文档库 最新最全的文档下载
当前位置:文档库 › buck电路的原理

buck电路的原理

buck电路的原理
buck电路的原理

buck电路的原理

降压式变换电路(Buck电路)详解

一、BUCK电路基本结构

开关导通时等效电路开关关断时等效电路

二、等效的电路模型及基本规律

(1)从电路可以看出,电感L和电容C组成低通滤波器,此滤波器设计的原则是使us(t)的直流分量可以通过,而抑制us(t) 的谐波分量通过;电容上输出电压uo(t)就是us(t) 的直流分量再附加微小纹波uripple(t) 。

(2)电路工作频率很高,一个开关周期内电容充

放电引起的纹波uripple(t) 很小,相对于电容上

输出的直流电压Uo有:电容

上电压宏观上可以看作恒

定。

电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。(3)一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。

这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。(4)开关S置于1位时,电感电流增加,电感储能;而当开关S

置于2位时,电感电流减小,电感释能。假定电流增加量大于

电流减小量,则一个开关周期内电感上磁链增量为:

此增量将产生一个平均感应电势:

此电势将减小电感电流的上升速度并同时降低电感电流的

下降速度,最终将导致一个周期内电感电流平均增量为零;一

个开关周期内电感上磁链增量小于零的状况也一样。

这种在稳态状况下一个周期内电感电流平均增量(磁链平

均增量)为零的现象称为:电感伏秒平衡。

这也是电力电子电路稳态运行时的又一个普遍规律。

三、电感电流连续工作模式(CCM)下稳态工作过程分析

基于BUCK电路的电源设计说明

现代电源技术 基于BUCK 电路的电源设计 学院: 专业:姓名:班级:学号: 指导教师:日期: 目录 摘要 (3) 一、设计意义及目的 (4) 二、Buck 电路基本原理和设计指标 (4) 2.1 Buck 电路基本原理 (4) 2.2 Buck 电路设计指标 (6) 三、参数计算及交流小信号等效模型建立 (6)

3.1 电路参数计算 (6) 3.2 交流小信号等效模型建立 (10) 四、控制器设计 (12) 五、Matlab 电路仿真. (17) 5.1 开环系统仿真 (17) 5.2 闭环系统仿真 (19) 六、设计总结 (23)

摘要 Buck 电路是DC-DC 电路中一种重要的基本电路,具有体积小、效率高的优点。本次设计采用Buck 电路作为主电路进行开关电源设计,根据伏秒平衡、安秒平衡、小扰动近似等原理,通过交流小信号模型的建立和控制器的设计,成功地设计了Buck 电路开关电源,通过MATLAB/Simulink 进行仿真达到了预设的参数要求,并有效地缩短了调节时间和纹波。通过此次设计,对所学课程的有效复习与巩固,并初步掌握了开关电源的设计方法,为以后的学习奠定基础。 关键词:开关电源设计Buck 电路

一、设计意义及目的 通常所用电力分为直流和交流两种,从这些电源得到的电力往往不能直接满足要求,因此需要进行电力变换。常用的电力变换分为四大类,即:交流变直流(AC- DC ),直流变交流(DC-AC ),直流变直流(DC-DC ), 交流变交流(AC- AC )。其中DC-DC 电路的功能是将直流电变为另一固定电压或可调电压的直流电,包过直接直流变流电路和间接直流变流电路。直接直流变流电路又称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,主要包括六种基本斩波电路:Buck 电路,Boost 电路,Buck-Boost 电路,Cuk 电路,Sepic 电路,Zeta 电路。其中最基本的一种电路就是Buck 电路。 因此,本文选用Buck 电路作为主电路进行电源设计,以达到熟悉开关电源基本原理,熟悉伏秒平衡、安秒平衡、小扰动近似等原理,熟练的运用开关电源直流变压器等效模型,熟悉开关电源的交流小信号模型及控制器设计原理的目的。这些知识均是《线代电源设计》课程中所学核心知识点,通过本次设计,将有效巩固课堂所学知识,并加深理解。 二、Buck 电路基本原理和设计指标 2.1 Buck 电路基本原理 Buck 变换器也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器,主要用于电力电路的供电电源,也可拖动直流电动机或带蓄电池负载等。其基本结构如图1 所示:

buck电路的原理分析和参数设计

Buck电路的原理分析和参数设计 连续工作状态 一Buck工作原理 将快速通断的晶体管置于输入与输出之间,通过调节通断比例(占空比)来控制输出直流电压的平均值。该平均电压由可调宽度的方波脉冲构成,方波脉冲的平均值就是直流输出电 压。 Q导通: 输入端电源通过开关管Q及电感器L对负载 供电,并同时对电感器L充电。 电感相当于一个恒流源,起传递能量作用 电容相当于恒压源,在电路里起到滤波的作用Q闭合: 电感器L中储存的能量通过续流二极管D形 成的回路,对负载R继续供电,从而保证了 负载端获得连续的电流。 导通时Q的电流 闭合时C的电流 L的电流和输出电流的关系。 输出电压与输入电压的关系

(不考虑损耗) 二 buck 的应用 Buck 为降压开关电路,具有效率高,体积小,功率密度高的特点 1.Buck 的效率 Buck 的损耗:1.交流开关损耗 2.管子导通损耗 3.电感电容等效电阻损耗 Buck 的效率很高,一般可以达到60%以上, 2.Buck 的开关频率 频率越高,功率密度越大,但也同时带来了开关损耗。在25~50KHZ 范围内buck 的体积可随频率的增大而减小。 三.参数的设计 1.电感的参数 电感的选择要满足直到输出最小规定电流时,电感电流也保持连续。 在临界不连续工作状态时 2 1 20I I I -= ON O I T I V V L 20 -= ' ON I T L V V I I 0 12-= - 所以L L '≥ L 越大,进入不连续状态时的电流就越小 2.电容的参数 电容的选择必须满足输出纹波的要求。 电容纹波的产生:1. 电容产生的纹波: 相对很小,可以忽略不计 2. 电容等效电感产生的纹波:在300KHZ~500KHZ 以下可以忽略不计 3. 电容等效电阻产生的纹波:与esr 和流过电容电流成正比。为了减小 纹波,就要让esr 尽量的小。 不连续工作状态 (1)开关管Q 导通,电感电流由零增加到最大 (2)开关管Q 关断,二极管D 续流,电感电流从最大降到零; (3)开关管Q 和二极管D 都关断(截止),在此期间电感电流保持为零,负载由输出滤波电容来供电。 损耗输出输出P P p +=η

buck电路的原理

buck电路的原理 降压式变换电路(Buck电路)详解 一、BUCK电路基本结构 开关导通时等效电路开关关断时等效电路 二、等效的电路模型及基本规律 (1)从电路可以看出,电感L和电容C组成低通滤波器,此滤波器设计的原则是使us(t)的直流分量可以通过,而抑制us(t) 的谐波分量通过;电容上输出电压uo(t)就是us(t) 的直流分量再附加微小纹波uripple(t) 。 (2)电路工作频率很高,一个开关周期内电容充 放电引起的纹波uripple(t) 很小,相对于电容上 输出的直流电压Uo有:电容 上电压宏观上可以看作恒 定。 电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。(3)一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。

这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。(4)开关S置于1位时,电感电流增加,电感储能;而当开关S 置于2位时,电感电流减小,电感释能。假定电流增加量大于 电流减小量,则一个开关周期内电感上磁链增量为: 此增量将产生一个平均感应电势: 此电势将减小电感电流的上升速度并同时降低电感电流的 下降速度,最终将导致一个周期内电感电流平均增量为零;一 个开关周期内电感上磁链增量小于零的状况也一样。 这种在稳态状况下一个周期内电感电流平均增量(磁链平 均增量)为零的现象称为:电感伏秒平衡。 这也是电力电子电路稳态运行时的又一个普遍规律。 三、电感电流连续工作模式(CCM)下稳态工作过程分析

BUCK电路工作原理分析

BUCK电路工作原理分析 测试电路如下图4.5所示,改变驱动信号占空比,观察输入与输出关系。 通道2,输出波形 通道1,驱动波形 (a)BUCK测试电路(b)输出波形(c)输出波形 图4.5 BUCK升压电路(multisim) BUCK电路是一种降压斩波器,降压变换器输出电压平均值U o总是小于输入电压U d。 一、BUCK电路工作原理 Q1导通期间(t on ):电力开关器件导通,电感蓄能,二极管D反偏。等效电路如图5.7(b)所示; Q1关断期间(t off):电力开关器件断开,电感释能,二极管D导通续流。等效电路如5.7 (c)所示; 由波形图5.7 (b)可以计算出输出电压的平均值为: ) ( 1 ) ( 1 0? ? ?? + ? = =S on on S T t t d S T S dt dt u T dt t u T U 则: d d S on DU U T t U= = ,D为占空比。 忽略器件功率损耗,即输入输出电流关系为: d d O d O I D I U U I 1 = =。

图4.6 BUCK电路工作过程 二、电感工作模式分析 下图4.7为BUCK电路中电感流过电流情况。 图4.7电感电流波形图 电感中的电流i L是否连续,取决于开关频率、滤波电感L和电容C的数值。 1.电感电流i L连续模式:

⑴在t on 期间:电感上的电压为 dt di L u L L = 由于电感L 和电容C 无损耗,因此i L 从I 1线性增长至I 2,上式可以写成 on L on O d t I L t I I L U U ?=-=-12 O d L on U U L I t -?= )( 式中△I L =I 2-I 1为电感上电流的变化量,U O 为输出电压的平均值。 ⑵在t off 期间:假设电感中的电流i L 从I 2线性下降到I 1,则有 off L O t I L U ?= 则,O L off U I L t ?= 可求出开关周期TS 为 ) (1 O d O d L off on S U U U LU I t t f T -?= +== fL D D U fLU U U U I d d O d O L ) 1()(-= -= ? 上式中△I L 为流过电感电流的峰-峰值,最大为I 2,最小为I 1。电感电流一周期内的平均值与负载电流I O 相等,即 2 1 20I I I += 则)1(201D D L T U I I S d -- = 2.电感电流i L 临界连续状态 变换电路工作在临界连续状态时,即有I 1=0,由)1(201D D L T U I I S d --=,可得维持电流临界连续的电感值L 0为:

BUCK开关电源-知识点纲要

电感降压式开关电源如何设计: 1.通过举例讲解开关电源工作的方式.开关电源的工作原理. 2. 通过举例开关电源工作方式与线性电源工作方式的区别. 3. 分析和讲解为什么线性电源的效率比较低,开关电源的效率比较高? 4. 讲解开关电源是如何实现能量转移的?以及如何实现稳定电压输出?如何进行调节的?为什么说输入电压的变化以及负载的变化会影响调节?为什么会有纹波的产生?为什么说速度响应是衡量开关电源的重要指标? 5. 详细分析开关损耗是如何产生的?如何控制温升?温升对系统有哪些危害? 6. 开关电源体积与频率的关系?以及开关电源的效率问题。 7. 开关器件的如何选择?详细分析MOSFET,IGBT,三极管各自的有点和缺点。 8. 详细推导开关电源的BUCK电路拓扑的过程。 9.引入重要模拟电路中重要器件:电感。 10. 详细讲解电感电压的的形成和公式计算,电感电压受什么参数影响?如何改变电感两端电压?

11. 详细讲解电感电压的与电感中电流大小以及电流变化率的相互关系。为什么说电感电流大小连续而电流变化率是不连续的? 12. 详细讲解电感中的电流波形的三种模式。 13. 为什么说电感电流在通电和关断后会发生变化?它的内在根本原因又是什么? 14. 如何实现电感的能量守恒?为什么说只有电感电流达到稳定状态才能为我们使用?电感电流的变化如何实现可控? 15. BUCK电路中专有名词的解释,了解关键参数对设计的影响。 16. 详细讲解占空比公式的推导。 17. 详细讲解电感参数计算公式的推导过程。 18. BUCK拓扑的几大总结。 19. 举例实际案例现场计算电感参数。 20. 详细讲解电源控制芯片内部各功能模块。 21. 通过实际演示,现场用示波器测量相关波形并进行分析和调试。

BUCK DC-DC电路的设计

电气与电子信息工程学院 电力电子课程设计 设计题目:降压斩波电路设计 专业班级:电气工程及其自动化本科1班 学号:200840220116 姓名: 指导教师: 设计时间:2011/5/3~2011/5/13 设计地点:K2电力电子实验室

电力电子课程设计成绩评定表 指导教师签字: 2011年5 月20 日

《电力电子课程设计》课程设计任务书 学生姓名:专业班级:电气工程及其自动化 指导教师:工作部门:电气学院电气自动化教研室 一、课程设计题目: 降压斩波电路设计 二、课程设计内容 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 学会查阅有关参考资料和手册,并能正确选择有关元器件和参数; 3. 编写设计说明书,参考毕业设计论文格式撰写设计报告(5000字以上)。 注:详细要求和技术指标见附录。 三、进度安排 2.执行要求 电力电子课程设计共9个选题,每组不得超过6人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。 四、基本要求

(1)参考毕业设计论文要求的格式书写,所有的内容一律打印; (2)报告内容包括设计过程、电路元件参数的计算、系统仿真结果及分析; (3)要有完整的主电路原理图和控制电路原理图; (4)列出主电路所用元器件的明细表。 (5)参考文献 五、课程设计考核办法与成绩评定 六、课程设计参考资料 [1]王兆安,黄俊.电力电子技术(第四版).北京:机械工业出版社,2001 [2]王文郁.电力电子技术应用电路.北京:机械工业出版社,2001 [3]李宏.电力电子设备用器件与集成电路应用指南.北京:机械工业出版社,2001 [4] 石玉、栗书贤、王文郁.电力电子技术题例与电路设计指导. 北京:机械工业出版社,1999 [5] 赵同贺等.新型开关电源典型电路设计与应用.北京:机械工业出版社,2010 指导教师:南光群、黄松柏 2011年10月8日 教研室主任签名: 2011年10 月9日附录:详细要求和技术指标

Buck电路简单理解

Buck 电路参数选择原理和计算 参数选择原理 在Buck 电路中的电感L 和电容C 组成低通滤波器,此滤波器的设计原则是,使输出电压的直流分量可以通过,抑制输出电压的开关频率及其谐波分量通过。但是,构建一个能够让直流分量通过而且完全滤除开关频率及其谐波分量的完美的滤波器是不可能的,所以,在输出中至少有一小部分是由于开关产生的高频谐波。因此,输出电压波形事实上如图3.1所示,可以表达为 )()(00t u U t u ripple += (3.1) U ) (t ripple (0t u 图3.1 输出电压波形 所以实际的输出电压由所需要的直流分量0U 加少量的交流分量ripple u 所组成,交流分量由低通滤波器未能完全衰减的开关谐波所产生。 由于直流变换器的作用使产生所需的直流的输出,因此希望输出电压开关纹 波应很小。所以,通常可以假设开关纹波的幅值远远小于直流分量,即 0max U u ripple << (3.2) 因此,输出电压近似为直流分量0U ,而忽略其小纹波成分ripple u ,即 00)(U t u ≈ (3.4) 上述近似称为小纹波近似,或称线性纹波近似,可大大简化变换器波形的分析。 下面分析电感电流波形,进而得出电感的计算公式。通过电感电压波形的积分可以得到电感电流。开关在位置1时,电感在左侧与输入电压d U 相连,电路简化为下图3.1(a )。电感电压为 )()(0t u U t u d L -= (3.5)

d U ) (0t u (a ) ) (0t u (b ) 图3.1 如上所述,输出电压)(0t u 为其直流分量0U 加小的交流纹波成分)(t u ripple 。采用小纹波近似,式(3.4)中的)(0t u 用其直流分量0U 代替,得到 0)(U U t u d L -= (3.6) 开关在位置1时,电感电压等于0U U d -,如图3.1(b )所示。电感电压方程为 dt t di L t u L L )()(= (3.7) 在第一个子区间,由上式可以解得电感电流波形的斜率为 L U U L t u dt t di d L L 0)()(-== (3.8) 由于开关在位置1时,电感电压近似为常量,因此电感电流的变化率也近似为常数,电感电流线性上升。 当在第二个子区间,开关处于位置2时,电感的左端与参考地相连,简化电 路如图3.1(b )所示。所以,在第二个子区间,电感电压为 )()(0t u t u L -= (3.9) 采用小纹波近似式(3.4)得到 0)(U t u L -= (3.10) 所以,当开关处于位置2时的电感电压为常量,如图3.1(b )所示。将式(3.10)代入式(3.7)中,得到电感电流的斜率为 L U dt t di L 0)(-= (3.11) 因此,在第二个子区间,电感电流的变化率为一负的常量。 现在,电感电流的波形如下图所示,电感电流从初始值)0(L i 开始。在第一个

基于BUCK电路的电源设计

现代电源技术 基于BUCK电路的电源设计

学院:专业:姓名:班级:学号:指导教师:日期:

目录 摘要 (4) 一、设计意义及目的 (5) 二、Buck电路基本原理和设计指标 (5) 2.1 Buck电路基本原理 (5) 2.2 Buck电路设计指标 (7) 三、参数计算及交流小信号等效模型建立 (7) 3.1 电路参数计算 (7) 3.2 交流小信号等效模型建立 (11) 四、控制器设计 (12) 五、Matlab电路仿真 (18) 5.1 开环系统仿真 (18) 5.2 闭环系统仿真 (19) 六、设计总结 (22)

摘要 Buck电路是DC-DC电路中一种重要的基本电路,具有体积小、效率高的优点。本次设计采用Buck电路作为主电路进行开关电源设计,根据伏秒平衡、安秒平衡、小扰动近似等原理,通过交流小信号模型的建立和控制器的设计,成功地设计了Buck电路开关电源,通过MATLAB/Simulink进行仿真达到了预设的参数要求,并有效地缩短了调节时间和纹波。通过此次设计,对所学课程的有效复习与巩固,并初步掌握了开关电源的设计方法,为以后的学习奠定基础。 关键词:开关电源设计 Buck电路

一、设计意义及目的 通常所用电力分为直流和交流两种,从这些电源得到的电力往往不能直接满足要求,因此需要进行电力变换。常用的电力变换分为四大类,即:交流变直流(AC-DC),直流变交流(DC-AC),直流变直流(DC-DC),交流变交流(AC-AC)。其中DC-DC电路的功能是将直流电变为另一固定电压或可调电压的直流电,包过直接直流变流电路和间接直流变流电路。直接直流变流电路又称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,主要包括六种基本斩波电路:Buck电路,Boost电路,Buck-Boost电路,Cuk电路,Sepic电路,Zeta 电路。其中最基本的一种电路就是Buck电路。 因此,本文选用Buck电路作为主电路进行电源设计,以达到熟悉开关电源基本原理,熟悉伏秒平衡、安秒平衡、小扰动近似等原理,熟练的运用开关电源直流变压器等效模型,熟悉开关电源的交流小信号模型及控制器设计原理的目的。这些知识均是《线代电源设计》课程中所学核心知识点,通过本次设计,将有效巩固课堂所学知识,并加深理解。 二、Buck电路基本原理和设计指标 2.1 Buck电路基本原理 Buck变换器也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器,主要用于电力电路的供电电源,也可拖动直流电动机或带蓄电池负载等。其基本结构如图1所示:

相关文档