杆BC 的高度h=4 m ,仰角∠ABE=α,∠ADE=β.

(1)该小组已测得一组α,β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值.

(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使α与

β之差较大,可以提高测量精确度.若电视塔的实际高度为125m ,试问d 为多少时,α-β

最大?

【命题立意】本题主要考查解三角形的知识、两角差的正切及不等式的应用. 【思路点拨】(1)利用,,H αβ,h 分别表示AB ,AD ,BD ,然后利用AD-AB=DB 求解. (2)利用基本不等式求解.

【规范解答】(1)tan tan H H AD AD ββ=?=,同理:tan H AB α=,tan h BD β=.

由AD-AB=DB ,得

tan tan tan H H h

βαβ

-=

,解得:

因此,算出的电视塔的高度H 是124 m. (2)由题设知d AB =,得tan ,tan H H h H h

d AD DB d

αβ-=

===

, 2tan tan tan()()

1tan tan ()1H H h hd h d d H H h H H h d H H h d d d d

αβαβαβ--

--====

--+?+-+?+

()

H H h d d

-+

d =取等号)

故当d =tan()αβ-最大. 因为02

π

βα<<<,则02

π

αβ<-<

,由t a n y x =的单调性可知:

当d =α-β

最大.

故所求的d

是m.

4.(2010·安徽高考理科·T16)设ABC ?是锐角三角形,,,a b c 分别是内角,,A B C 所对边长,并且2

2sin sin() sin() sin 33

A B B B π

π

=+-+.

(1)求角A 的值.

(2)若AB

AC 12,AB a ?==,b c (其中b c <).

【命题立意】本题主要考查三角函数,向量的数量积,余弦定理等知识的综合应用,考查考

生化简、运算、求解能力.

【思路点拨】先对2

2sin sin(

)sin()sin 33

A B B B π

π

=+-+化简,求出角A ;再根据(2)的

条件和余弦定理,构造方程组求解,b c .

【规范解答】(1)

22sin sin()sin()sin 33

A B B B ππ

=+-+

211

sin sin )sin 22

B B B B B =+-+22231cos sin sin 44B B B =-+34=,

sin 2

A ∴=±

由题意02

A π

<<

,所以sin 2

A ∴=

,3A π=.

222222cos 2cos

283

a b c bc A b c bc π

=+-=+-=,2228b c bc ∴+-=②,

b c <,由①②解得4,6b c ==.

5.(2010·福建高考文科·T21)某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.

(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?

(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值. (Ⅲ)是否存在v ,使得小艇以v 海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v 的取值范围;若不存在,请说明理由.

【命题立意】本题考查解三角形、二次函数等基础知识,考查推理论证能力、抽象概括能力、

运算求解能力、应用意识,考查函数方程思想、数形结合思想、化归转化思

想.

【思路点拨】第一步设相遇时小艇航行的距离为s ,利用余弦定理把s 表

示为关于t 的函数,利用二次函数的性质求解s 的最小值,并求解此时的速度;第二步利用余弦定理解三角形表示出

v 与t 的关系式,并利用函数知识求解速度的范围;第三步把问题转化为一元二次方程根的分布问题.

【规范解答】

(Ⅰ)设相遇时小艇航行距离为s 海里,则

(Ⅱ)若轮船与小艇在

B

处相遇,由题意可得:

2

2400600900v t t =-+2

134006754t ??

=-+ ???

,由于102t <≤,即12t ≥,所以当12t =时,

v 取得最小值/小时.

(Ⅲ)由(Ⅱ)知2

2400600900v t t =

-+,令()1

0u u t

=>,于是有224006009000u u v -+-=,小艇总能有两种不同的航行方向与轮船相遇等价于上述方程

有两个不等正根,解得:30v <<,所以υ的取值范

围为()

.

解三角形应用题的一般步骤是:

一.“建模”:

1.准确理解题意,分清已知和未知,准确理解应用题中的有关名称、术语,如视角、仰角、俯角、方位角、坡度、象限角、方向角等.

2.根据题意画出图形.

3.把要求解的问题归结到一个或几个三角形中,合理运用正弦定理和余弦定理等有关知识建立数学模型.

二.“解模”:正确求解.注意:算法要简练,运算要准确. 三.“还原说明”:给出应用题的答案.

6.(2010·天津高考文科·T17)在?ABC 中,cos cos AC B

AB C

=. (Ⅰ)证明B=C.

(Ⅱ)若cos A =-

13,求sin 4B 3π?

?+ ??

?的值. 【命题立意】本小题主要考查正弦定理、两角和与差的正弦、同角三角函数的基本关系、二

倍角的正弦与余弦等基础知识,考查基本运算能力.

【规范解答】(Ⅰ)在△ABC 中,由正弦定理及已知得

sin B sin C =cosB

cosC

.于是sinBcosC-cosBsinC=0,

即sin (B-C )=0.因为B C ππ-<-<,从而B-C=0. 所以B=C. (Ⅱ)由A+B+C=π和(Ⅰ)得A=π-2B,故cos2B=-cos (π-2B )=-cosA=

13

.

又0<2B<π,于是

从而,cos4B=22

7cos 2sin 29B B -=-.

所以sin(4)sin 4cos

cos 4sin

3

3

3

18

B B B π

π

π

+

=+=

.

【方法技巧】解题的关键是合理利用三角函数公式对关系式进行恒等变形,要注意根据角的

范围来确定三角函数的符号.

7.(2010·福建高考理科·T19)某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.

(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?

(Ⅱ)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

【命题立意】本小题主要考查解三角形、二次函数等基础知识,考查推理论证能力、抽象概

括能力、运算求解能力、应用意识,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.

【规范解答】 (Ⅰ)为使小艇航行距离最小,理想化的航行路线为OT ,小艇到达T 位置时轮

船的航行位移,0AT s =即31,1030=

=t t ,310=vt ,从而330310==t

v (海里/时). (Ⅱ)若轮船与小艇在H 处相遇时,在直角三角形OHT 中运用勾股定理有:0400600)900(22=+--t t v ,等价

于964106004009002

2

+-=-+=χχt

t v (x=1t ) 从

304

27

)43(410949)16923(41022≤+-=+-+-=χχχv )3(304

27

)43(4102<≤+-χχ,

所以当30=v 时,23=

χ,3

2

=t 也就是说,当小艇以30海里/小时的速度沿北偏东

30方向行走能以最短的时间遇到轮船. 解三角形应用题的一般步骤是:

一.“建模”:

1.准确理解题意,分清已知和未知,准确理解应用题中的有关名称、术语,如视角、仰角、俯角、方位角、坡度、象限角、方向角等.

2.根据题意画出图形.

3.把要求解的问题归结到一个或几个三角形中,合理运用正弦定理和余弦定理等有关知识建立数学模型.

二.“解模”:正确求解.注意:算法要简练,运算要准确. 三.“还原说明”:给出应用题的答案.

8.(2010·安徽高考文科·T16)ABC ?的面积是30,内角,,A B C 所对边长分别为,,a b c ,

12cos 13

A =

. (1)求AB AC .

(2)若1c b -=,求a 的值.

【命题立意】本题主要考查三角函数,向量的数量积,余弦定理等知识的综合应用,考查考

生化简、运算、

A

求解能力.

【思路点拨】由12

cos 13

A =

得sin A 的值,再根据ABC ?面积公式得bc 的值,从而求数量积AB AC

的值;由余弦定理2

2

2

2cos a b c bc A =+-,代入已知条件1c b -=及bc 可求得a 的值.

【规范解答】由12cos 13A =且A 为三角形内角,得5sin 13

A ==. 又ABC S ?=

1

sin 302

bc A =,∴156bc =. (1)12

cos 15614413

AB AC bc A ?==?=. (2)222

2cos a b c bc A =+-2

12

()2(1cos )12156(1)2513

c b bc A =-+-=+??-

=, ∴5a =.

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

高中数学解三角形和平面向量

高中数学解三角形和平面向量试题 一、选择题: 1.在△ABC 中,若a = 2 ,23b =,0 30A = , 则B 等于( B ) A .60o B .60o 或 120o C .30o D .30o 或150o 2.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o ,则a 等于( D ) A .6 B .2 C .3 D .2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且2=a ,A=45°,2=b 则sinB=( A ) A . 1 2 B .22 C . 3 2 D .1 4.ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若5 ,22 a b A B ==,则cos B =( B ) A . 53 B .54 C .55 D .5 6 5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( C ) A .0 90 B .0 60 C .0 120 D .0 150 6.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D ) A. 6 π B. 3π C.6π或56 π D. 3π或23 π 7. 在△ABC 中, b a B A =--cos 1cos 1,则△AB C 一定是( A ) A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 8.在ABC ?中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1, ABC S b ?=则,3等于( C ) A. 2 B. 3 C. 2 3 D. 2 9.已知锐角△ABC 的面积为33,BC=4,CA=3则角C 大小为( B ) A 、75° B 、60° C 、45° D 、30° 10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A ) A. 3 400 米 B. 33400米 C. 2003米 D. 200米 11.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得0 120ABC ∠=,则A,C 两地 的距离为( D )。 A. 10km B. 103km C. 105km D. 107km 12.已知M 是△ABC 的BC 边上的中点,若向量AB =a ,AC = b ,则向量AM 等于( C ) A . 21(a -b ) B .21(b -a ) C .21( a +b ) D .1 2 -(a +b ) 13.若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ=则λ等于( B ) A 、1 B 、2 C 、3 D 、4 14.已知平面向量),2(),2,1(m -==,且∥,则32+=( C ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 15. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( C ) A 、17 B 、18 C 、19 D 、20 16.(2,1),(3,),(2),a b x a b b x ==-⊥r r r r r 若向量若则的值为 ( B ) A .31-或 B.13-或 C .3 D . -1 17. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( B ) (A ) 6π (B )4π (C )3π (D )π12 5 183 =b , a 在 b 方向上的投影是2 3 ,则 b a ?是( B ) A 、3 B 、 29 C 、2 D 、2 1 19.若||1,||2,a b c a b ===+r r r r r ,且c a ⊥r r ,则向量a r 与b r 的夹角为( C ) (A )30° (B )60° (C )120° (D )150°

三角函数及解三角形知识点总结

三角函数及解三角形知识点 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么 sin ,cos y x r r αα= =,()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:22221 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)??? ??=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin(

高三第一轮复习数学---解三角形及应用举例

高三第一轮复习数学---解三角形及应用举例 一、教学目标:1.理解并掌握正弦定理、余弦定理、面积公式; 2.能正确运用正弦定理、余弦定理及关系式A B C π++=,解决三角形中的 计算和证明问题. 二、教学重点:掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形 中的三角函数问题. 三、教学过程: (一)主要知识: 掌握三角形有关的定理: 正余弦定理:a 2 =b 2 +c 2 -2bccos θ, bc a c b 2cos 222-+=θ;R C c B b A a 2sin sin sin === 内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2 C =cos 2B A + 面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) 射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A (二)例题分析: 例1.在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c . 解:由正弦定理得:sinA=23 2 45sin 3sin = ?= b B a ,因为B=45°<90°且b

解三角形(正弦定理余弦定理)知识点例题解析高考题汇总及答案

解三角形 【考纲说明】 1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题 【知识梳理】 一、正弦定理 1、正弦定理:在△ABC 中,R C c B b A a 2sin sin sin ===(R 为△AB C 外接圆半径)。 2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b c A B C R R R === (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++. 3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABC abc S ah ab C ac B bc A R A B C R ?====== 4、正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(解唯一) (2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.(解可能不唯一) 二、余弦定理 1、余弦定理:A bc c b a cos 22 2 2 -+=?bc a c b A 2cos 2 2 2 -+= B ac a c b cos 22 2 2 -+=?ca b a c B 2cos 2 2 2 -+= C ab b a c cos 22 2 2 -+=?ab c b a C 2cos 2 2 2 -+= 2、余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一) (2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一): (3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角 在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

三角函数及解三角形知识点

三角函数知识点 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠.

(完整版)高中数学解三角形方法大全

解三角形 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解 【例1】考查正弦定理的应用 (1)ABC ?中,若ο 60=B ,4 2 tan = A ,2=BC ,则=AC _____; (2)ABC ?中,若ο 30=A ,2= b ,1=a ,则=C ____; (3)ABC ?中,若ο 45=A ,24=b ,8=a ,则=C ____; (4)ABC ?中,若A c a sin =,则c b a +的最大值为_____。

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在ABC ?中,已知a、b、A (1)若A为钝角或直角,则当b a>时,ABC ?有唯一解;否则无解。 (2)若A为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b< < sin时,三角形有两解; 当b a≥时,三角形有唯一解 实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式 1.余弦定理:在ABC ?中,角C B A、 、的对边分别为c b a、 、,则有 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ,其变式为: ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2.余弦定理及其变式可用来解决以下两类三角形问题: (1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; (2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; 说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决 3.三角形的面积公式 (1) c b a ABC ch bh ah S 2 1 2 1 2 1 = = = ? ( a h、 b h、 c h分别表示a、b、c上的高); (2)B ac A bc C ab S ABC sin 2 1 sin 2 1 sin 2 1 = = = ? (3)= ?ABC S C B A R sin sin sin 22(R为外接圆半径) (4) R abc S ABC4 = ? ; (5)) )( )( (c p b p a p p S ABC - - - = ? 其中) ( 2 1 c b a p+ + = (6)l r S ABC ? = ?2 1 (r是内切圆的半径,l是三角形的周长)

解三角形专题考点及例题讲解

解三角形的应用举例 考纲解读 1.利用正、余弦定理解决实际问题中的距离、高度及方向问题;2.利用正、余弦定理解决多边形的计算问题. [基础梳理] 实际问题中的常用术语 例:①北偏东m ° ②南偏西n ° 设坡角为α,坡度为i ,则i =h l =tan α [三基自测] 1.已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,则△ABC 的面积公式可表示为( ) A .S =1 2 ab sin A

B .S =1 2bc cos A C .S =12a 2sin A sin C sin B D .S =12a 2sin B sin C sin A 答案:D 2.在200 m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,如图所示,则塔高CB 为( ) A.400 3 m B.400 3 3 m C.200 3 3 m D.2003 m 答案:A 3.张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( ) A .2 2 km B .3 2 km C .3 3 km D .2 3 km 答案:B 4.(必修5·1.2例题改编)在相距2千米的A ,B 两点处测量目标C ,若∠CAB =75°,∠CBA =60°,则A ,C 两点之间的距离是________千米. 答案:6 [考点例题] 考点一 测量高度问题|方法突破 [例1] (1)某运动会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如下图所示),则旗杆的高度为__________米.( )

解三角形知识点归纳(附三角函数公式).doc

---- 高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系: A+B+C=180 °; C=180 °— (A+B) ; 2、三角形三边关系: a+b>c; a-b

高三数学《解三角形》题型归纳

高三数学《解三角形》题型归纳(含解析) 题型一:求某边的值 (1)ABC △的内角A B C ,,的对边分别为,,a b c .已知2 5,2,cos 3 a c A === ,则b =_______. (2)如图,在四边形ABCD 中,已知AD ⊥CD , AD =10, AB =14, ∠BDA =60?, ∠BCD =135? ,则BC = . (3)在△ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,若a 2 -c 2 =3b ,且sin B =8cos A sin C ,则边b = . (4)钝角△ABC 的面积是1 2 ,AB =1,BC = 2 ,则AC = . (5)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b - c =2,cos A =-1 4,则a 的值为________. (6)在ABC △中,已知3,120AB A ==o ,且ABC △的面积为153 4 ,则BC 边长为______. (7)在ABC △中,已知5,3,2AB BC B A ===,则边AC 的长为________. 答案:(1)3 (2)8 2 (3)4 (4) 5 (5)8 (6)7 (7)26 题型二:三角形的角 (1)在△ABC 中,B =π4,BC 边上的高等于1 3 BC ,则cos A =________. (2)在△ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,已知85,2b c C B ==,则cos C = (3)在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A c B b += .则A =________. (4)设△ABC 的三个内角A ,B ,C 所对的边依次为a ,b ,c ,且 cos sin a c A C =,则A =________. (5)在△ABC 中,若tan :tan :tan 1:2:3A B C =,则A =________. (6)设△ABC 的三个内角A ,B ,C 所对边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A B C >>, 320cos b a A =,则sin :sin :sin A B C =________. 答案:(1)-10 10 (2) 725

解三角形常用知识点归纳与题型总结-解三角形题型归纳总结

解三角形常用知识点归纳与题型总结 1、①三角形三角关系:A+B+C=180°;C=180°—(A+B); ②.角平分线性质定理:角平分线分对边所得两段线段的比等于角两边之比. ③.锐角三角形性质:若A>B>C 则6090,060A C ?≤c; a-b

高考数学题型全归纳解三角形考点归纳

【考题回放】 1.设,,a b c 分别是ABC ?的三个内角,,A B C 所对的边,则()2a b b c =+是2A B =的( ) (A )充分条件 (B )充分而不必要条件 (C )必要而充分条件 (D )既不充分又不必要条件 2.在ABC ?中,已知C B A sin 2tan =+,给出以下四个论断: ① 1cot tan =?B A ② 2sin sin 0≤ +

解三角形知识点归纳

解三角形知识点归纳 一 正弦定理 (一)知识与工具: 正弦定理:在△ABC 中,R C c B b A a 2sin sin sin ===。 在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角。 注明:正弦定理的作用是进行三角形中的边角互化,在变形中,注意三角形中其他条件的应用: (1)三内角和为180° (2)两边之和大于第三边,两边之差小于第三边 (3)面积公式:S=21absinC=R abc 4=2R 2sinAsinBsinC (4)三角函数的恒等变形。 sin(A+B)=sinC ,cos(A+B)=-cosC ,sin 2B A +=cos 2C ,cos 2B A +=sin 2C (二)题型 使用正弦定理解三角形共有三种题型 题型1 利用正弦定理公式原型解三角形 题型2 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化。 题型3 三角形解的个数的讨论 方法一:画图看 方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数。 二 余弦定理 (一)知识与工具: a 2= b 2+ c 2 ﹣2bccosA cosA=bc a 2c b 2 22-+ b 2=a 2+c 2 ﹣2accosB cosB=ac b c a 22 22-+ c 2=a 2+b 2 ﹣2abcosC cosC=ab c b a 22 22-+ 注明:余弦定理的作用是进行三角形中的边角互化,当题中含有二次项时,常使用余弦定理。在变形中,注意三角形中其他条件的应用: (1)三内角和为180°; (2)两边之和大于第三边,两边之差小于第三边。

2014届高三数学(理)二轮复习练习:(九)解三角形

2014届高三数学(理)二轮复习练习:(九)解三角形

小题精练(九)解三角形 (限时:60分钟) 1.在△ABC中,角A,B,C所对的边分别为a,b,c.若a cos A=b sin B,则sin A cos A+ cos2B=( ) A.-1 2 B. 1 2 C.-1 D.1 2.在△ABC中,a,b,c分别是角A,B,C的对 边,若A=π 3 ,b=1,△ABC的面积为 3 2 , 则a的值为( ) A.1 B.2 C. 3 2 D. 3 3.在△ABC中,cos2A 2 = b+c 2c (a,b,c分别为角 A,B,C的对边),则△ABC的形状为( )

A.正三角形 B.直角三角形 C.等腰三角形或直角三角形D.等腰直角三角形 4.(2013·高考天津卷)在△ABC中,∠ABC=π4 , AB=2,BC=3,则sin∠BAC=( ) A. 10 10 B. 10 5 C.310 10 D. 5 5 5.在△ABC中,角A、B、C所对的边的长分别为a,b,c.若a2+b2=2c2,则cos C的最小值为( ) A. 3 2 B. 2 2 C.1 2 D.- 1 2 6.(2014·长春市调研测试)直线l1与l2相交于

a,b.若2a sin B=3b,则角A等于( ) A.π 12 B. π 6 C.π 4 D. π 3 10.(2014·湖南省五市十校联考)在斜三角形ABC中,sin A=-2cos B·cos C,且tan B·tan C=1-2,则角A的值为( ) A.π 4 B. π 3 C.π 2 D. 3π 4 11.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10 6 m(如图所示),则旗杆的高度为( )

数学必修5解三角形,正弦,余弦知识点和练习题含答案

解三角形 1.正弦定理: 2sin sin sin a b c R A B C ===或变形:::sin :sin :sin a b c A B C =. 2.余弦定理: 222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 或 222222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? . 3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角. 2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 5.解题中利用ABC ?中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin ,tan cot A B C A B C A B C +++===.、 1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于 ( ) A .60° B .60°或120° C .30°或150° D .120° 2、符合下列条件的三角形有且只有一个的是 ( ) A .a=1,b=2 ,c=3 B .a=1,b=2 ,∠A=30°

高中数学必修解三角形教案

高中数学必修解三角形 教案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

第2章 解三角形 正弦定理 教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题. 教学重点:正弦定理的探索和证明及其基本应用. 教学难点:已知两边和其中一边的对角解三角形时判断解的个数. 教学过程: 一、复习准备: 1. 讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办? 2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以把边、角关系准确量化? →引入课题:正弦定理 二、讲授新课: 1. 教学正弦定理的推导: ①特殊情况:直角三角形中的正弦定理: sin A =c a sin B =c b sin C =1 即c = sin sin sin a b c A B C == . ② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形) 当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a b A B =. 同理,sin sin a c A C = (思考如何作高?),从而 sin sin sin a b c A B C == . ③*其它证法:证明一:(等积法)在任意斜△ABC 当中S △ ABC = 111 sin sin sin 222 ab C ac B bc A ==.

相关文档
相关文档 最新文档