文档库 最新最全的文档下载
当前位置:文档库 › 预应力混凝土简支小箱梁计算

预应力混凝土简支小箱梁计算

预应力混凝土简支小箱梁计算
预应力混凝土简支小箱梁计算

结构设计原理课程设计

——部分预应力混凝土A类构件简支小箱梁

目录

1 设计基本资料。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3

2 箱形梁构造形式及相关设计参数。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3

3 主梁作用效应计算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6

4 预应力钢筋及普通钢筋数量的确定及布置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7

5 .计算主梁截面几何性质。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13

6 承载能力极限状态计算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13

6.1 跨中截面正截面承载力计算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13

6.2 斜截面抗剪承载力计算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14

7 钢束预应力损失计算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18

8 持久状况正常使用极限状态抗裂性验算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26

8.1 正截面抗裂性验算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26

8.2 斜截面抗裂性验算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28

9 应力计算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33

9.1 持久状况应力验算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33

9.2 短暂状况应力验算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。36

10 挠度验算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37

10.1 使用阶段的挠度计算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37

10.2 预加力引起的反拱计算及预拱度的设置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37

11 主梁端部的局部承压验算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38

1 设计基本资料

1.1 跨度和桥面宽度

计算跨径:L=39m 。

桥面宽度(桥面净空):净-12.5(行车道)+2×0.5m (防撞栏)。

1.2 技术标准

设计荷载:公路-Ⅰ级。 环境标准:Ⅰ类环境。 设计安全等级:二级。

1.3 主要材料

(1)C50混凝土:

,4.32MPa f ck =,65.2MPa f tk =MPa f cd 4.22= MPa f td 83.1=,MPa E c 41045.3?=。

(2)预应力筋采用1×7标准型—15.2—1860—Ⅱ—GB/T 5224—1995钢绞线

MPa f pk 1860=,MPa f pd 1260=,MPa E p 51095.1?=

4.0=b ξ,2563.0=pu ξ。

(3)普通钢筋:采用HRB335钢筋

MPa f sk 335=,MPa f sd 280=,MPa E s 5100.2?=

53.0=b ξ,1985.0=pu ξ。

(4)箍筋及构造钢筋:采用R235钢筋

MPa f sk 235=,MPa f sd 195=,MPa E s 5101.2?=。

2 箱形梁构造形式及相关设计参数

(1)本箱形梁按部分预应力混凝土A 类构件设计,施工工艺为后张法。 (2)桥上横坡为单向2%(计算时按照简化的中梁截面特性进行计算)。

(3)箱形梁截面尺寸:主梁间距:2.8m(全桥由5片梁组成),其中翼缘预制部分宽1.8m , 现 浇段为1.0m ,箱型主梁高度:1.7m 。

(4)预应力管道采用金属波纹管成形,波纹管内径为70mm ,管道摩擦系数2.0=μ,管道偏差系数0015.0=k ,锚具变形和钢束回缩量为4mm (有顶压时)。 (5)桥梁中梁横断面尺寸如图2-1。

图2-1 箱梁横断面图(单位:mm )

(6)计算跨中截面几何特性。

在工程设计中,主梁几何特性多采用分块数值求和法进行,其计算式为 全截面面积:∑=

i

A A

全截面重心至梁顶的距离:A

y

A y i

i

u ∑=

式中 i A ——分块面积;

i y ——分块面积的重心至梁顶边的距离。 跨中截面和变截面处几何特征相同,见下表2-2。

712==

∑A

S y i

s

10687121780=-=x y

跨中截面几何特性计算表 表2-2

由此可计算出截面效率指标ρ(希望在0.5以上)

h

k k x

s +=

ρ 式中 s k ——截面上核心距,可按下式计算

mm Ay I k x s 55.3961068

12118001012.513214754

=??=∑∑=

x k ——截面下核心距,可按下式计算

mm Ay I k s x 82.594712

12118001012.513214754

=??=∑∑=

因此截面效率指标

56.01780

82

.59455.396=+=+=

h k k x s ρ

表明以上的初拟截面尺寸是合理的。

3 主梁作用效应计算

3.1 自重、恒载内力

自重、恒载内力计算结果 表3-1

注:①预制主梁(包括横隔板)的自重:m kN g p /15.271=; ②现浇板的自重:m kN g m /92.161=;

③二期恒载(包括桥面铺装、人行道、栏杆):m kN g p /0.102=。

3.2 活载内力

活载内力计算结果 表3-2

注:表中荷载值已计入冲击系数056.11=+μ。

3.3 内力组合

荷载内力计算结果 表3-3

注:基本组合(用于承载能力极限状态)

k Q k G k G d M M M M 1214.1)(2.1++= k Q k G k G d V V V V 1214.1)(2.1++=

短期组合(用于正常使用极限状态)

μ

+++=17

.0121k Q k G k G s M M M M

长期组合(用于正常使用极限状态)

μ

+++=14

.0121k Q k G k G l M M M M

4 预应力钢筋及普通钢筋数量的确定及布置

4.1 预应力钢筋数量的确定及布置

首先,根据跨中正截面抗裂要求,确定预应力钢筋数量。为满足抗裂要求,所需的有效预应力为:

cx

p c tk

cx s pe W e A f W M N +-≥

17.0/

式中:s M ——短期效应弯矩组合设计值。查表3-3:m kN M s ?=98.10788;

c A ——估计钢筋数量时近似采用毛截面几何性质,按下图4-1定的截面尺寸计算,

计算结果具体见表2-2。22118.1m A c =,m y s 712.0=,m y x 068.1=,4513215.0m I c =,

3

480538.0068.1/513215.0/m y I W x c cx ===。

p

e ——预应力钢筋重心至毛截面重心的距离,p b p

a y e -=。

图4-1 跨中截面 (尺寸单位:mm )

设p a 为100mm ,则m e p

968.01.0068.1=-=。

N

N pe

7.7253372480538

.0968

.02118.111065.27.0480538.01098.107886

3

=+

??-?≥

采用2.15s

φ钢绞线,单根钢绞线的公称截面面积2

1139mm A p =,抗拉强度标准值

MPa f pk 1860=,张拉控制应力取MPa f pk con 1395186075.075.0=?==σ,预应力损

失按张力控制应力的20%估算。所需预应力钢绞线的面积为:

264991395

)2.01(7

.7253372mm N A l

con pe

p =?-=

-=

σσ

采用8束7s φ15.2的预应力钢筋,预应力束的布置如图所示;OVM15-7型锚具,供给的预应力钢筋截面面积为2

778413978mm A p =??=,采用70φ金属波纹管成孔,预留孔道直径75mm 。

预应力钢筋布置见图4-2,4-3,4-4,4-5。 钢束位置及倾角计算见表4-6,4-7。

图4-2 跨中截面(尺寸:mm )

图4-4 L/4截面(尺寸:mm)

图4-5 支点截面(尺寸:mm)

预应力筋束曲线要素表表4-6

各计算截面预应力钢束的位置和倾角表4-7

4.2非预应力钢筋截面积估算及布置

按极限承载力确定普通钢筋。

设跨中截面预应力钢筋和普通钢筋的合力作用点到梁底边距离为a=130mm ,则

mm a h h 165013017800=-=-=。

依据《桥规》(JTG D62)第4.2.3条确定箱型截面翼缘板的有效宽度,对于中间梁:

i f m i b b ρ= m l l i 39== 44b b f m ρ=

05.039

7.04<=i l b 33b b f m ρ=

05.03953.03<=i l b 66b b f m ρ=

05.039

53.06<=i l b 根据上述i i l b /的比值,由《桥规》(JTG D62)图4.2.3-2查得0.1=f ρ, 所以,m b b m 7.044==,m b b m 53.033==,m b b m 53.066==。 因此,有效工作宽度m b b b b m m f 8.2)7.053.017.0(2)(243=++?=++=' 先假定为第一类T 形截面,由公式)2

(00x

h x b f M f cd d -'≤γ,求解x :

)2/1650(28004.221086.161040.16x x -?=??

解之得:mm h mm x f 170340

280050

200702001607.163=-?+?+

='<=。

中性轴在上翼缘中通过,确实为一类T 形,则

2

1641280

7784

12607.16328004.22mm f A f x b f A sd

p

pd f cd s =?-??=

-'=

选用14根直径为18mm 的HRB335钢筋;提供钢筋截面面积23563mm A s =,钢筋重心到截面底边距离mm a s 40=,预应力钢筋到截面底边距离为mm a p 180=,则预应力筋和普通钢筋的合力作用点到截面底边的距离为

mm

A f A f a A f a A f a s

sd p pd s

s sd p p pd sp 1673563

2807784126040

356328018077841260=?+???+??=

++=

mm

a h h sp 161316717800=-=-=

5 .计算主梁截面几何性质

本例采用后张法施工,内径70mm的波纹管成孔,当混凝土达到设计强度时进行张拉,张拉顺序与钢筋束序号相同,年平均湿度为75%。

计算过程分为三个阶段:阶段一为预制构件阶段,施工荷载为预制梁(包括横隔板)的自重,受力构件按预制梁的净截面计算;阶段二为现浇混凝土形成整体化阶段,但不考虑现浇混凝土的承受荷载能力,施工荷载除上述荷载之外还应包括现浇混凝土板的自重,受力构件按预制梁灌浆后的换算截面计算;阶段三的荷载除了阶段一、二的荷载之外,还应包括二期恒载以及活载,受力构件按现浇后的换算截面计算。

预应力混凝土构件各阶段截面几何性质见表5-1。

预应力混凝土构件各阶段截面几何性质表5-1

6 承载能力极限状态计算

6.1 跨中截面正截面承载力计算

跨中截面尺寸见图4-1,配筋情况见图4-2,预应力束和普通钢筋的合力点到截面边缘距离

mm a sp 167=,mm a h h sp 161316717800=-=-=,

上翼缘平均厚度为:mm h f 170='。 首先按式

f

f cd s sd p pd h b f A f A f ''≤+判断截面类型:

kN A f A f s sd p pd 5.1080510)356328077841260(3=??+?=+-

kN h b f f f cd 4.106621017028004.223=???=''-

f

f cd s sd p pd h b f A f A f ''>+,属于第二类T 形。

由∑x=0的条件,计算混凝土受压区高度。

mm

b

f h b b f A f A f x cd f

f cd s sd p pd 8.188340

4.22170

)3402800(4.22356328077841260)(=??-?-?+?=

'-'-+=

故mm h x f 170='>且mm h x b 2.64516134.00=?=<ξ。 将x=188.8mm 代入下式计算截面承载力。

m kN M m kN x

h bx f h h h b b f M d cd f

f f cd du ?=?=>?=?-???+-??-?=-+'-

'-'=-86.1610486.161040.14.1649710)]2

8

.1881613(8.1883404.22)21701613(170)3402800(4.22[)2

()2()(03

00γ计算结果表明,跨中截面的抗弯承载力满足要求。

6.2 斜截面抗剪承载力计算

计算受弯构件斜截面抗剪承载力时,其计算位置按下列规定采用: 1) 距支座中心h/2处截面; 2) 受拉区弯起钢筋弯起点处截面;

3) 锚于受拉区的纵向钢筋开始不受力处的截面; 4) 箍筋数量或间距改变处的截面; 5) 构件腹板宽度变化处的截面。

选取距支点h/2和变截面点处进行斜截面抗剪承载力复核。预应力筋的位置及弯起角度按表4-6和表4-7采用。

箍筋R235钢筋,直径为12mm ,双箍四肢,间距mm S v 200=;距支点相当于一倍梁高范

围内,箍筋间距mm S v 100=。 6.2.1

距支点h/2截面斜截面抗剪承载力计算

首先进行截面抗剪强度上、下限复核:

0,3

00231051.0105.0bh f V bh f k cu d td --?≤≤?γα

式中:

d V ——验算截面处剪力组合设计值,依内插法求得距支点h/2=890mm 处的弯矩为

m

kN M d ?=--?=54.1436)19500)89019500(1(86.1610422

剪力为kN V d 68.1666890195001386

.31532.173132.1731=?--

= (见表3-3);

2α——预应力提高系数,对预应力混凝土受弯构件,取为1.25;

b ——验算截面处的截面腹板宽度,mm b 5918905480

340

640640=?--

=

0h ——剪力组合设计值处的截面有效高度,即自纵向受拉钢筋合力点(包括预应力钢筋

和非预应力钢筋)至混凝土受压边缘的距离,本例中预应力钢筋均弯起,0h 近似取为跨中截面的有效高度值,即mm h 16130=。 式中:

kN V kN bh f d td 68.16663.1090161359183.125.1105.0105.003023=<=?????=?--γαkN

V kN bh f d k cu 68.16668.34271613591501051.01051.0030,3

=>=????=?--γ计算表明,截面尺寸满足要求,但需配置抗剪钢筋。 斜截面抗剪承载力按下式计算:

式中:d

V ——斜截面受压端正截面处的剪力组合设计值,其值应按06.02

mh h

x +=重新补插,先假定斜截面水平投影长度c=1610mm,由此可以计算出斜截面的顶端距支点位置为:x=h/2+1610=2500mm,由内插法求得在x=2500mm 处,

m kN M d ?=--?=74.3864]19500

)250019500(1[86.161042

2

pb

cs d V V V +≤0γ

kN V d 76.1549250019500

1386

.31532.173132.1731=?--

=

m ——剪跨比,55.110

161376.154974

.38643

0=??==

-h V M m d d 1500161355.16.06.00=??==mh c

在mm

mm mh h

x 178023906.02

0>=+=

处的剪力为: kN

V d 75.15572390195001386

.31532.173132.1731=?--= cs V ——斜截面内混凝土与箍筋共同作用时的抗剪承载力,由下式计算:

sv sv k cu cs f f P bh V ρααα,03321)6.02(1045.0+?=-

式中:

1α——异号弯矩影响系数,简支梁取为1.0;

2α——预应力提高系数,对预应力混凝土受弯构件,取2α=1.25; 3α——受压翼缘的影响系数,取1.1;

b ——斜截面受压端正截面处截面腹板宽度(x=2390mm 处), mm b 50923905480

340

640640=?--

= ;

P ——斜截面纵向受拉钢筋配筋百分率,ρ100=P ,0

bh A A A s

p pb ++=

ρ,如果

5.2>P ,取P=2.5,38.11613

5093563

7784100=?+?

=P ;

sv ρ——箍筋配筋率,00444.0200

5091

.1134=??==

v sv sv bS A ρ。 kN

V cs 8.211319500444.050)38.16.02(16135091045.01.125.13=???+??????=- pb V ——与斜截面相交的预应力弯起钢束的抗剪承载力,由下式计算

∑-?=p pd pd pb A f V θsin 1075.03

式中,

pd A ——斜截面内在同一弯起平面的预应力弯起钢筋的截面面积;

p θ——预应力弯起钢筋在斜截面受压端正截面处的切线与水平线的夹角,由表4-7中的曲线要素可求得:

000.44321====p p p p θθθθ。

kN V pb 12.5134sin 778412601075.03=????=-

该截面的抗剪承载力为:

kN V kN V V V d pb cs du 75.1557262712.5138.21130=>=+=+=γ

说明距支点h/2截面抗剪承载力是足够的。 6.2.2

变截面点处斜截面抗剪承载力计算

首先进行截面抗剪强度上、下限复核:

0,3

00231051.0105.0bh f V bh f k cu d td --?≤≤?γα

式中: d V =1323.774kN ,b =340mm ,mm h 16130=

kN V kN bh f d td 68.16663.627161334083.125.1105.0105.003023=<=?????=?--γαkN

V kN bh f d k cu 68.16667.19771613340501051.01051.0030,3

=>=????=?--γ计算表明,截面尺寸满足要求,但需配置抗剪钢筋。 斜截面抗剪承载力按下式计算:

pb cs d V V V +≤0γ

先假定斜截面水平投影长度c=1610mm,由此可以计算出斜截面的顶端距支点位置为:x=5480+1610=7090mm,由内插法求得在x=7090mm 处,

m kN M d ?=--?=1.9582)19500)709019500(1(86.161042

2

kN V d 4.1216709019500

1386

.31532.173132.1731=?--

=

0.388.41016134.12161

.95823

0>=??==

-h V M m d d ,取m=3.0 mm mh c 2903161336.06.00=??==

mm

mh h

x 37936.02

0=+=

处的剪力为:

kN

V d 9.1455379319500

1386

.31532.173132.1731=?--

= sv sv k cu cs f f P bh V ρααα,03321)6.02(1045.0+?=-

式中:5.207.21613

3403563

7784100<=?+?=P ;

0066.0200

3401

.1134=??==

v sv sv bS A ρ; kN

V cs 2.184********.050)07.26.02(16133401045.01.125.13=????+??????=- ∑-?=p pd pd pb A f V θsin 1075.03

kN 12.5134sin 778412601075.03=????=-

该截面的抗剪承载力为:

kN V kN V V V d pb cs du 75.1557235612.5132.18430=>=+=+=γ

说明变截面抗剪承载力是足够的。

7 钢束预应力损失计算

7.1 摩阻损失1l σ

]1[)(1kx con l e +-=μθσσ

式中:

con σ——张拉控制应力,MPa f pk con 1395186075.075.0=?==σ;

μ——钢筋与管道壁间的摩擦系数,预埋金属波纹管时,查得25.0=μ;

k ——管道每米长度的局部偏差对摩擦的影响系数,查得0015.0=k ;

x ——从张拉端至计算截面的管道长度在构件纵轴上的投影长度;

θ——从张拉端至计算截面间管道平面曲线的夹角之和,即曲线包角。如管道为

竖平面内和水平面内同时弯曲的三维空间曲线管道,则θ可按下式计算:

22

V H θθθ+=

H θ、V θ——分别为在同段管道水平面内的弯曲角与竖向平面内的弯曲角;

计算结果见下表7-1。

各截面管道摩擦损失值计算表

表7-1

7.2 锚具变形损失2l σ

对曲线预应力筋,在计算锚具变形、钢束回缩引起的预应力损失时应考虑锚固后反向摩擦的影响。

反摩擦影响长度d

p

f lE

l σ??=∑

式中:

∑?l ——锚具变形、钢束回缩值,OVM 夹片锚有顶压时取4mm ;

d σ?——单位长度由管道摩擦引起的预应力损失,按下式计算:

l

l

d σσσ-=

?0

式中: 0σ——张拉端锚下控制张拉应力,MPa con 1395

0==σσ;

l σ——预应力钢筋扣除沿途摩擦损失后的锚固端应力,10l l σσσ-=;

l ——张拉端至锚固端之间的距离,这里的锚固端为跨中截面。 将各束预应力钢筋的反摩阻影响长度计算于表中。

跨中截面的反摩阻影响长度计算表 表7-2

求得f l 后可知四束预应力钢绞线均满足l l f ≤,所以距张拉端为x 处的截面由锚具变形和钢筋回缩引起的考虑反摩阻后的预应力损失)(2l x σσ?按下式计算:

f

f l x l x l -?=?σ

σσ)(2

式中的σ?为张拉端由锚具变形引起的考虑反摩阻后的预应力损失,f d l σσ?=?2。 若f l x >则表示该截面不受反摩阻影响。将各控制截面)(2l x σσ?的计算列于下表7-3中。

预应力混凝土简支T梁计算报告midas

4po 指导老师:李立峰 专业:桥梁工程 班级:桥梁一班 姓名: * * * 学号: **********

一、计算资料 跨度与技术指标 标准跨径:L=25m 计算跨径:L0=24m 汽车荷载:公路一级 设计安全等级:二级 桥梁概况及一般截面 此计算为一预应力混凝土简支梁中梁的计算,不计入现浇带,其跨中与支点截面如图1-1所示,纵断面图如图1-2所示。 使用的材料及其容许应力 混凝土:C50,轴心抗压强度设计值m mm=22.4mmm ,抗拉强度设计值m mm= 1.83mmm,弹性模量m m=3.45×104mmm。 钢筋混凝土容重:γ=26kN/m3

钢筋:预应力钢束采用3束φ×7的钢绞线,抗拉强度标准值m mm=1860mmm,张拉控制应力σcon==1395MPa 截面面积:m m=3×140×7=2940mm2,孔道直径:77mm 预应力钢筋与管道的摩擦系数: 管道每米局部偏差对摩擦的影响系数:(1/m) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm 纵向钢筋:采用φ16的HRB335级钢筋,底部配6根,间距为70mm,翼缘板配16根,间距为100mm。 施工方法 采用预制拼装法施工;主梁为预制预应力混凝土T梁,后张法工艺;预制梁混凝土立方体强度达到设计混凝土等级的85%,且龄期不少于7天后方可张拉预应力钢束;张拉时两端对称、均匀张拉(不超张拉),采用张拉力与引伸量双控。 钢束张拉顺序为:N2—N3—N1 二、计算模型 模型的建立 本计算为一单跨预应力混凝土简支T梁桥中梁模型(图2-1),其节点的布置如图2-2 所示。在计算活载作用时,横向分布系数取m=,并不沿纵向变化。在建立结构模型时,取计算跨径m0=24m,由于该结构比较简单,计算跨度只有24m,故增加单元不会导致计算量过大,大多数单元长度为1m。建立保证控制截面在单元的端部,以便于读取数据。 对于横隔板当作节点荷载加入计算模型,其所起到的横向联系作用已在横向分布系数中考虑。 每个节点对应的x坐标值如表2-1所示

关于预应力混凝土简支箱梁桥设计分析

关于预应力混凝土简支箱梁桥设计分析 [摘要]桥梁作为公路的重要组成部分之一,在工程项目中,设计方案的合理性与规划指标的正确性是衡量整个道路工程施工质量、成本控制和使用功能的关键。本文就预应力混凝土简支箱梁桥设计要点分析,结合工程实例进行了全面的探讨和阐述。 【关键词】桥梁;预应力混凝土;简支箱梁桥 伴随着时间的不断推移,国民经济发展不断加快,各类交通荷载也在逐年增加。我国现有运营的早期设计修建的预应力混凝土桥梁和钢筋混凝土桥梁,受到过去国情、经济水平和人类认识水平的限制,在投入使用之后经常出现无法满足使用要求,出现了较为严重的裂缝、耐久性不足等重要问题,同时桥梁老化、陈旧和荷载能力不足的现象也日益凸显。结合现有工程中存在的这些问题,我们在工作中应当注重对混凝土简支箱梁桥设计的相关重点探讨,结合先进科学技术水平合理提高设计方法和观念,进而确保工程项目的质量和耐久性,提高工程效益。 1、工程概况 本工程项目位于某高速公路中段,桥梁在建设中总体长度为35m,桥面宽9.5m。在设计的过程中是对桥梁采用C40的混凝土进行施工的,而桥栏杆和桥面在铺设中是通过采用C20的混凝土。预应力在控制和设计中分别采用的是ASTM270级1524的底松弛钢绞线,在这设计过程中钢绞线的选择为12mm和R235的热轧光圈钢筋。在桥梁桥面施工的过程中是采用5cm厚的C20钢筋混凝土进行铺设和施工的,而最后又铺设了5cm厚的沥青混凝土。在设计的过程中,对桥梁的等级和应力化进行计算和分配,桥梁等级设置为1级,而汽车等相关荷载要求为3.535kN/m2,梯度温度引起的效按照T1=20℃,T2=6.7℃进行考虑。这种设计方法和手段的应用有效的确保了桥梁的使用寿命和耐久性。 2、桥梁总体设计 在桥梁设计的过程中,应当以安全、经济、实用、美观和环保为基础原则进行总体规划,以可持续发展和功能的良好发挥为最终目标进行全面设计。在桥梁设计的过程中,其设计方案的选择要具备相应的合理性,并且对其中存在的相关环节要严肃处理,要做到在设计中毫厘不差的设计要求。对于桥梁结构构造的处理,应当遵循相关的设计规范和国家的法律制度来全面协调和规范,同时合理的控制桥梁各个细小部位的尺寸和构造细节,使得桥梁设计能够满足强度、刚度.稳定性和耐久性的要求。 2.1在桥梁设计的过程中对线条的选择一般都选选择直线和标准跨径,这样能够提高桥梁工程的施工效率和降低施工成本。 2.2桥面净空应确保保证车辆、行人安全通过桥梁上方的空间界限。在该净

预应力砼简支小箱梁

Ⅰ、预应力砼简支小箱梁 一、下部结构 (一)钻孔灌注桩(冲击钻机施工) 桩基采用冲击钻孔机钻孔。该桥墩地势陡峻,修建便道可到达各桩位。 1、埋设钢护筒 在冲孔施工的各墩位埋设孔口式护筒,采用挖埋式埋设,埋设护筒的目的是为了钻孔导向和定位。钢护筒拟定最高高度4.5m,露出地面0.5m,壁厚12mm,每隔1.5米焊一道12mm厚钢板加强箍。桩基施工完毕钢护筒随钻机周转使用。 2、安装钻机 钢护筒埋设完成后进行墩位处场地平整、碾压夯实,然后安装钻机。安装过程中用全站仪测量定位,要求钻头中心对准钢护筒中心,钢护筒中心要求与桩基设计中心一致。 3、钻孔主要工序及注意事项 (1)冲击钻头造孔时,钻头须不断沿一个方向旋转,方能均匀钻圆孔。钻头的旋转,主要靠悬挂钻头的钢丝绳各股钢丝束的扭转所产生的扭转力。当钻头冲击孔底的一刹那,钢丝绳因不承受荷载,即恢复原来的松绞状态,一提空钻头,钢丝绳各束钢丝被拉紧拉直,即产生扭矩,带动钻头旋转。故在钢丝绳与冲击钻头间必须连接牢固并设转向装置。 (2)冲击钻孔,为防止冲击振动使邻孔壁坍塌或影响邻孔刚灌注的砼的凝固,应待邻孔砼灌注完毕,一般经24h后,方可开钻,或进行隔孔施钻。 (3)开孔阶段钻孔时,开孔前应在孔内多放一些粘土,并加适量粒径不大于15cm的片石,顶部抛平,用低冲程冲砸,泥浆比重控制在1.6左右。钻进到0.5~1.5m时,再回填粘土(如地表为砂土,第二次宜回填1:1的粘土和碎石;如为软土或粉砂,即回填粘土和粒径不大于15cm的片石。)继续以低冲程冲砸。如此反复二、三次,必要时多重复几次。 (4)冲孔过程如发现有失水现象,护筒内水位缓慢下降,应补水投粘土。如泥浆太稠,进尺缓慢时,应抽碴换浆。开孔时为了使钻碴泥浆尽量挤入孔壁,

32m现浇简支箱梁施工方案

目录 1、编制说明................................................................... 1 ................ 1.1 编制依据.............................................................. 1 ................ 1.2 编制原则.............................................................. 1 ................ 2、主要技术标准............................................................... 1 ................ 3、工程概况................................................................... 1 ................ 3.1 工程概况.............................................................. 1 ................ 3.2 施工条件.............................................................. 2 ................ 4、资源计划................................................................... 2 ................ 4.1 人力资源计划.......................................................... 2 ............. 4.2 主要施工机械设备配置.................................................. 4 ............. 4.3 主要材料计划.......................................................... 5 ............. 4.4 施工计划.............................................................. 5 ................ 5、总体施工方案............................................................... 5 ................ 6、主要施工方法及工艺......................................................... 6 ............. 6.1 施工工艺流程.......................................................... 6 ............. 6.2 地基处理.............................................................. 7 ................ 6.3 碗扣式支架搭设........................................................ 7 ............. 6.4 支架的搭设要求........................................................ 8 ............. 6.5 支架预压 (10) 6.6支架纵坡、预拱度调整 (11) 6.7 测量放线 (11) 6.8 底板铺设 (12) 6.9 支座垫石 (12) 6.10支座安装 (12) 6.11 模板安装 (13) 6.12 钢筋安装 (13) 6.13 砼施工 (14) 6.14 预应力施工 (18) 6.15 支架拆除 (21) 6.16 其他工程施工 (21) 7、工期保证措施 (21) 8、质量保证措施 (23) 9、安全目标和安全保证措施 (29) 10、环保、水保措施 (30) 附件:满堂碗扣支架计算书 附图 32 米简支箱梁现浇支架施工方案 1、编制说明

30m预应力混凝土简支T梁

一、计算依据与基础资料 (一)、设计标准及采用规范 1、标准 跨径:桥梁标准跨径30m;计算跨径(正交、简支);预知T梁长。 设计荷载:公路——Ⅱ级 桥面宽度:分离式路基宽(高速公路),半幅桥全宽 桥梁安全等级为一级,环境条件为Ⅱ类 2、采用规范:交通部颁布的预应力混凝土简支T梁设计通用图; 《公路桥涵设计通用规范》JTG D60-2004; 《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004; 刘效尧等编著,《公路桥涵设计手册-梁桥》,人民交通出版社,2011; 强士中,《桥梁工程(上)》,高等教育出版社,2004。 (二)、主要材料 1、混凝土:预制T梁,湿接缝为C50、现浇铺装层为C50、护栏为C30. 2、预应力钢绞线:采用钢绞线s ㎜,?pk=1860MPa,E p=×105MPa 3、普通钢筋:采用HRB335,? sk =335MPa,E s =×105MPa (三)、设计要点 1、简支T梁按全预应力构件进行设计,现浇层80mm厚的C40的混凝土不参与截面组合作用。 2、结构重要性系数取; 3、预应力钢束张拉控制应力值σ con =? pk ; 4、计算混凝土收缩、徐变引起的预应力损失时传力锚固龄期为7d; 5、环境平均相对湿度RH=55%; 6、存梁时间为90d; 7、湿度梯度效应计算的温度基数,T 1=14℃,T 2 =℃。 二、结构尺寸及结构特征(一)、构造图

构造图如图1~图3所示。

(二)、截面几何特征 边梁、中梁毛截面几何特性见表1 边梁、中梁毛截面几何特性 (全截面) 边梁中梁(2号梁) 毛截面面 积A(㎡) 抗弯惯矩 I(m4) 截面重心 到梁顶距 离y x (m) 毛截面面 积A(㎡) 抗弯惯矩 I(m4) 截面重心 到梁顶距 离y x (m) 支点几何特性跨中几何特性 (预制截面) 边梁中梁(2号梁) 毛截面面 积A(㎡) 抗弯惯矩 I(m4) 截面重心 到梁顶距 毛截面面 积A(㎡) 抗弯惯矩 I(m4) 截面重心 到梁顶距

简支箱梁桥施工组织设计

长宁县碧浪湖水库葛藤湾渡口 改人行桥新建工程 编制单位:四川隆生建设工程有限公司_____________ 监理单位:四川省城市建设工程监理有限公司 总监理工程师:___________________________________ 审核日期:_______________________________________

目录 ~、编制说明 (1) (一)............................. 编制依据1 (二)............................. 编制范围1 (三)............................. 编制原则1 二、总体概况 (3) (一)............................. 工程概述3 (二)......................................... 地形、地质、水文、气候特征 (3) (三)............................. 技术标准3 (四)............................. 施工条件3 (五)............................. 工期要求3 三、施工组织机构及人员配备 (4) (一).................................. 施工组织机构4 (二)..................................... 项目管理人员配置7 四、总体施工部署 (8) (一)............................... 指导思想8 (二).................................. 主要工作目标8 (三)..................................... 工程施工总体安排8 五、主要工程施工方案和施工方法 (16) (一)路基工程 (16) 1、清理与掘除工程 (16) 2、路基土石方工程 (16) (二)............................... 路面工程17

预应力混凝土简支箱梁检测方案

预应力混凝土简支箱梁检测方案 摘要:本文根据静载试验和动载试验,对预应力混凝土简支箱梁的外观、混凝土强度、裂缝开展、承载力、结构刚度、自振特性等进行检验,以测试其是否满足原设计及规范要求。同时针对预应力混凝土简支箱梁可能出现的缺陷提出相应的修复、加固建议。 关键词:预应力;混凝土;间支箱梁;检测;试验方案;缺陷修复;加固建议 1、工程概况 箱梁是桥梁工程中梁的一种,内部为空心状,上部两侧有翼缘,类似箱子,因而得名。分单箱、多箱等。 钢筋混凝土结构的箱梁分为预制箱梁和现浇箱梁。在独立场地预制的箱梁结合架桥机可在下部工程完成后进行架设,可加速工程进度、节约工期;现浇箱梁多用于大型连续桥梁。目前常见的以材料分类,主要有两种,一是预应力钢筋砼箱梁,一是钢箱梁。其中,预应力钢筋砼箱梁为现场施工,除了有纵向预应力外,有些还设置横向预应力;钢箱梁一般是在工厂中加工好后再运至现场安装,有全钢结构,也有部份加钢筋砼铺装层。 2、检测目的及要求 检测目的: ①确保桥梁的使用安全; ②及早发现桥梁病害及异常现象; ③为桥梁的维修养护提供科学依据,以适时采取合理的维修加固方法,延长桥梁的使用寿命、提高其承载能力,降低桥梁的维护费用或拆除重建; ④考察桥梁是否能满足将来运输量的要求; ⑤为桥梁设计、规范修订和完善等提供依据。 检测要求: 内容包括:外观、混凝土强度、裂缝开展、承载力、结构刚度、自振特性等是否满足原设计及规范要求。 2.1外观:外观检测主要用于快速识别样品的外观缺陷,如凹坑、裂纹、翘曲、缝隙、污渍、沙粒、毛刺、气泡、颜色不均匀等,被检测样品可以是透明体也可以是不透明体。

2.2混凝土强度:混凝土强度的检测可以采用回弹法、钻芯法、超声法、超声回弹综合法等方法。 2.3裂缝开展:裂缝的观测需用裂缝观测仪进行观测。检查梁的裂缝宽度是否满足要求,见《混规》GB50010-2002第 3.3.4条。 2.4承载力:应用有限元法,对预应力混凝土简支箱梁的极限承载力进行计算与检测。 2.5结构刚度:S≤【S】 2.6自振特性:桥梁结构自振特性参数包括自振频率、振型和阻尼比,它对评价桥梁现有运营状况和承载能力有着重要意义。采用天然脉动法、初位移法(张拉初 速度法(锤击法、火箭激励等)、随机激振法作为激励方式等试验,可以测定桥跨结法)、 构自振特性参数。 3、检测技术标准和依据 GB50204-200 混凝土结构工程施工质量验收规范 GB/T50081-2002 普通混凝土力学性能试验方法标准 GBJ82-85 普通混凝土长期性能和耐久性能试验方法 GB50009—2001 建筑结构荷载规范 GB/T50081—2002 普通混凝土力学性能试验方法标准 CECS40:1992 混凝土及预制混凝土构件质量控制规程 GB50152-1992 混凝土结构试验标准 JGJ/T23-2011 回弹法检测混凝土抗压强度技术规程 CECS69:2001 后装拔出法检测混凝土强度技术规程 JTG H11-2011公路桥涵养护规范 JTG B01 2014公路工程技术标准 DB11/T365-2006电磁感应法检测钢筋保护层厚度和钢筋直径技术规程 《公路桥涵设计通用规范》 《公路旧桥承载力鉴定方法》 《大跨径混凝土桥梁的试验方法》 《公路钢筋混凝土及预应力混凝土桥涵设计规范》 桥梁竣工图纸 4、主要仪器设备

预应力小箱梁

预应力混凝土小箱梁 一、技术标准及采用规范 1、交通部标准《公路工程技术标准》(JTG B01—2003) 2、交通部标准《公路桥涵设计通用规范》(JTG D60—2004) 3、交通部标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62—2004) 4、交通部标准《高速公路交通工程及沿线设施设计通用规范》 (JTG D80—2006) 5、交通部标准《公路桥涵施工技术规范》(JTG/T F50—2011) 二、荷载标准: 计算荷载:公路—Ⅰ级 三、主要材料及要点 1、预应力钢筋采用高强度低松弛钢绞线Φs15.2mm,其技术性能应符合(GB/T5224—2003)标准,其力学性能如下:fpk=1860MPa,Ep=1.95×105,整根钢绞线公称截面积为140mm2。 2、混凝土标号:预制箱梁,横梁采用C50。现浇接头,湿接头采用C50微膨混凝土。 3、锚下控制应力:σcon=0.73fpk=1357.8MPa 4、锚具极其附件:锚具需选用OVM等符合国家技术质量标准的产品及配套锚垫板,螺旋筋,锚具须符合现行的《预应力筋用锚具和连接器应用技术规范》,预应力管道采用预埋塑料波纹管成孔(圆形)。 5、普通钢材:除特殊要求外,钢筋直径≥12mm时,用HRB335(B);钢筋直径<12mm时,用HPB235(A)。 四、构造处理 1、为了减轻安装重量和增加横向整体性,在各箱梁之间设横向湿接缝。每联端部横梁部分与箱梁同时预制,各中间蹲位处横向采用现浇(箱内堵头板采用单独预制)。 2、为了满足锚具布置的需要,箱梁端部在箱内侧方向加厚,腹板内预应力钢束除竖向弯曲外,在主梁加厚段尚有平面弯曲。与此相应,锚固面在三个方向倾斜,使预应力钢束张拉时垂直与锚固端面。

连续箱梁施工方法及工艺

5310 .连续箱梁施工方法及工艺 5310.0 主要内容说明 本标段一般桥跨梁部结构采用预应力混凝土梁简支箱梁,跨度以32m 预应力混凝土简支箱梁为主,一般不采用小于20m的小跨梁。客运专线跨 越高速公路、等级公路道,要求净宽较大,32m跨不能满足要求时,则采用大跨预应力混凝土连续梁,梁跨类型有32+48+32m 40+56+40m 40+64+40m 48+80+48m 60+100+60n和45+3x70+45m预应力混凝土连续梁。 受线路纵断面控制,要求立交宽度较宽时采用刚构连续梁跨越。 沈大段共设预应力混凝土连续梁86联,刚构连续梁17联,各种跨度 连续梁数量见表 5.3.10-1、表5.3.10-2 : 表5.3.10-1 沈大段预应力连续梁统计表 表5.3.10-2 沈大段刚构连续梁统计表 5.3.10.1施工方法及工艺程序 5.3.10.1.1 中小跨度连续梁 般采用现浇法施工

现浇施工需要桥位立模、浇注混凝土,通常有满堂支架法和移动支架法。满堂支架法因支架直接置于地基上,因此只适用于低桥(桥梁高度小于 15m)、地基条件较好,支架变形容易控制的情况,否则要进行复杂的支架预压和地基处理,导致施工成本的抬高。 对于满布脚手现浇,对施工机具要求简单,易于实施,利用满布支架法现浇,支架基础底部平整压实后,做混凝土整体支架基础,用碗扣式脚手架搭设满布支架,连续梁箱梁整体浇注前,进行支架预压、设置预留拱度和沉落量。其脚手架的地基处理要求较为严格,其施工周期为40 天一孔,但对无法断道的立交道路不适用。 施工中应该注意: a. 搭设支架所用的钢构件应符合国家有关部门的有关标准和要求。支架结构应具有足够的承载力和整体稳定性:对支架的承载力和稳定性必须进行检算。 b. 支架基础必须具有足够承载力,不得出现不均匀沉降。同时须做好地面的排水处理,设置排水沟。 c. 支架宜采用等载预压消除部分变形,观测沉落量。支架法施工应预留施工预拱度,确保梁体线型符合设计要求。 d. 支架安装结束,经检查符合设计要求后,方可进行底模板安装。在底模板上测量放样,定出箱梁线型。绑扎钢筋,安装预应力管道,立内膜、侧模及端模,浇筑混凝土,养生。 e. 混凝土强度和弹性模量满足设计要求后方可进行预应力张拉、管道压浆、端头封堵施工。 f. 管道压浆强度满足设计要求后,方可拆除梁底模及支架。梁底模及支架卸载顺序,严格按照从梁体挠度最大处支架节点开始,逐步卸落相邻节点,当达到一定卸落量后,支架方可脱落梁体。 5.3.10.1.2斜交刚构连续梁采用支架法施工,桥位满堂支架、立模、浇 注混凝土。并提前视地基 情况对支架地基处理或采用支架预压。 5.3.10.1.3大跨度预应力混凝土连续梁大跨度预应力混凝土连续梁采用 悬臂浇筑法施工。

预应力混凝土简支T梁桥

西南交通大学土木工程专业 桥梁工程课程设计 ――混凝土简支梁桥 设计计算书 姓名:余章亮 学号: 20060046 班级:土木2班 指导教师:荣国能 成绩: 二○○九年十二月

目录 第一章设计依据 (4) 一、设计规范 (4) 二、方案简介及上部结构主要尺寸 (4) 三、基本参数 (5) 四、计算模式及采用的程序 (7) 第二章荷载横向分布计算 (8) 第三章主梁内力计算 (12) 一、计算模型 (12) 二、恒载作用效应计算 (12) 1 恒载作用集度 (12) 2 恒载作用效应 (13) 三、活载作用效应计算 (14) 1 冲击系数和车道折减系数 (14) 2 车道荷载取值 (15) 3 活载作用效应的计算 (15) 三、主梁作用效应组合 (18) 第四章预应力钢筋设计 (19) 一、预应力钢束的估算及其布置 (19) 1 跨中截面钢束的估算和确定 (19) 2 预应力钢束布置 (20) 二、计算主梁截面几何特性 (22) 1 截面面积及惯性矩计算 (22) 2 截面几何特性汇总 (24) 三、钢束预应力损失计算 (24) 1 预应力钢束与管道壁之间的摩擦引起的预应力损失 (24) 2 由锚具变形、钢束回缩引起的预应力损失 (25) 3 混凝土弹性压缩引起的预应力损失 (26) 4 由钢束应力松弛引起的预应力损失 (26) 5 混凝土收缩和徐变引起的预应力损失 (27) 6 钢束预应力损失汇总 (29) 第五章主梁验算 (30) 一、持久状况承载能力极限状态承载力验算 (30) 1 正截面承载力验算 (30) 二、持久状况下正常使用极限状态抗裂验算 (35) 1 正截面抗裂验算 (35) 2 斜截面抗裂验算 (36) 三、持久状况构件的应力验算 (38)

30米预制箱梁施工方案

30米预制箱梁施工方案 一、工程概况: 某桥梁起点桩号为K1+770,终点桩号K2+040。全桥长270m。桥面净宽2×24.5m。上部结构采用先简支后连续的施工工艺。共计9孔标准梁长30m的预应力混凝土连续箱梁,每孔左右幅各7片,共计126片。箱梁高度1.60m、上宽2.4m,下宽1.0m。本桥平面处于左偏半径400m和450m缓和曲线内。本桥纵坡位于坡度0.5%和0.605%,半径为8000m的竖曲线内,横坡为1.5%。 二、30米箱梁预制场平面布置及建设方案 结合以往施工经验,我部把全桥30米箱梁的预制及安装作为我部在此工程中的重点和难点工程。 1#桥共有30米预制箱梁126片,为方便管理,集中在一个预制场进行预制施工。预制场平面布置及建设方案如下: 1、预制场地布设 预制场设置在桩号K2+040-K2+240的路基上,根据总体施工进度计划预制箱梁生产架设施工工期(7个月),预制场设置14个箱梁底模,2套箱梁侧模,2套内模。预制场内箱梁底模按顺桥向布置。预制场内设置60t龙门吊2台,张拉、压浆设备各2套。有轨运梁平车1辆。在预制场适当位置设置接线电箱,同时安装漏电、触电保护装置并由专门电工负责管理,布线时充分考虑预制梁施工时机械的影响,做到安全合理布线,并做到文明施工、文明用电。预制场外专门设置钢筋加工场和搅拌站。根据安全文明施工要求,在预制场内设置有关的标志牌、消防设施,在预制场两端设置小型机具及小型材料存放区,做到机具设备和材料堆放整齐、有序。 于K2+040-K2+100右侧规划存梁区,计划存梁20片。建设好的预制场日生产能力为1.2片。 详见预制梁场平面布置图 2、箱梁台座制作 预制场场地范围内,用粘性土填至预设的标高,然后用推土机平整后,用

预应力混凝土简支T梁计算报告(midas)

预应力混凝土简支T梁计算报告 指导老师:李立峰 专业:桥梁工程 班级:桥梁一班 姓名:* * * 学号:**********

一、计算资料 跨度与技术指标 标准跨径: 计算跨径: 汽车荷载:公路一级 设计安全等级:二级 桥梁概况及一般截面 此计算为一预应力混凝土简支梁中梁的计算,不计入现浇带,其跨中与支点截面如图1-1所示,纵断面图如图1-2所示。 使用的材料及其容许应力

混凝土:C50,轴心抗压强度设计值,抗拉强度设计值,弹性模量。 钢筋混凝土容重: 钢筋:预应力钢束采用3束φ×7的钢绞线,抗拉强度标准值,张拉控制应力σcon==1395MPa 截面面积:,孔道直径:77mm 预应力钢筋与管道的摩擦系数: 管道每米局部偏差对摩擦的影响系数:(1/m) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm 纵向钢筋:采用φ16的HRB335级钢筋,底部配6根,间距为70mm,翼缘板配16根,间距为100mm。 施工方法 采用预制拼装法施工;主梁为预制预应力混凝土T梁,后张法工艺;预制梁混凝土立方体强度达到设计混凝土等级的85%,且龄期不少于7天后方可张拉预应力钢束;张拉时两端对称、均匀张拉(不超张拉),采用张拉力与引伸量双控。 钢束张拉顺序为:N2—N3—N1 二、计算模型 模型的建立 本计算为一单跨预应力混凝土简支T梁桥中梁模型(图2-1),其节点的布置如图2-2所示。在计算活载作用时,横向分布系数取m=,并不沿纵向变化。在建立结构模型时,取计算 跨径,由于该结构比较简单,计算跨度只有24m,故增加单元不会导致计算量过大, 大多数单元长度为1m。建立保证控制截面在单元的端部,以便于读取数据。 对于横隔板当作节点荷载加入计算模型,其所起到的横向联系作用已在横向分布系数中考虑。

预应力混凝土简支小箱梁支座选型设置研究

预应力混凝土简支小箱梁支座选型设置研究 【摘要】文章在阐述预应力混凝土简支小箱梁支座病害的基础上,通过建立简支箱梁结构的有限元模型对其支座受力、支座设置对端横梁结构受力的影响、支座的选型及布置等多个方面进行了研究,结果表明:采用端部布设单个矩形板式橡胶支座并适当增大支座的尺寸对桥梁结构的受力相对有利,本文的研究思路和计算分析方法可为类似桥梁结构支座的设置提供参考。 【关键词】简支箱梁;支座;有限元模型;选型设置 1 引言 桥梁支座是连接桥梁上部和下部结构的重要部件,起到将桥梁上部结构的反力和变形(位移和转角)可靠的传递给桥梁下部结构的作用,其质量和性能直接影响桥梁的使用性和耐久性。然而,由于其在桥梁工程总造价中所占比例较小,往往未引起工程技术和管理人员的重视,在使用过程中极易成为桥梁结构的薄弱环节,产生病害的机率较高。 高速公路桥梁目前采用的支座主要类型主要包括板式橡胶支座和盆式橡胶支座两种。就板式橡胶支座而言,支座早期剪切变形、局部脱空、橡胶层老化开裂病害等病害较为普遍。就盆式橡胶支座而言,其早期病害主要为:支座涂层起皮、脱落,临时连接件未拆除,钢垫板局部脱空,密封圈开裂,锚固螺栓锈蚀、松动,限位装置损坏、缺失等。这些支座病害的产生给桥梁结构营运的安全性和耐久性造成了严重的影响。 为了进一步改善预应力混凝土简支小箱梁支座的受力,减少支座在后期营运中常见病害的出现,文章对预应力混凝土小箱梁支座的受力、端横梁的结构受力、支座的形式和布置等多个方面进行研究,最终确定了预应力混凝土小箱梁支座最佳设置形式,本文的研究思路和计算分析方法可为类似工程条件下桥梁结构支座设置提供参考。 2 简支小箱梁支座的受力情况分析 简支小箱梁支座主要是将上部结构的支承反力(包括结构自重和可变作用引起的竖向反力和水平力)传递到桥梁墩台,同时保证结构在汽车荷载、温度变化、混凝土收缩和徐变等因素作用下能自由变形。支座受力是否合理对于支座直接关系到支座的安全和使用寿命。 文章以跨径25m的预应力混凝土简支小箱梁支座为研究对象,对两端采用GYZ400×84m板式橡胶支座简支箱梁的受力情况进行分析,以确定橡胶支座是否满足桥梁结构受力的要求,简支小箱梁横断面如图1所示。 图1 25m跨度小箱梁横断面图

预应力砼小箱梁简支变连续施工工艺

①施工流程: a、先预制主梁,混凝土达到设计强度的90%后,张拉正弯矩区预应力钢束,压注水泥浆并及时清理箱梁底板通气孔。 b、设置临时支座并安装好永久支座(联端无需安装临时支座),逐孔安装主梁,置于临时支座上成为简支状态,及时连接桥面板钢筋及端横梁钢筋。 c、连接连续头段钢筋,设置接头板束波纹管并穿束。在日温最低时,浇筑连续接头、中横梁及其两侧与顶板负弯矩束同长度范围内的桥面板,达到设计强度95%后,张拉顶板负弯矩预应力钢束,并压注水泥浆。 d、接头施工完成后,浇筑剩余部分桥面板湿接缝混凝土,剩余部分桥面板湿接缝混凝土应由跨中向支点浇筑。浇筑完成后拆除一联内临时支座,完成体系转换。解除临时支座时,应特别注意严防高温影响橡胶支座质量。 e、临时支座可采用硫磺砂浆制成,硫磺砂浆内应埋入电热丝,采用电热法解除临时支座。临时支座顶面标高应与永久支座顶面标高齐平,以保证永久支座与混凝土接触但不受力。永久支座顶面直接与接头混凝土底部浇筑在一起。 f、连接顶板钢束张拉预留槽口处钢筋后,现浇调平层混凝土、喷洒防水层、护栏施工、进行桥面铺装施工及伸缩缝安装。 ①注意事项 a、钢筋连接:箱梁施工中钢筋连接方式,直径小于12mm时,如设计图纸未 加说明,可采用绑扎;直径大于12mm时,钢筋连接宜采用焊接。绑扎及焊接长度应按照《公路桥涵施工技术规范》的有关规定严格执行。 b、预制箱梁应保证支座预埋钢板位置、高度正确。防撞护栏的锚固钢筋应先预先埋入,并注意预留泄水孔位置。 c、现浇接头段砼可采用微膨胀水泥。 d、钢绞线弯折处采用圆曲线过渡,管道必须圆顺,定位钢筋曲线段每50cm、直线段每100cm设置一组。顶板负弯矩钢索的定位钢筋第100cm设置一组。 e、预制箱梁中钢束张拉采用两端张拉,且应在横向对称均匀张拉。顶板负弯矩钢束也采用两端张拉,并采取逐根对称均匀张拉。张拉采用双控,张拉应力控制,伸长量进行校核。 3、梁体吊装

预应力混凝土简支T梁计算报告(midas)

预应力混凝土简支T梁计算报告 指导老师:立峰 专业:桥梁工程 班级:桥梁一班 姓名: * * * 学号: **********

一、计算资料 1.1 跨度与技术指标 标准跨径:L=25m 计算跨径:L0=24m 汽车荷载:公路一级 设计安全等级:二级 1.2 桥梁概况及一般截面 此计算为一预应力混凝土简支梁中梁的计算,不计入现浇带,其跨中与支点截面如图1-1所示,纵断面图如图1-2所示。 1.3 使用的材料及其容许应力 混凝土:C50,轴心抗压强度设计值m mm=22.4mmm ,抗拉强度设计值m mm= 1.83mmm,弹性模量m m=3.45×104mmm。 钢筋混凝土容重:γ=26kN/m3 钢筋:预应力钢束采用3束φ15.2mm×7的钢绞线,抗拉强度标准值m mm=

1860mmm,拉控制应力σcon=0.75f ak=1395MPa 截面面积:m m=3×140×7=2940mm2,孔道直径:77mm 预应力钢筋与管道的摩擦系数:0.25 管道每米局部偏差对摩擦的影响系数:0.0015(1/m) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm 纵向钢筋:采用φ16的HRB335级钢筋,底部配6根,间距为70mm,翼缘板配16根,间距为100mm。 1.4 施工方法 采用预制拼装法施工;主梁为预制预应力混凝土T梁,后法工艺;预制梁混凝土立方体强度达到设计混凝土等级的85%,且龄期不少于7天后方可拉预应力钢束;拉时两端对称、均匀拉(不超拉),采用拉力与引伸量双控。 钢束拉顺序为:N2—N3—N1 二、计算模型 2.1 模型的建立 本计算为一单跨预应力混凝土简支T梁桥中梁模型(图2-1),其节点的布置如图2-2 所示。在计算活载作用时,横向分布系数取m=0.5,并不沿纵向变化。在建立结构模型时,取计算跨径m0=24m,由于该结构比较简单,计算跨度只有24m,故增加单元不会导致计算量过大,大多数单元长度为1m。建立保证控制截面在单元的端部,以便于读取数据。 对于横隔板当作节点荷载加入计算模型,其所起到的横向联系作用已在横向分布系数中考虑。 每个节点对应的x坐标值如表2-1所示 节点的x坐标值表2-1

25米,30米箱梁施工方案

箱梁预制施工方案 编制依据 1、《公路工程技术标准》(JTGB01—2003) 2、《公路桥涵设计通用规范》(JTGD60—2004) 3、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJGD62—2004) 4、《公路桥涵施工技术规范》(JTJ041—2000) 5、《珠海市高栏港高速公路一期工程》两阶段施工图 6、其他有关的规程、规范及设计指导意见 一、工程概况 本标段共有桥梁10座,其中大桥6座,分别为升平大道跨线桥、温泉北路跨线桥、温泉大道跨线桥、珠海西站跨线桥、进港二路跨线桥、前锋涌大桥;中桥4座,分别为虎山涌中桥、前西涌中桥、温泉涌中桥、大虎涌中桥。大桥上构采用装配式预应力砼连续箱梁(25m、30m)及现浇预应力砼变截面连续梁;25m简支箱梁共888片;30m简支箱梁共66片,均为后张法施工;下部结构对应装配式预应力砼箱梁的桥墩采用大悬臂T型墩接承台接两根D150钻孔灌注桩基础,左右幅分修。中桥上部构造均采用(13m、20m)跨装配式预应力砼简支空心板,13m空心板共282片;20m空心板共120片,均为后张法施工;下部构造均采用柱式桥墩,柱径为D100,桩径为D120,桥台均采用座板台,配D120钻孔灌注桩基础。 二、机械及施工人员按排 根据我部对类似工程的施工经验,本工程箱梁全部采用后张法施工,根据设计工程量,30m箱梁投入模板1.5套;25m箱梁模板4套;20m空心板模板2.5套;13m空心板模板3套;钢筋截断机GQKO 型 2台;GW40型钢筋弯曲机3台;GW3-12型钢筋调直机1台;BX1-400

电焊机4台;BX1-315-2电焊机3台;LCK-63等离子切割机1台;ZF75-150高频振动器20台;50型插入振捣棒10台;1m3料斗2个;YCW150B-200型油压千斤顶4个;ZB4-500型电动油泵4个;JW180型水泥浆拌和机1台;GUB3.0型灰浆泵1台;135KW发电机1台;21m龙门吊2个;24m龙门吊2个。 投入技术、管理人员9人;施工人员150人;管理、技术人员见表1 表1 主要管理和技术人员一览表 根据本标段的工程特点以及现场的实际情况,设置大型梁板预制场一座,位于K49+480主线左侧农田上,占地约为28000m2;其中25m、30m箱梁制梁区长176m、宽23m;共布置25m箱梁预制台座16个,30m箱梁预制台座4个,台座横向间距为4m一道,并设6m砼运输车道;13m、20m空心板预制区长100m、宽20.6m共设置13m台座13个;20m空心板台座7个,台座横向间距0.6m,并设3.6m砼运输道;存梁区长为164m,宽49m;存梁容量84片,制梁区与存梁区之间留15m为预应力钢绞线存放下料区域。预制场内分为钢筋加工堆放

连续箱梁施工方法及工艺

5.3.10.连续箱梁施工方法及工艺 5.3.10.0 主要内容说明 本标段一般桥跨梁部结构采用预应力混凝土梁简支箱梁,跨度以32m 预应力混凝土简支箱梁为主,一般不采用小于20m的小跨梁。客运专线跨越高速公路、等级公路道,要求净宽较大,32m跨不能满足要求时,则采用大跨预应力混凝土连续梁,梁跨类型有32+48+32m、40+56+40m、40+64+40m、48+80+48m、60+100+60m和45+3x70+45m预应力混凝土连续梁。 受线路纵断面控制,要求立交宽度较宽时采用刚构连续梁跨越。 沈大段共设预应力混凝土连续梁86联,刚构连续梁17联,各种跨度连续梁数量见表5.3.10-1、表5.3.10-2: 表5.3.10-1 沈大段预应力连续梁统计表 5.3.10.1.1中小跨度连续梁

一般采用现浇法施工。 现浇施工需要桥位立模、浇注混凝土,通常有满堂支架法和移动支架法。满堂支架法因支架直接置于地基上,因此只适用于低桥(桥梁高度小于15m)、地基条件较好,支架变形容易控制的情况,否则要进行复杂的支架预压和地基处理,导致施工成本的抬高。 对于满布脚手现浇,对施工机具要求简单,易于实施,利用满布支架法现浇,支架基础底部平整压实后,做混凝土整体支架基础,用碗扣式脚手架搭设满布支架,连续梁箱梁整体浇注前,进行支架预压、设置预留拱度和沉落量。其脚手架的地基处理要求较为严格,其施工周期为40天一孔,但对无法断道的立交道路不适用。 施工中应该注意:a.搭设支架所用的钢构件应符合国家有关部门的有关标准和要求。支架结构应具有足够的承载力和整体稳定性:对支架的承载力和稳定性必须进行检算。b.支架基础必须具有足够承载力,不得出现不均匀沉降。同时须做好地面的排水处理,设置排水沟。c.支架宜采用等载预压消除部分变形,观测沉落量。支架法施工应预留施工预拱度,确保梁体线型符合设计要求。d.支架安装结束,经检查符合设计要求后,方可进行底模板安装。在底模板上测量放样,定出箱梁线型。绑扎钢筋,安装预应力管道,立内膜、侧模及端模,浇筑混凝土,养生。e.混凝土强度和弹性模量满足设计要求后方可进行预应力张拉、管道压浆、端头封堵施工。 f.管道压浆强度满足设计要求后,方可拆除梁底模及支架。梁底模及支架卸载顺序,严格按照从梁体挠度最大处支架节点开始,逐步卸落相邻节点,当达到一定卸落量后,支架方可脱落梁体。 5.3.10.1.2斜交刚构连续梁 采用支架法施工,桥位满堂支架、立模、浇注混凝土。并提前视地基情况对支架地基处理或采用支架预压。 5.3.10.1.3大跨度预应力混凝土连续梁

预应力混凝土简支T梁桥的设计

预应力混凝土简支T梁桥的设计 摘要预应力混凝土简支T梁公路桥,公路一级,有防撞栏杆,无人行道。设计首先确定截面尺寸,梁的片数的确定,然后荷载的计算,包括恒载(一期,二期),活载等,完成在极限承载力状态和正常使用极限状态下的验算。接着完成预应力钢筋的估束,钢筋的配置和预应力的损失。主要截面的验算。最后完成控制截面的承载能力、抗裂性、应力水平及结构的变形等多项指标进行验算。 关键字内力计算承载能力极限状态正常使用极限状态预应力钢束预应力损失截面验算 设计基本流程: 1.根据桥型方案,确定结构的相关基本尺寸。 2.结构内力计算。对于本课程设计而言,结构内力计算的主要工作包括荷载横向分布系数和单根T梁的内力计算。并完成在承载能力极限状态下和正常使用极限状态下的相 应内力组合。 3.预应力钢束的设计。按照结构的受力及构造等的要求,完成预应力钢束的布置工作,并完成预应力损失的计算。 4.主要截面的验算。主要针对控制截面的承载能力、抗裂性、应力水平及结构的变形等多项指标进行验算。

对于装配式预应力混凝土简支T梁桥而言,多片T梁通过横隔板及桥面板联系在一起形成一个整体受力结构。由于结构的空间整体性,当桥上作用荷载时,各片主梁将共同参与工作,形成了各片主梁之间的内力分布。对于绝大多数工程设计人员而言,直接应用空间分析方法进行结构设计是不现实的。按照《材料力学》和《结构力学》方法计算结构内力。计算内容包括: 1.各片主梁的内力计算结果(考虑对称性,只给出一半主梁的结果); 2.控制断面(包括支座断面、1/8跨断面、1/4跨断面、3/8跨断面和跨中断面等)的弯矩和剪力; 3.单独列出自重、二期恒载和活载的计算结果; 4.对于移动荷载(本课程设计中的车道荷载)应按影响线进行最不利加载。对于影响线的求法,可以参考《结构力学》的相关内容(如机动法)。 目前,对于多主梁结构的荷载横向分布系数的计算方法有:刚性横梁法、绞接板法、刚接梁法以及正交异性板法(G-M 法)等。关于荷载横向分布系数的计算方法可以参考相关专业书籍和文献。在设计中,在支座位置处荷载横向分布系数可按“杠杆原理法”(关于杠杆原理的相关理论,可参考相关书籍,本课程设计不作专门介绍)进行计算,而跨中位置处荷载横向分布系数按“刚性横梁法”进行计算。 据反力互等原理,单位荷载作用在某一根主时,各主梁的反力等于单位荷载在这些主梁上移动时该主梁的反力变

先简支后连续梁施工工艺工法

先简支后连续梁施工工艺工法 (QB/ZTYJGYGF-QL-0509-2011) 桥梁工程有限公司廖文华余海 1前言 工艺工法概况 随着桥梁技术的发展,综合各类结构体系的优点,预制架设的梁式桥越来越多地采用了先简支后连续结构体系。简支梁具有施工工艺简单,工厂化作业施工质量好,工效高,预制安装方便的优点,而连续梁具有桥梁线形好行车平顺,结构体系完整,梁体受力较好的优点,而将这两种优点相结合就形成了先简支后连续的结构体系。我单位在近年的桥梁施工中严格按照施工工艺施工,不断总结完善先简支后连续施工工艺形成了本工法。 工艺原理 由简支转换为连续体系,是通过在箱梁端部顶部负弯矩区内增设负弯矩预应力束来实现的,而为配合梁体结构体系转换,在转换过程中需在箱梁端部布设相应临时支座并适时拆除来实现其体系的转换。 2工艺工法特点 刚度大、变形小、伸缩缝少和行车舒适 梁场整体预制梁,可确保施工质量,节省了施工时间,提高了经济效益。 3适用范围 本工法适用于曲线半径大于400m,跨度16m以上,多跨结构桥梁施工。适用于桥下无支架搭设条件,需要通车通航的桥梁工程施工。 适用于13~35m跨径,吊装重量小于70t的中小跨径桥梁。 4主要技术标准 《铁路架桥机架梁规程》(TB10213) 《铁路混凝土工程施工技术指南》(TZ210) 《客运专线铁路桥涵工程施工技术指南》(TZ213) 《公路桥涵施工技术规范》(JTG/TF50) 《公路工程质量检验评定标准》(JTGF80-1) 5施工方法

梁在预制场进行预制,采用运梁车简支梁进行安装,待箱梁安装完毕即将每一联的连续端端部负弯矩区预应力束管道和非预应力钢筋进行连接。立模浇筑连续端横梁及负弯矩区梁间湿接缝混凝土。立模时确保各永久支座处连续端横梁底部间距均满足设计图纸及施工规范要求,待混凝土强度达到设计强度90%以上,即可进行负弯矩预应力束穿束张拉。张拉完毕进行孔道压浆。此时,桥梁整联上部结构已经形成一个连续的整体。此时将一联所有临时支座同时降低,保证一联整个梁体同时平稳降落在永久支座上,并拆除临时支座即可完成简支体系向连续体系的转换。 6工艺流程及操作要点 施工工艺流程 先简支后连续梁施工中,新老混凝土连接面处理;临时支座、永久支座正确安装;连接钢筋、预应力束施工质量是从简支变为连续施工质量的关键。施工工艺流程图见图1。 操作要点 施工准备 简支连续梁桥通过将简支梁在墩顶实施结构连续或墩梁固结而成,所以,简支梁体是基础、墩顶结构连续、墩梁固结或桥面连续构造是关键,施工必须高度重视。强化施工设计,明确施工工艺,制定精细化的施工方案,实行首件(试制)制。施工准备中强调预制完成后到体系转换的时间。 6.2.2梁预制与支座安装 预制台座稳定性好,顶面光滑,易于脱模。严格按照设计图纸,制作强度、刚度、稳定性均满足精品预制梁需要的模板系统,同时,模板必须能根据预制梁顶横坡、锚固齿板等需要具有可调整功能。从控制混凝土原材料、配比、几何尺寸、一

相关文档
相关文档 最新文档