文档库 最新最全的文档下载
当前位置:文档库 › 电液伺服系统及其控制文档

电液伺服系统及其控制文档

电液伺服系统及其控制文档
电液伺服系统及其控制文档

电液系统及其控制

1概述

1.1电液控制系统工作原理及组成

一.工作原理

电液控制系统又称电液伺服系统,是以电气信号为输入,以液压信号为输出,电气检测传感器元件为反馈构成闭环控制系统.

由于是电气和液压相结合,因而系统可发挥两者的优点.电气信号便于测量转换放大处理校正,电气检测传感器元件便于检测各种物理量,且快速和多样性;液压信号输出功率大速度快,执行元件具有惯性小等优点.所以结合起来的电液控制系统具有控制精度高,响应速度快,信号处理灵活,输出功率大,结构紧凑,重量轻等优点.

输入电气信号通常有电位器,电子放大器,PLC控制器和计算机等. 电气检测传感器元件通常有位置传感器,压力传感器, 速度传感器,编码器等元件. 输出是以液压动力执行元件(油缸和马达)和伺服元件组成的反馈控制系统.如图所示:

在此系统中,输出量(位移,力,速度等)通过反馈传感器(位移传感器,力传感器,速度传感器等)能自动地快速地准确地反映其变化.并与原先的给定的给定量进行比较,再放大输入给伺服阀,改变其阀芯位移,从而控制输出的压力和流量,驱动执行元件运动,直至输人量与输出量一致为止.

举例:

1.阀控式电液位置控制伺服系统(如上图)

图中所示为双电位器电液位置控制伺服系统的工作原理图.该系统控制工作台的位置,使其按指令电位器给定的规律变化.

系统由指令电位器, 反馈电位器,电子放大器,电液伺服阀,液压缸和工作台组成.

其工作原理如下:

指令电位器将位置指令xi转换成指令电压ur,被控制的工作台位置xp由反馈电位器检测转换成反馈电压ui.两个线性电位器接成桥式电路,从而得到偏差电压ue=ur-uf.当工作台位置xp与指令位置xi一致时,电桥输出偏差电压ue=0,此时伺服放大器输出电流为零, 电液伺服阀处于零位,没有流量输出,工作台不动.当指令电位器位置发生变化,如向右移动一个位移Oxi,在工作台位置发生变化之前, 电桥输出偏差电压ue=KOx,偏差电压经伺服放大器放大后变为电流信号去控制电液伺服阀, 电液伺服阀输出压力油到液压缸,推动工作台右移.随着工

作台的移动, 电桥输出偏差电压逐渐减小,当工作台移动Oxp等于指令电位器位移Oxi时, 电桥输出偏差电压为零, 工作台停止移动.反之亦然.

系统的工作原理方块图如下:

2.泵控式电液速度控制伺服系统

该系统的液压动力执行元件由变量泵和液压马达组成,变量泵既是液压能源又是液压控制元件.由于操纵变量机构所需要的力较大,通常采用一个小功率的液压放大装置作为变量控制机构.

如图所示为一泵控式电液速度控制伺服系统的原理图.

图中所示系统采用阀控式电液位置控制机构作为泵的变量控制机构. 液压马达的输出速度由测速发电机检测,转换为反馈电压信号uf,与输入指令电压信号ur相比较,得出偏差电压信号ue=ur-uf,作为变量控制机构的输入信号.

当速度指令为ur0时, 负载以某个给定的转速w0工作,测速机输出反馈电压uf0,则偏差电压ue0=ur0-uf0,这个偏差电压对应于一定的液压缸位置,从而对应于一定的泵流量输出,此流量为保持负载转速w0所需的流量.如果负载变化或其它原因引起转速变化时,则uf 不等于uf0,假如w大于w0,即uf大于uf0,则ue=ur0-uf小于ue0,使液压缸输出位移减小,使泵输出流量减小,液压马达转速自动下调至给定值.反之,如果转速下降,则uf小于uf0,则ue=ur0-uf大于ue0,使液压缸输出位移增大,使泵输出流量增大,液压马达转速自动回升至给定值.

结论: 速度指令一定时, 液压马达转速保持恒定;速度指令变化时, 液压马达转速也相应变化.

系统的工作原理方块图如下:

二.电液伺服控制系统组成

1.输入元件---其功用是给出输入信号加于系统的输入端.可以是机械的,电气的等如靠模,电位器,计算机等.

2.反馈测量元件---测量系统输出并转换为反馈信号.如各类传感器(位置传感器,压力传感器,速度传感器等).

3.比较元件---将输入信号与反馈信号进行比较,给出偏差信号.

4.放大转换元件---将偏差信号放大,转换成液压信号.妲伺服放大器,电液伺服阀等.

5.执行元件---产生调节动作加于控制对象上,如液压缸和液压马达等.

6.控制对象---被控制的设备等,即负载.

7.液压能源装置及各种校正装置等.

1.2电液伺服控制的分类

电液伺服控制系统可按不同的原则分类,基本上有五大类.

一.按被控对象的物理量名称分类

1.位置伺服控制系统

主要是控制被控对象的位置精度的伺服控制系统,妲机床工作台的位置,板带轧机的板厚,振动试验台等系统.

2.速度伺服控制系统

主要是控制被控对象的速度精度的伺服控制系统,如原动机的调速,雷达天线的速度控制等.

3.力伺服控制系统

以力为被调量的伺服控制系统,如材料试验机,轧机张力控制系统等.

二.按执行元件的控制方式分类

1.阀控式伺服控制系统

利用伺服阀控制的伺服控制系统称为阀控式伺服控制系统.它又可分为阀控缸系统和阀控马达系统两种.

其优点是响应速度快,控制精度高,结构简单.缺点是效率低.

2.容积式伺服控制系统

利用变量泵或变量马达控制的伺服控制系统称为容积式伺服控制系统.它又可分伺服变量泵系统和伺服变量马达系统.

三.按系统输入信号的变化规律分类

1. 定值控制系统

当系统输入信号为定值时称为定值控制系统.它的任务是将系统的实际输出量保持在希望值上.

2. 程序控制系统

当系统输入信号为按预先给定的规律变化时称为程序控制系统..

3. 伺服控制系统

伺服控制系统又称随动系统,其输入信号是时间的未知函数,而输出量能够准确快速地复现输入量的变化规律.

四.按信号的方式分类

1.模拟信号控制系统

系统中全部信号都是连续的模拟量的系统称之.

2.数字信号控制系统

系统中全部信号都是数字量的系统称之.

3. 数字-模拟混合控制系统

系统中部分信号是数字量部分信号是模拟量的系统称之.

五.按信号传递介质的形式分类

1.机液伺服控制系统

输入信号给定,反馈测量和比较均用机械构件实现的系统称之.

2.电液伺服控制系统

用液压动力元件,偏差信号的检测校正和初始放大等均用电气电子元件实现的系统称之.

1.3电液伺服控制的优缺点

一. 电液伺服控制的优点

1.液压元件功率-重量比和力矩-惯量比(力-质量比)大,因而结构紧凑,体积小,重量轻,用于中大型功率系统优点更明显.

比较举例:

电气元件:最小尺寸取决于有效磁通密度,而有效磁通密度又受磁性材料的磁饱和限制;功率损耗产生的发热量散发又比较困难.因此功率-重量比和力矩-惯量比小,结构尺寸大.

液压元件:功率损耗产生的发热量由油带到散热器去散热,其最小尺寸取决于最大工作压力,而工作压力可以很高(通常可达32MPa),因而元件尺寸小,重量轻, 功率-重量比和力矩-惯量比大.

同功率:液压泵重量/电动机重量=10%-20%

液压泵尺寸/电动机尺寸=12%-13%

液压马达功率重量比=10倍相当容量的电动机

液压马达力矩-惯量比=10-20倍电动机

2.液压动力元件快速性好,系统响应快.加速能力强,能高速起动和制动.

3.液压伺服系统抗负载的刚度大.

二. 电液伺服控制的缺点

1.液压元件抗污染能力差,对工作介质清洁度要求高.工作介质随温度变化而变化,对系统性能有影响.

2. 液压元件制造精度高,成本高,且若元件的密封制造使用不当,易外漏,造成环境污染.

3.液压能源传输不如电气系统方便

2 电液伺服阀

电液伺服阀是电液伺服系统中的主要元件,它既是电液转换元件,又是功率放大元件.它能够把微小的电信号转换成大功率的液压能(流量和压力),是电液伺服控制系统的核心和关键.

电液伺服阀的输入信号是由电气元件来完成的,由它再转换成液压流量和压力,输出给执行机构,实现对执行机构各物理量的控制.

2.1电液伺服阀的组成与分类

一.组成

电液伺服阀通常由力矩马达,液压放大器,反馈机构三部分组成.以下图的两级中力反馈式电液伺服阀为例,简单介绍如下:图中上半部为力矩马达,下半部为液压放大器(由四通滑阀组成的液压放大器), 反馈机构则由反馈杆11组成.它们的作用分别是:

1.力矩马达(力马达)

将输入的电信号转换成力矩或力控制液压放大器运动.

2.液压放大器

控制液压能源流向执行机构的流量和压力.

3.反馈机构

使伺服阀输出的流量和压力获得与输入信号相应的特性.

二.分类

电液伺服阀的种类很多,按不同的结构和机能常有以下几种分类:

1.按输出量的控制功能分有:

电液流量伺服阀---主要控制输出的液流流量特性,即在额定输入信号范围内,具有线性流量控制特性.

电液压力伺服阀---在额定输入信号范围内,具有线性压力控制特性.

电液压力-流量伺服阀---在额定输入信号范围内,具有线性压力-流量控制特性.

2.按液压放大器的级数分有:

单级伺服阀---只有一级放大元件.结构简单,价格低廉,但输出力和力矩小,输出流量小,对负载变化敏感.用于低压小流量和负载变化不大的场合.

两级伺服阀---有两级放大元件.它克服了单级伺服阀的缺点,是最常用的型式.

三级伺服阀---由一个两级伺服阀作前置级,控制第三级功率滑阀.通常只用于大流量(200L/min)以上的场合.

3.按第一级阀的结构分有:

滑阀---第一级阀的结构是滑阀.此类阀流量和压力增益高,输出流量大,对油清洁度要求较低.但加工复杂,分辨率低,响应慢,滞环较大,阀芯受力大.

喷咀挡板--- 第一级阀的结构是喷咀挡板. 此类阀灵敏,动态响应快,线性度好.但对油清洁度要求高,挡板受力小,驱动功率小.

射流管--- 第一级阀的结构是射流管阀. 此类阀抗污染强,但动态响应慢,受油温响应大.

4.按反馈形式分有:

滑阀位置反馈---利用滑阀的位置反馈的阀,常用的有直接位置反馈,机械位置反馈,位置电反馈,位置力反馈等.

直接位置反馈---阀芯位移通过反馈杆与挡板相连,构成滑阀位移力反馈.常用于两级伺服阀.

机械位置反馈---将功率级滑阀的位移通过机械机构反馈到前置级.

位置电反馈---将功率级滑阀的位移通过位移传感器反馈到伺服阀的放大器输入端,实现功率级滑阀阀芯定位.

2.2 力矩马达

力矩马达是将电信号转换成机械运动的一种电气-机械转换.

一.力矩马达工作原理

利用电磁原理,由永久磁铁(或激磁线圈)产生极化磁场,而电信号通过控制线圈产生控制磁场,两个磁场相互作用,产生与控制信号成比例并能反映控制信号的极性的力或力矩,使其运动部分产生直线位移或角位移的机械运动.

二.力矩马达分类

1. 根据运动形式分

1) 角位移马达--力马达,可移动件是直角位移.

2) 直线位移马达—力马达,可移动件是直线位移.

2.按可动件结构分

1)动铁式---可动件是衔铁.

2)动圈式---可动件是控制线圈.

3.按极化磁场产生的方式分

1)永磁式---利用永久磁铁建立极化磁通.

2)非极磁式---无专门的极磁线圈,两个控制线圈差动连接,利用常值电流

产生极化磁通.

3)固定电流极磁式---利用固定电流通过极磁线圈建立极化磁场.

三.力矩马达要求

1.能产生足够的输出力和行程,且要求体积小,重量轻.

2.动态性能好,响应速度快.

3.直线性好,死区小,灵敏度高,磁滞小.

4.抗震,抗冲击,不受环境温度和压力影响.

四.典型力矩马达

1. 永磁动铁式力矩马达

1)组成

下图所示为一种常用的永磁动铁式力矩马达工作原理图,它由永久磁铁(2),上下导磁体(3,5),衔铁(4),弹簧管(1),控制线圈(两个控制线圈套在衔铁上).

2)工作原理

永久磁铁将上下导磁体磁化,一个为N极, 一个为S极.无信号电流时,即两个控制线圈的电流i1=i2,衔铁在上下导磁体的中间位置,由于力矩马达结构是对称的, 永久磁铁在四个工作气隙中所产生的极化磁通是一样的,使衔铁两端所受的电磁吸力相同,力矩马达无力矩输出.

当有信号电流通过控制线圈时,线圈产生控制磁通(其大小和方向取决于信号电流的大小和方向).假设i1>i2,如上图所示,在气隙1,3中控制磁通与极化磁通方向相同,而在气隙2,4中控制磁通与极化磁通方向相反,因此气隙1,3中其控制磁通与永久磁铁磁通合成大于气隙2,4中控制磁通与极化磁通的合成,于是衔铁上产生顺时针方向的电磁力矩,使衔铁绕弹簧管转动中心顺时针方向转动.当弹簧管变形产生的反力矩与电磁力矩相平衡时,衔铁停止转动.

如果信号电流反向,则电磁力矩也反向,衔铁向反方向转动.电磁力矩的大小与信号电流的大小成比例,衔铁的转角也与信号电流成比例.

因此调节信号电流便可调节电磁力矩的大小,也就调节衔铁的转角大小.

2.永磁动圈式马达

1)组成

永久磁铁,可动线圈,对中弹簧等.

2)工作原理

图所示为一种常见的结构原理图

图中,永久磁铁在工作气隙中形成极化磁通,当控制信号电流加到线圈上时,线圈就会受到电磁力的作用克服弹簧力和负载力而运动.线圈的位移与控制电流成比例.因此输入信号电流就会得到电磁力,且呈正比关系,具有线性特性.

3.动铁式力矩马达与动圈式力马达比较

动铁式力矩马达动圈式力马达

磁滞大磁滞小

工作行程小工作行程大

输出力矩大,弹簧刚度大,. 输出力矩小,固有频率低.

固有频率高

同功率体积小, 价格高同功率体积大,价格低

五.力矩马达的数学模型(电磁力矩计算)

1) 永磁动铁式力矩马达的数学模型(电磁力矩计算)

电磁力矩是由于控制线圈输入电流,在衔铁产生了控制磁通而形成的.因此需先求出力矩马达的控制电流.

通过力矩马达的磁路分析可求出电磁力矩的计算公式.

a.力矩马达的控制电流

参看永磁动铁式力矩马达的工作原理图,在其工作时, 两个控制线圈由一个放大器供电,其常值电压Eb在每个控制线圈中产生的常值电流I0大小相等方向相反.当放大器有输入电压时,两个控制线圈的电流分别为:

I1= I0+i

I2= I0-i

式中i1 i2--- 每个控制线圈中的电流;

I0---每个控制线圈中的常值电流

i---每个控制线圈中的信号电流;

两个控制线圈的差动电流为Δi=i1-i2=2I=i c(1)

I c ---输入马达的控制电流

b. 衔铁中产生的控制磁通

根据力矩马达的磁路原理图,应用磁路的基尔霍夫第二定律可得气隙的合成磁通, 继而应用磁路的基尔霍夫第一定律求出衔铁磁通:

φa=φ1-φ2=2φgθ(a/Lg)+Δi(Nc/ Rg)

式中φa ---衔铁磁通;φg ---衔铁在中位时气隙的极化磁通;

θ---衔铁转角; a ---衔铁转动中心到磁极面中心的距离;

Lg ---衔铁在中位时每个气隙的长度;Rg ---工作气隙的磁阻;

NcΔi---永久磁铁产生的控制磁动势;

c. 作用在衔铁上的电磁力矩

根据马克斯威尔公式计算衔铁在磁场中所受的电磁吸力,可得由控制磁通和极化磁通相互作用在衔铁上产生的电磁力矩简化式为

Td=KtΔi+Kmθ

式中Td ---作用在衔铁上的电磁力矩;Kt---力矩马达的中位电磁力矩系数;

Km---力矩马达的中位磁弹簧刚度;

从式中可看出,在衔铁中产生的控制磁通以及由此产生的电磁力矩比例于差动电流.

2) 永磁动圈式力马达的数学模型(电磁力矩计算)

参见永磁动圈式力马达的工作原理图,力矩马达的可动线圈悬置于工作气隙中,永久磁铁在工作气隙中形成极化磁通,当控制电流加到线圈上时,线圈就会受到电磁力的作用而运动.其运运动方向和电流方向按左手定则判断.线圈上的电磁力克服弹簧力和负载力,产生一个与控制电流成比例的位移.

由于电流方向与磁通方向垂直,根据载流导体在均匀磁场中所受的电磁力公式,可得力马达线圈所受的电磁力:

F=BgлDNcic=Ktic

式中F---线圈所受的电磁力;

K t---电磁力系数F=BgлDNc

N c---控制线圈的匝数.

B g---工作气隙中的磁感应强度;D---线圈的平均直径;

I c---通过线圈的控制电流.

结论: 永磁动圈式力马达的电磁力与控制电流成正比,具有线性特性.

2.3 液压放大元件

电液伺服阀另一个组成部分是液压放大器,它是一种以机械运动来控制流体动力的元件.它将力矩马达(或力马达)输出的机械运动(转角或位移)转换为液压信号(液体的流量和压力)输出,并进行了功率放大.

液压放大元件是伺服系统中的一种主要控制元件,其静动态特性对系统的性能影响很大.且结构简单,单位体积输出功率大,工作可靠和动态性能好.

一.液压放大元件的种类

液压放大元件有滑阀,喷咀挡板阀和射流管阀等.

二.滑阀

滑阀是靠节流原理工作的.它借助于阀芯与阀套间的相对运动改变节流口面积的大小,对

流体流量或压力进行控制.

滑阀结构形式多,控制性能好,在电液系统中应用最广泛.

1.滑阀的结构及分类

(1)按进出阀的通道数划分

它与液压方向阀的通道数一样,有四通阀,三通阀和二通阀.

四通阀有一个进油口,一个回油口,两个控制口.可用来控制双作用液压缸或马达.如图a所示.

三通阀有一个进油口,一个回油口,一个控制口.只可用来控制差动液压缸.如图b所示.

图b 三通阀图c 二通阀

二通阀一个进油口,只有一个可变节流口,须和一个固定节流孔配合使用,才能用来控制差动液压缸. 如图c所示.

(2)按滑阀的工作边数划分

a.四边滑阀--与上对应四通阀有四个可控的节流口,又称四边滑阀,控制性能最好.如上图a所示.

b. 双边滑阀--三通阀有两个可控的节流口,又称双边滑阀, 控制性能居中. 如上图b所示.

c. 单边滑阀--单边滑阀只有一个可控的节流口, 控制性能最差.

(3)按滑阀的预开口型式划分

按滑阀阀芯在中位时,阀芯凸肩与阀套槽宽的几何尺寸关系划分有:

a.正开口--阀芯凸肩与阀套槽宽的几何尺寸是负重叠的(即阀芯凸肩宽度大于阀套槽宽),参见图a.

b.零开口--阀芯凸肩与阀套槽宽的几何尺寸是零重叠的(即阀芯凸肩宽度等于阀套槽宽),

参见图b.

c.负开口--阀芯凸肩与阀套槽宽的几何尺寸是正重叠的(即阀芯凸肩宽度小于阀套槽宽),参见图c.

图a 正开口图b 零开口图c 负开口.

阀的预开口形式对其性能,特别是零位附近特性影响很大.

如下图所示:

零开口阀具有线性流量增益特性,性能比较好.

负开口阀由于流量增益特性有死区,将引起稳态误差,有时还可能引起游隙,从而产生稳定性问题.

正开口在正开口区内外的流量增益变化大,压力灵敏度低,零位泄漏量大.

图不同开口形式的流量特性

1-零开口2-正开口3-负开口

2.滑阀静态特性

滑阀静态特性是指稳态情况下,阀的负载流量qL, 负载压力pL和滑阀的位移xv三者之间的关系,即qL=f(pL, xv).它表示滑阀的工作能力和性能,对系统的静动态特性计算有重大意义.阀的静态特性可用方程(压力-流量方程),曲线或特性参数(阀的系数)表示.

(1) 滑阀静态特性

a.压力-流量方程

滑阀的控制流量可由滑阀节流口流量公式表示,其流量是阀芯位移和节流口的压降的函数.为了使问题简化,在推导压力-流量方程时,作了以下假设:

a)液压能源是理想的恒压源,供油压力Ps为常数,回油压力P0为零.

b)忽略管道和阀腔内的压力损失.

c)假定液体是不可压缩的.

d)假定阀各节流口流量系数相等.

e)阀的窗口都是匹配和对称的.

根据节流口流量公式,以四边滑阀为例,可推导出压力-流量方程:

负载流量为QL=CdA2√1/ρ(ps - pL)- CdA1√1/ρ(ps + pL)

式中Cd-为流量系数,ρ-为油密度, (ρ=870Kg/m3)

A1- 为节流口1的面积;

A2-为节流口2的面积;

ps –为恒压油源压力

pL-为负载压力,pL=p1-p2.

供油流量为Qs=CdA2√1/ρ(ps - pL)+ CdA1√1/ρ(ps + pL)

b.滑阀的静态特性曲线

a)流量特性曲线

阀的流量特性是指负载压降等于常数时, 负载流量与阀芯位移之间的关系,其图形表示即为流量特性曲线. 负载压降为0时的流量特性称空载流量特性.相应的曲线为空载流量特性曲线,如图a所示.

图a 空载流量特性曲线图图b 压力特性曲线

b)压力特性曲线

阀的压力特性是指负载压降等于常数时, 负载压降与阀芯位移之间的关系,

其图形表示即为压力特性曲线.

通常所指的压力特性是指负载流量为0时的压力特性,相应的曲线为压力特性曲线,如图b所示.

c)压力-流量特性曲线

阀的压力-流量特性曲线是指阀芯位移一定时, 负载流量与负载压降之间关系的图形. 如下图所示为理想零开口四边滑阀的压力-流量特性曲线族.它全面描述了阀的稳态特性,并可获得阀的全部性能参数.

阀在最大位移下的压力-流量特性曲线可以表示阀的工作能力和规格.当负载所需的压力和流量能被阀在最大位移下的压力-流量特性曲线所包围时,阀就能满足负载的要求

阀的压力-流量特性曲线

(2)零开口四边滑阀的静态特性

a. 理想零开口四边滑阀的静态特性

理想零开口滑阀是指径向间隙为零,工作边锐利的滑阀,如图所示.由于径向间隙为零,工作边锐利,因而在讨论静态特性时可不考虑它们的影响.且认为节流阀口为矩形,其面积A=W xv, (W-面积梯度xv-阀芯位移).

a)理想零开口四边滑阀的压力-流量方程 理想零开口四边滑阀的压力-流量方程:

QL=Cd W xv

-(1)

b)压力-流量曲线

根据无因次压力-流量方程绘制压力-流量曲线如下图所示.因阀窗口是匹配且对称的,所以压力-流量曲线对称于原点.当阀在正常工作状态是按图中Ⅰ,Ⅲ象限曲线.只有在瞬态情况下,才会处于Ⅱ,Ⅳ象限曲线.

???

? ??-L v

v s p p χχρ1

三.喷咀挡板阀

喷咀挡板阀也称喷咀挡板式液压放大元件.与滑阀相比,其公差要求不太严格,易加工,造价低,对油液污染的敏感性也差.但零位泄漏量大,功率损失较大。用于小功率系统,多作为两级放大器的第一级.

喷咀挡板阀有单喷咀挡板阀和双喷咀挡板阀两类.

1.双喷咀挡阀

(1)双喷咀挡阀的结构及工作原理

双喷咀挡阀是由两个结构相同的单喷咀挡阀组合在一起按差动原理工作的,其结构及工作原理参见下图.

如图所示,当挡板位于中间位置时,挡板与两个喷咀端面的距离均为初始缝隙xf0.此时两个中间控制腔内的压力相等,即p10=p20 ,而负载流量qL=0,负载静止不动.

当挡板绕0轴逆时针方向旋转时,上边挡板与喷咀端面的距离xf减小,使压力p1增加; 下边挡板与喷咀端面的距离xf增加,相应地p2降低.在压差pL= p1- p2的作用下, 负载向下运动.反之, 当挡板绕0轴顺时针方向旋转时, 负载向上运动.和正开口的四边滑阀的工作情况相似.

(2)双喷咀挡阀静态特性

a.压力-流量方程(略)

b.压力特性(略)

3典型的电液伺服阀

3.1力反馈两级电液伺服阀

目前伺服系统中,以力反馈喷咀挡板两级电液伺服阀应用较广.此类伺服阀生产厂家较多,而且系列较全,其结构大体相同,如下图3.1所示.

图3.1 力反馈喷咀挡板两级电液伺服阀

1-气隙2-上导磁体3-衔铁4-下导磁体5- 挡板

6-喷咀7- 固定节流孔8-过滤芯9-阀芯10-阀体

11-反馈杆12-弹簧管13-线圈

一.力反馈喷咀挡板两级电液伺服阀工作原理

如上图所示, 两级电液伺服阀是由力矩马达和二级放大器及反馈机构组成. 力矩马达选用永磁动铁式力矩马达控制;其第一级液压放大器为双喷咀挡板阀; 第二级液压放大器为四通滑阀; 反馈机构由反馈杆与衔铁挡板组件构成滑阀位移力反馈回路.

无控制电流时,衔铁由弹簧管支承在上下磁体的中间位置,挡板也处于两个喷咀中间位置,滑阀阀芯在反馈杆小球的约束下处于中位,阀无液压输出.

输入时,在衔铁上产生逆时针方向的电磁力矩,使衔铁挡板组件绕弹簧转动中心逆时针方向偏转,弹簧管和反馈杆产生变形,挡板偏离中位,.这时喷咀挡板阀右间隙减小而左间隙增大,引起滑阀右腔控制压力p2p增大,左腔控制压力p1p减小,推动滑阀阀芯左移.同时带动反馈杆端部小球左移*,使反馈杆进一步变形.当腔控制压力p2p增和弹簧管变形产生的反力矩与电磁力矩相平衡时,衔铁挡板组件便处于一个平衡位置.在反馈杆端部左移进一步变形时,使挡板的偏移减小,趋于中位.使控制压力p2p降低, p1p增高,当阀芯两端的液压力与反馈杆变形对阀芯产生的反作用力以及滑阀的液动力相平衡时,阀芯停止运动,其位移与控制电流成比例.在负载压差一定时,阀的输出流量也与控制电流成比例.所以是一种流量控制伺服阀.

这种伺服阀由于衔铁和挡柄在中位附近工作,所以线性好.对力矩马达的线性要求也不高,可以允许滑阀有较大的工作行程.

二.基本方程与方块图

1.永磁动铁式力矩马达的基本方程和方块图

a.力矩马达的运动方程

力矩马达工作时包含两个动态过程:一个是电的动态过程,另一个是机械的动态过程. 电的动态过程可用电路的基本电压方程表示, 机械的动态过程可用衔铁组件的运动方程表示.

(1)基本电压方程

参看永磁动铁式力矩马达的工作原理图,输入每个线圈的信号电压为

u 1=u 2=K u (1)

式中u 1 u2---输入每个线圈的信号电压;

Ku---放大器每边的增益

2 K u = (Rc+rp) Δi+2Kbs θ+2 Lcs Δi (2) 式中Eb ---产生常值电流所需的电压; Zb---线圈公用边的阻抗; Rc---每个线圈的电阻;

r p ---每个线圈回路中的放大器内阻; Nc---每个线圈的匝数;

φn---衔铁磁通; θ---衔铁转角;

a---衔铁转动中心到磁极面中的距离; Lc---每个线圈的自感系数; K b ---每个线圈的反电动势常数.

方程式(2)左边为放大器加在线圈上的总控制电压-右边第一项为电阻上的电压降,第二项为衔铁运动时在线圈内产生的反电动势,第三项是线圈内电流变化所引起的感应电动势.

式(2)改写为传函形式:

式中w a ---控制线圈回路的转折频率. W a =Rc+rp/2 Lc

(2)衔铁挡板组件的运动方程

()()

?

????

?++-

??????+++=?a b c b a p c g u s r r s K s r R U K i ωθω1212

由上述永磁动铁式力矩马达中得到控制磁通和极化磁通相互作用在衔铁上产生的电磁力矩简化式为: Td=Kt Δi+Km θ

K t -----力矩马达达的中位电磁力矩系数, K m ----力矩马达达的中位磁弹簧刚度.

根据上图所示的衔铁挡板组件受力情况,可得在电磁力矩作用下,衔铁挡板组件的运动方程:

在电磁力矩作用下,衔铁挡板组件的运动方程经拉氏变换后为: K t Δi=(Jas2+Bas+Kmf) θ+ (r+b)KfXv + rPLPAN b. 力矩马达的传函

写成传函形式:

式中K mf ---力矩马达的净刚度; ωmf --力矩马达的固有频率;

ξmf ---- 力矩马达的机械阻尼比

2.挡板位移与衔铁转角的关系 x f =r θ

3.喷咀挡板至滑阀的传递函数

忽略阀芯移动所受的粘性阻尼力,稳态液动力和反馈杆弹簧力, 喷咀挡板至滑阀的传递函数为

式中K qp ----喷咀挡板阀的流量增益

;

212

2

L L a a a T T K dt d B dt d J T ++++=θθθ[]

Lp

N v f f mf mf mf mf

P rA X b r K I K s s K -+-?++=)(1212

2ωξωθ)12(2

2

++=s s s A K X X hp hp hp

v

qp f v ωξω

A v ----滑阀阀芯端面面积; ωmp ---滑阀的液压固有频率, ; ξmf ---- 力矩马达的机械阻尼比. V op ----滑阀一端所包含的容积;

Kcp----喷咀挡板阀的流量-压力增益; Mv----滑阀阀芯及油液的归化质量. 4.阀控缸的传递函数

在衔铁挡板组件的运动方程中含有喷咀挡板阀的负载压力PLp,其大小与滑阀的受力有关.滑阀受惯性力,稳态液动力等, 稳态液动力又与滑阀输出的负载有关,即与液压执行机构有关.为此要写出动力元件的运动方程.为简单起见,动力元件的负载只考虑惯性,则根据动力元件推导结果,写出伺服阀至所控缸的传递函数为:

式中K q ---功率级滑阀的流量增益;

A p ---缸的工作面积; X p ----缸的输出位移; ωm ---液压固有频率,

ξm ---- 液压阻尼比

5.作用在挡板上的压力反馈

忽略滑阀阀芯运动时所受的粘性阻尼力和反馈杆弹簧力,只考虑阀芯的惯性力和稳态液动力,则喷咀挡板阀的负载压力PLp 为:

在稳态时即P Lp =0,将上式拉氏变换为

滑阀的负载压力为

根据上述方程便可画出力矩马达,喷咀挡板至滑阀,阀控缸,力反馈的方块图,即整个力反馈伺服阀的方块图.

)

12(22++=

s s s A K X X h h h

p

q

v p ωξωt

p

e h V A 24βω=t

t

e p cp h V M A K βξ=??

????-+=v L s v

v v Lp x p p w dt x d m A p )(43.0122[]

L

v v s v v v

Lp P X x wp X s m A p 0243.043.01

-+=[]

p

v v

L X s m A p 21

=

力反馈伺服阀的方块图包含两个反馈回路,一个是滑阀位移的力反馈回路,这是主要回路,

另一个是作用在挡板上的压力反馈回路, 这是主次要回路.

力反馈伺服阀的性能主要由力反馈回路决定.它包含力矩马达和滑阀两个动态环节.一般情况下,滑阀的固有频率ωmp 和力矩马达控制线圈的固有频率ω0很高,远大于衔铁挡板组件的固有频率ωmf,故滑阀动态和力矩马达控制线圈的可以忽略.作用在挡板上的压力反馈的影响比力反馈小得多, 压力反馈回路也可以忽略.这样力反馈伺服阀的方块图可以简化,简化后的力反馈伺服阀的方块图如图示.

三. 力反馈伺服阀的传递函数

由简化后的力反馈伺服阀的方块图可得到力反馈伺服阀的传递函数为

式中Ka----伺服阀放大器增益,

K xv ---伺服阀增益

伺服阀通常以电流作输入参数,以空载流量q0=Kqxv 作输出参量.因而可表示为

式中Ksv---伺服阀的流量增益.

在大多数电液伺服系统中,伺服阀的动态响应往往高于动力元件的动态响应.为了简化系统的动态特性分析与设计, 伺服阀的传递函数可进一步简化, 一般可用二阶振荡环节表示为

???? ??++???? ??+=

12122s s K s K K U X mf mf

mf vf xv

a g v ωξωf

u

a K

b r K K )(2+=

p

c t

sv r R K K +=

???

? ??++???? ??+=

?121220s s K s K I Q mf mf mf vf sv

ωξω

式中ωsv ---伺服阀固有频率,;

ξsv ---- 伺服阀阻尼比.

如果伺服阀的二阶环节的固有频率高于动力元件的固有频率,伺服阀的传递函数还可用一阶惯性环节表示;当伺服阀的固有频率远大于动力元件的固有频率,伺服阀的传递函数还可看成比例环节.

3.2 动圈式双级滑阀式电液伺服阀

动圈式直接反馈双级滑阀式电液伺服阀是由动圈式力马达和两级滑阀式放大器组成.前 置级是带两个固定节流孔的双边滑阀,功率级是零开口的四边滑阀.功率级的阀阀芯也是前置级的阀套,构成直接反馈. 下图为动圈式直接反馈双级滑阀式电液伺服阀的简单结构图.

功率级滑阀开口量为Xv,使阀口B 输出流量. 若假定 1.工作原理

如图所示, 图中:1-锁紧螺母,2-调整螺钉,3-磁钢,4-导磁体,5-气隙,6-动圈,7-弹簧,8-一级阀芯,9-二级阀芯,10-阀体,11-下控制腔,12-下节流口,13-下固定节流孔,14-上固定节流孔,15-上节流口,16-上控制腔.

当信号电流输入力马达线圈时,线圈上产生的电磁力使前置级阀芯8移动.若假定阀芯向上移动X,此时上节流口15开大,下节流口12关小.从而使功率级滑阀阀芯9的上控制腔压力减小,而下控制腔压力增大,功率阀芯9上移.当功率级阀芯9位移Xv=X 时停止移动,阀芯向下移动X,此时上节流口15关小,下节流口12开大.从而使功率级滑阀阀芯9的上控制腔压力增大,而下控制腔压力减小,功率阀芯9下移.当功率级阀芯9位移Xv=X 时停止移动,

功率级滑阀

???

? ??++=?12220s s K I Q sv sv

sv sv

ωξω

电液位置伺服控制系统设计方法

电液位置伺服控制系统设计方法 电液位置伺服系统是最基本和最常用的一种液压伺服系统,如机床工作台的位置、板带轧机的板厚、带材跑偏控制、飞机和船舶的舵机控制、雷达和火炮控制系统以及振动试验台等。在其它物理量的控制系统中,如速度控制和力控制等系统中,也常有位置控制小回路作为大回路中的一个环节 电液位置伺服系统主要是用于解决位置跟随的控制问题,其根本任务就是通过执行机构实现被控量对给定量的及时和准确跟踪,并要具有足够的控制精度。电液伺服系统的动态特性是衡量一套电液伺服系统设计及调试水平的重要指标。它由电信号处理装置和若干液压元件组成,元件的动态性能相互影响,相互制约及系统本身所包含的非线性,致使其动态性能复杂。因此,电液伺服控制系统的设计及仿真受到越来越多的重视。 液压伺服系统的基本设计步骤 ○1分析整理所需的设计参数,明确设计要求;○2拟定控制方案,构成控制系统原理图;○3确定动力元件参数(如供油压力、执行元件规格、伺服阀容量)和其他组成元件;○4分析计算系统的静、动态特性,确定回路放大系数和设计校正措施等。○5根据技术要求设计出系统以后,需要检查所设计的系统是否满足全部性能指标,如不满足,可通过调整参数或改变系统结构(即校正)等方法重复设计过程,直至满足要求为止。因为设计是试探性的,所以设计方法具有很大的灵活性,在设计中结合MATLAB的SIMULINK软件进行仿真,对系统的参数进行调整和可靠性作进一步验证,最终可以得出比较可靠的电液伺服系统。 (一)组成控制系统原理图 由于系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。系统方块原理如图1

(二)由静态计算确定动力元件参数,选择位移传感器和伺服放大器 1.绘制负载轨迹图 负载力由切削力c F ,摩擦力f F 和惯性力a F 三部分组成。摩擦力具有“下降”特性,为了简化,可认为与速度无关,是定值,取最大值f F = 1500N 惯性力按最大加速度考虑 a max F 800t m a N == 假定系统是在最恶劣的负载条件下工作(即所有负载力都在存在,且速度最大)下工作,则总负载力为 max f F F F F =l c a =++400+1500+800=2700N 2.选取供油压力 5s P 6310Pa =? 3.求取液压马达排量 设齿轮减速比'm i=/2m θθ=,丝杠导程2 1.210/t m r -=?,则所需液压马达力矩为 2 2700 1.210 2.58222 L L F t T N m i ππ-??===?? 取L s 2P =P 3,则液压马达弧度排量为-63L 5s 3T 3 2.58D ==0.610m /2P 26310 m rad ?=??? 液压马达每转排量为-63-632D 20.610m / 3.710m /m m Q r r ππ==??=? 计算出的液压马达排量需标准化。按选取的标准化值再计算负载压力L P 值。本例液压马达排量计算符合标准化。 4.确定伺服阀规格 液压马达的最大转速为2max max 2 2810800/min 13.3/1.210iv n r r s t --??====? 所以负载流量为-6-6max q 3.71013.3/49.2110l m Q n r s ==??=? 此时伺服阀的压降为 55L s Lmax s -6T 2.58P P P 631020.010D 0.610 v m P Pa Pa =-=-=?-=?? 考虑到泄漏等影响,将q l 增大15%,取q l = 3.4L/min 。根据q l 和v P ,查得额定流量为

电液伺服系统的仿真与自校正PID控制器的设计

文章编号:!""#$%&’(()""!)"*$""%%$"* 电液伺服系统的仿真与自校正+,-控制器的设计! 高翔!,孔丽英),孙贵芳% (!.海军工程大学动力工程学院,湖北武汉&%""%%;).西江大学,广东肇庆*)("""; %.海军%/""!部队,辽宁大连!!(""") 摘要:对一个试验用电液伺服系统进行了理论建模和仿真研究,引入了一个非线性状态方程模型来描述电液伺服系统的动态特性.通过仿真结果与实际系统的响应相比较,验证了所建立的理论模型的准确性.在此仿 真模型基础上,设计了一个适用的自校正+,-控制器, 并且对其控制特性进行了仿真研究.关键词:电液伺服系统;仿真;非线性特性;自校正+,-控制器 中图分类号:0+)!&文献标识码:1 电液伺服系统在机械制造、船舶操纵和工业过程控制中得到了越来越广泛的应用.随着自动化技术的发展和自动化程度的不断提高,对电液伺服系统的稳定性、快速性、准确性、自适应性和鲁棒性等控制品质提出了更高的要求.为满足这些要求,一方面要提高液压系统本身的制造技术和品质特性;另一方 面选择合适的控制器是关键.一般情况下, 控制器可分为两大类,一类是基于被控系统的精确数学模型的控制器,称为传统型控制器,它包括+,-控制器、超前和滞后校正控制器、最优化控制器和自适应控制器等;另一类为人工智能型控制器,这类控制器不依赖于被控系统的精确数学模型,而依赖于人的经验知识,或者依赖于系统的输入与输出之间的非线性映射模型,例如模糊逻辑控制器和人工神经网络控制器等.第一类控制器已形成比较完善的理论体系和分析与综合方法;第二类控制器正处于大量研究和开发之中,理论体系还不完备.本文重点研究应用于电液伺服系统中的传统型控制器. 从传统控制理论的思想和方法出发,要求建立被控系统的精确数学模型,准确地描述其动力学特性,这是设计理想控制器的基础和前提条件.常用的描述系统动力学特性的数学方法有:微分方程、差分方程、传递函数和状态方程等.其中,状态方程更适合于描述非线性动力学系统的动态特性.本文采用状 态方程来建立电液伺服系统的动力学模型.该状态方程模型是否准确或有效,可以通过234536[!,)]环境 下的789:58;<[%]仿真结果与实际系统响应的比较来验证. 本文在理论建模与模拟仿真的基础上,将自适应控制理论引入传统的+,-控制器中,通过基于继电反馈的整定方法,在系统处于继电反馈闭环下观察其极限环振荡,再由极限环振荡的特征辨识出被控系统动态过程的基本性质,然后根据=8>?5>@AB8CDE5F 方法确定+,-控制器的参数,从而实现了自校正+,-控制器的设计,并通过仿真研究自适应+,-控制器的控制品质. !试验用电液伺服系统的组成和结构原理 试验用电液伺服系统由轴向柱塞泵、液压缸(G>H@E4D IJ/"K)*L !(L !""=M/*#&)、电液伺服阀(G>H@E4D &N7)O2!"A&))、溢流阀和其它辅助元件等组成(见图!).此外, 还配有一个测量与控制系统,它由位移传感器、压力传感器、G0,A’!*A,;4>@P3C>卡、,QA!)"卡和&’(A+I 等组成.该测量与控制系统可以放大、测量和记录液压油源压力!F 和!@、液压缸两腔的压力!1和!R 、液压缸活塞杆的运动位移"(#) 和运动速度$(#)%由&’($+I 实现的数字控制器可根据反馈信号与指令信号作出控制决策, 输出控制作用信号&(#)给电液伺服阀的驱动放大器,从而实现计算机控制% 第!%卷第*期 )""!年!"月海军工程大学学报STUGB1V TK B1W1V UB,WOG7,0M TK OBJ,BOOG,BJ WE5.!%BE.*TC4.)""! !收稿日期:)""!A"&A%";修订日期:)""!A"*A!%作者简介:高翔(!#(%A ),男,副教授,博士生. 万方数据

电液伺服阀基础知识介绍

电液伺服阀基础知识介绍 射流管式电液伺服阀与喷嘴挡板式电液伺服阀是目前世界上运用最普遍的典型两级流量控制伺服阀。博格公司的DSHR一级先导就是射流管阀,而派克公司的TDL一级先导就是喷嘴挡板阀,下面对两种阀的结构、工作原理及特点作个比较与介绍。并着重分析了射流管式伺服阀在可靠性及工作性能方面的一些优势。 工作原理: ★喷嘴挡板式伺服阀的原理:TDL 图1 为喷嘴挡板式伺服阀的原理图。它主要由力矩马达、喷嘴挡板式液压放大器、滑阀式功率级及反馈杆组件构成。其工作过程为:输入到力矩马达线圈的电气控制信号在衔铁两端产生磁力,使衔铁挡板组件偏转。挡板的偏移将一侧喷嘴挡板可变节流口减小,液流阻力增大,喷嘴的背压升高;而另一侧的可变节流口增大,液流阻力减小,液流的背压降低。这样可得到与挡板位置变化相对应的喷嘴背压,此背压加到与与喷嘴腔相通的阀芯端部,推动阀芯移动。而阀芯又推动反馈杆端部的小球,产生反馈力矩作用在衔铁挡板组件上。当反馈力矩逐渐等于电磁力矩时,衔铁挡板组件被逐渐移回到对中的位置。于是,阀芯停留在某一位置。在该位置上,反馈杆的力矩等于输入控制 电流产生的的力矩,因此,阀芯位置与输入控制电流大小成正比。当供油压力及负载压力为一定时,输出到负载的流量与阀芯位置成正比。 图1双喷嘴挡板式力反馈电液流量伺服阀

★射流管式伺服阀的原理: 图2 为射流管式伺服阀的原理图。力矩马达采用永磁结构,弹簧管支承着衔铁射流管组件,并使马达与液压部分隔离,所以力矩马达是干式的。前置级为射流放大器,它由射流管与接受器组成。当马达线圈输入控制电,在衔铁上生成的控制磁通与永磁磁通相互作用,于是衔铁上产生一个力矩,促使衔铁、弹簧管、喷嘴组件偏转一个正比于力矩的小角度。经过喷嘴的高速射流的偏转,使得接受器一腔压力升高,另一腔压力降低,连接这两腔的阀芯两端形成压差,阀芯运动直到反馈组件产生的力矩与马达力矩相平衡,使喷嘴又回到两接受器的中间位置为止。这样阀芯的位移与控制电流的大小成正比,阀的输出流量就比例于控制电流。 图2 射流管式力反馈电液流量伺服阀 ★两种阀的主要特点: 射流管式与喷嘴挡板式最大差别在于喷嘴挡板式以改变流体回路上所通过的阻抗来进行力的控制。相反,射流管式是靠射流喷嘴喷射工作液,将压力能变成动能,控制两个接受孔获得能量的比例来进行力的控制。这种方式的阀与喷嘴挡板式相比因射流喷嘴大,由污粒等工作液中杂物引起的危害小,抗污染能力强。且射流管式液压放大器的压力效率及容积效率高,一般为70%以上,有时也可达到90%以上的高效率。输出控制力(滑阀驱动力)大,进一步提高了抗污染能力。同样其灵敏度、分辨率及低压工作性能大大优于喷嘴挡板阀。另外,由于射流管式由于在喷嘴的下游进行力控制,当喷嘴被杂物完全堵死时,因两个接受孔均无能量输入,滑阀阀芯的两端面也没有油压的作用,反馈弹簧的弯曲变形力会使阀芯回到零位上,伺服阀可避免过大的流量输出,具有“失效对中”能力,并不会发生所谓的“满舵”现象。但射流管式液压放大器及整个阀的性能不易理论

电液伺服控制系统的设计

。 电液伺服控制系统的设计与仿真 引言 电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。因此,利用AMESim、Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。 1 液压系统动态特性研究概述 随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。 液压系统动态特性简述 … 液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干扰引起的。在此过程中,系统各参变量随时间变化性能的好坏,决定系统动态特性的优劣。系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。 液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。该方法适用于线性与非线性系统,可以模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。 仿真环境简介 基于Matlab平台的Simulink是动态系统仿真领域中著名的仿真集成环境,它在众多领域得到广泛应用。Simulink借助Matlab的计算功能,可方便地建立各种模型、改变仿真参数,有效解决了仿真技术中的问题。Simulink提供了交互的仿真环境,既可通过下拉菜单进行仿真,也可通过命令进行仿真。虽然Simulink提供了丰富的模块库,但是在Matlab/Simulink下对液压系统进行建模及仿真需要做很多简化工作,而模型的简化使得仿真结果往往出现一定的误差。AMESim (Advanced Modeling Environment for Simulation of Engineering Systems)是法国IMAGINE公司开发的一套高级仿真软件。它是一个图形化的开发环境,用于工程系统的建模、仿真和动态性能分析。AMESim的特点是面向工程应用从而使其成为

MATLAB电液位置伺服控制系统设计及仿真教案资料

M A T L A B电液位置伺服控制系统设计及仿真

数控机床工作台电液位置伺服控制系统设 计及仿真 姓名:雷小舟 专业:机械电子工程 子方向:机电一体化 武汉工程大学机电液一体化实验室

位置伺服系统是一种自动控制系统。因此,在分析和设计这样的控制系统时,需要用自动控制原理作为其理论基础,来研究整个系统的动态性能,进而研究如何把各种元件组成稳定的和满足稳定性能指标的控制系统。若原系统不稳定可通过调整比例参数和采用滞后校正使系统达到稳定,并选取合适的参数使系统满足设计要求。 1 位置伺服系统组成元件及工作原理 数控机床工作台位置伺服系统有不同的形式,一般均可以由给定环节、比较环节、校正环节、执行机构、被控对象或调节对象和检测装置或传感器等基本元件组成[1]。根据主机的要求知系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。 系统物理模型如图1所示。 图1 数控机床工作台位置伺服系统物理模型 系统方框图如图2所示。 图2 数控机床工作台位置伺服系统方框图 数控机床工作台位置伺服系统是指以数控机床工作台移动位移为控制对象的自动控制系统。位置伺服系统作为数控机床的执行机构,集电力电子器件、控制、驱动及保护为一体。数控机床的工作台位置伺服系统输出位移能自动地、快速而准确地复现输入位移的变化,是因为工作台输出端有位移检测装置(位移传感器)将位移信号转化为电信号反馈到输入端构成负反馈闭环控制系统。反馈信号与输入信号比较得到差压信号,然后把差压信号通过伺服放大器转化为电流信号,送入电液伺服阀(电液转换、功率放大元件)转换为大功率的液压信号(流量与压力)输出,从而使液压马达的四通滑阀有开口量就有压力油输出到液压马达,驱动液压马达带动减速齿轮转动,从而带动滚珠丝杠运动。因滚珠丝杠与工作台相连所以当滚珠丝杠 运动时,工作台也发生相应的位移。 2数控工作台的数学模型 2.1 工作台负载分析 工作台负载主要由切削力c F ,摩擦力f F 和惯性力a F 三部分组成,则总负载力为: a f c L F F F F ++=

CSDY1射流管电液伺服阀产品说明书

CSDY1射流管电液伺服阀 产品说明书 编制: 校对: 审核: 审定: 九江仪表厂 一九八九年十二月

CSDY1射流管电液伺服阀产品说明书 一、概述: CSDY1系列射流管电液伺服阀是力反馈型两级流量伺服控制阀,具有性能良好,抗污染能力强,安全可靠以及寿命长的突出特点,适用于电液伺服系统的位置、速度、加速度和力的控制。 二、结构原理: 图1是CSDY1系列射流管电液伺服阀的原理图,力矩马达采用永磁力矩马达,由两个永久磁钢产生极化磁通,衔铁两端伸入磁通回路的空气隙中,弹簧管一端固定在壳体上,另一端固定在衔铁组件的钢套中。反馈弹簧组件的一端固定在射流管喷嘴上,反馈杆被夹牢在阀芯的中心位置。 高压油连续地从供油腔Ps通过滤油器及固定节流孔,到射流管喷嘴向两个接受孔喷射,接受孔分别与阀芯两端控制腔相通。 当力矩马达线圈组件输入控制电流时,由于控制磁通和极化磁通的相互作用,在衔铁上产生一个力矩,该力矩使衔铁组件绕弹簧管旋转,从而使射流管喷嘴运动导致两个接受孔腔产生压差引起阀芯位移,且一直持续到由反馈弹簧组件弯曲产生的反馈力矩与控制电流产生的控制力矩相平衡为止。 由于阀芯位移与反馈力矩成比例,控制力矩与控制电流成比例,伺服阀的输出流量与阀芯位移成比例,所以伺服阀的输出流量与输入的指令控制电信号亦成比例,若给伺服阀输入反向电控信号,则伺服阀就有反向流量输出。 三、技术性能指标:

1、供油压力范围(MPa) 2.1~31.5 2、额定供油压力(MPa)20.6 3、额定流量(L/min)2—40(按用户要求) 4、滞环(%)≤3 ≤5(用于低频控制系统) 5、分辨率(%)≤0.25 6、线性度(%)≤7.5 7、对称度(%)≤10 8、压力增益(%Ps/1%In)≥30 9、静耗流量(L/min)≤0.45+3%Qn 10、零偏(%)≤2 11、幅频宽(-3Db)(HZ) ≥70 ≥40(用于低频控制系列) 12、相频宽(-90°)(HZ)≥90 四、线圈连接方法: 伺服阀线圈的连接方法,插销头标号,外引出线颜色及控制电流的极性等参照下表和射流管电液伺服阀安装图(图2)

电液伺服控制系统的应用研究

电液伺服控制系统的应用研究 【摘要】电液伺服控制是液压技术领域的重要分支。多年来,许多工业部门和技术领域对高响应、高精度、高功率—重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在元件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。我国于50年代开始液压伺服元件和系统的研究工作,现已生产几种系列电液伺服产品,电液伺服控制系统的研究工作也取得很大进展。 【关键词】电液伺服控制应用 1、电液控制系统的特点、构成及分类 电液控制系统是一门比较年轻的技术,它的发展和普遍应用还不到50年,然而,凭借它的优点却形成了流体传动与控制的一个重要分支,并成为现代控制工程的基本技术构成之一。 1.1电液控制系统的特点 1) 液压执行元件的功率--重量比和转矩--惯性矩比(或力--质量比)大,具有很大的功率传递密度,可以构成体积小、重量轻、响应速度快的大功率控制单元。 2) 液压系统的负载刚度大,精度高。由于液压杠、执行元件的泄漏很少,液体介质的体积弹性模量又很大,故具有较大的速度--负载刚性,即速度--力或转速--力矩曲线斜率的倒数很大,因此有可能用于开环系统。用于闭环系统时则表现为位置刚度大,其定位精度受负载变化的影响小。 3) 液压控制系统可以安全,可靠并迅速地实现频繁的带负载启动和制动,进行正反向直线或回转运动和动力控制,而且具有很大的调速范围。 电气或电子技术和液压传动及控制相结合的产物--电液控制系统兼备了电气和液压的双重优势,形成了具有竞争力和自身技术特点。 当然,在某些场合下,指令和反馈元件也可全部采用机械、气动或液压元件,此时,即称为机械--液压控制系统和气动--液压控制系统。 1.2 电液控制系统的构成 工程实际中系统的指令及放大单元多采用电子设备。电机械转换器往往是动圈式或动铁式电磁元件和伺服电机、步进电机等。液压转换及放大器件可以是各类开关式,伺服式和比例式器件实际上是一功率放大单元。液压执行元件通常是液压缸和液压马达,其输出参数只能是位移、速度、加速度和力或者转角、角速

液压伺服工作原理

液压伺服工作原理 1.1 液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明。 图1所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入量是电位器5的给定值 x i 。对应给定值x i ,有一定的电压输给放大器7,放大器将电压信号转换为电流 信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v 。阀开口x v 使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸 活塞杆也带动电位器6的触点下移x p 。当x p 所对应的电压与x i 所对应的电压相 等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。 图1 管道流量(或静压力)的电液伺服系统 1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀 在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反

电液伺服控制系统的设计

电液伺服控制系统 的设计

电液伺服控制系统的设计与仿真 引言 电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。因此,利用AMESim、 Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。 1 液压系统动态特性研究概述 随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。 1.1 液压系统动态特性简述 液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干

动态特性的优劣。系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。 液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。该方法适用于线性与非线性系统,能够模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。 1.2 仿真环境简介 基于Matlab平台的Simulink是动态系统仿真领域中著名的仿真集成环境,它在众多领域得到广泛应用。Simulink借助Matlab的计算功能,可方便地建立各种模型、改变仿真参数,有效解决了仿真技术中的问题。Simulink提供了交互的仿真环境,既可经过下拉菜单进行仿真,也可经过命令进行仿真。虽然Simulink提供了丰富的模块库,可是在Matlab/Simulink下对液压系统进行建模及仿真需要做很多简化工作,而模型的简化使得仿真结果往往出现一定的误差。AMESim (Advanced Modeling Environment for Simulation of Engineering Systems)是法国IMAGINE公司开发的一套高级仿真软件。它是一个图形化的开发环境,用于工程系统的建

电液伺服控制系统的设计

电液伺服控制系统的设计与仿真 引言 电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。因此,利用AMESim、Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。 1 液压系统动态特性研究概述 随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。 1.1 液压系统动态特性简述 液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干扰引起的。在此过程中,系统各参变量随时间变化性能的好坏,决定系统动态特性的优劣。系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。 液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。该方法适用于线性与非线性系统,可以模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。 1.2 仿真环境简介 基于Matlab平台的Simulink是动态系统仿真领域中著名的仿真集成环境,它在众多领域得到广泛应用。Simulink借助Matlab的计算功能,可方便地建立各种模型、改变仿真参数,有效解决了仿真技术中的问题。Simulink提供了交互的仿真环境,既可通过下拉菜单进行仿真,也可通过命令进行仿真。虽然Simulink提供了丰富的模块库,但是在Matlab/Simulink下对液压系统进行建模及仿真需要做很多简化工作,而模型的简化使得仿真结果往往出现一定的误差。AMESim (Advanced Modeling Environment for Simulation of Engineering Systems)是法国IMAGINE公司开发的一套高级仿真软件。它是一个图形化的开发环境,用于工程系统的建模、仿真和动态性能分析。AMESim的特点是面向工程应用从而使其成为汽车、航天和航空等工业研发部门的理想仿真工具。研究人员完全可以用AMESim的各种模型库来设计系统,从而可快速达到建模仿真的最终目标,同时还提供了与Matlab、ADAMS等软件的接口,可方便地与这些软件进行联合仿真。

伺服阀工作原理

(1)电液伺服阀的组成 伺服阀由力矩马达、液压放大器、反馈机构三部分组成 (2)力矩马达的工作原理 力矩马达的作用是把输入的电气控制信号转换为力矩。它由永久磁铁、上导磁体、下导磁体、衔铁、控制线圈、弹簧管等组成。衔铁固定在弹簧管上端,由弹簧管支承在上、下导磁体的中间位置,可绕弹簧管的转动中心作微小的转动。 永久磁铁将上、下导磁体磁化,一个为N级,另一个为S级。无信号电流时,衔铁在上、下导磁体的中间位置,由于力矩马达结构是对称的,使磁铁两端所受的电磁力相同,力矩马达无力矩输出。当有信号电流通过线圈时,控制线圈产生控制磁通,其大小和方向取决于信号电流的大小和方向电磁力矩的大小与信号电流的大小成比例,衔铁的转角也与信号电流成比例。

力矩马达磁路原理图 对于上图的磁路分析: 对分支点A 和B 应用磁路基尔霍夫第一定律可得衔铁磁通 12a φφφ=- 整理后得到 g 2g 2()2l 1()l g c a x x φφφ+=- 由于2g (x/l )1 《,上式化简a g 2l c g g x N i R φφ=+?,考虑到x a θ≈,上式写成 a g 2l c g g a N i R φφθ=+? 由控制磁通和极化磁通的相互作用在衔铁上产生电磁力矩d 14=2a(F -F )T ,考

虑到衔铁转角θ很小,故有,,x tg x a a θθθ=≈≈则上式可写成: 2 2222g 22g (1)(1)l (1)l c t m g d x K i K T x φθφ+?++=-, 式中t K 为力矩马达的中位电磁力矩系数,g 2l t c g a K N φ= m K 为力矩马达的中位磁弹簧刚度,22g 4()l m g g a K R φ= 由上式可以看出,力矩马达的输出力矩具有非线性。为了改善线性度和防 止衔铁被永久磁铁吸附,力矩马达一般都设计成g x/l <1/3,即2g (x/l )1 《和2(/) 1c g φφ《。则接着化简成: t d m T K i K θ=?+ 上式中,t i K ?是衔铁在中位时,由控制电流i ?产生的电磁力矩,称为中位电磁力矩。m K θ是由于衔铁偏离中位时,气隙发生变化而产生的附加电磁力矩,它使衔铁进一步偏离中位。这个力矩与转角成比例,相似于弹簧的特性,称为电磁弹簧力矩。 (3) 液压放大器 液压放大器的运动去控制液压能源流向液压执行机构的流量或压力。力矩马达的输出力矩很小,在阀的流量比较大时,无法直接驱动功率级阀运动,此时需要增加液压前置级,将力矩马达的输出加以放大,再去控制功率级阀,功率级阀采用三位四通滑阀,这就构成了电液伺服阀。 三级电液伺服阀实质上是由通用型双喷嘴力反馈两级伺服阀和第三级滑阀组成,第三级滑阀的阀芯位移由电反馈来实现闭环控制。 伺服射流管先导阀主要由力矩马达、喷嘴挡板和接收器组成。当线圈中有电流通过时,产生的电磁力使挡板偏离中位。这个偏离和特殊形状的喷嘴设计使得当挡板偏向一侧时造成先导阀的接收器产生偏差。此压差直接导致阀芯两侧驱动

美国MOOG伺服阀,伺服阀的工作原理及作用

美国MOOG伺服阀,伺服阀的工作原理及作用 1、电液伺服阀主要用于电液伺服自动控制系统,其作用是将小功率的电信号转换为大功率的液压输出,经过液压执行机构来完成机械设备的自动化控制. SupeSite/X-Space官方站y Q d:E p p.P 伺服阀是一种经过改动输入信号。依据输入信号的方式不同,分为电液伺服阀和机液伺服阀。SupeSite/X-Space官方站(R w _ }/i-A 电液伺服阀既是电液转换元件,又是功率放大元件,它的作用是将小功率的电信号输入转换为大功率的液压能(压力和流量)输出,完成执行元件的位移、速度、加速度及力控制。 +C6S c {(p a0液压泵的输出压力是指液压泵在实践工作时输出油液的压力,即泵工作时的出口压力,通常称为工作压力,其大小取决于负载。 SupeSite/X-Space官方站Y \ h+I r2k L 电液伺服阀通常由电气—机械转换安装、液压放大器和反应(均衡)机构三局部组成。反应战争衡机构使电液伺服阀输出的流量或压力取得与输入电信号成比例的特性。压力的稳定通常采用压力控制阀,比方溢流阀等。 2.细致材料: 典型电---气比例阀、伺服阀的工作原理 电---气比例阀和伺服阀按其功用可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。美国威格士VICKERS柱塞泵由于气体的可紧缩性,使气缸或气马达等执行元件的运动速度不只取决于气体流量。还取决于执行元件的负载大小。因而准确地控制气体流量常常是不用要的。单纯的压力式或流量式比例/伺服阀应用不多,常常是压力和流量分离在一同应用更为普遍。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来低价的电子集成电路和各种检测器件的大量呈现,在1电---气比例/伺服阀中越

电液伺服系统

电液伺服系统 电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。根据输入信号的形式不同,又可分为模拟伺服系统和数字伺服系统两类。下面对模拟伺服系统和数字伺服系统作一简单的说明。 模拟伺服系统 在模拟伺服系统中,全部信号都是连续的模拟量,如图1所示。在此系统中,输入信号、反馈信号、偏差信号以及其放大、校正都是连续的模拟量。电信号可以是直流量,也可以是交流量。直流量和交流量相互转换可以通过调制器或解调器完成。模拟伺服系统重复精度高,但分辨能力较低(绝对精度低)。伺服系统的精度在很大程度上取决于检测装置的精度,而模拟式检测装置的精度一般低于数字式检测装置,所以模拟伺服系统分辨能力低于数字伺服系统。另外模拟伺服系统中微小信号容易受到噪声和零漂的影响,因此当输入信号接近或小于输入端的噪声和零漂时,就不能进行有效的控制了。 图1 模拟伺服系统方块图 数字伺服系统 在数字伺服系统中,全部信号或部分信号是离散参量。因此数字伺服系统又分为数字伺服系统和数字—模拟伺服系统两种。在全数字伺服系统中,动力元件必须能够接收数字信号,可采用数字阀或电液步进马达。数字模拟混合式伺服系统如2所示。数控装置发出的指令脉冲与反馈脉冲相比较后产生数字偏差,经数模转化器把信号变为模拟偏差电压,后面的动力部分不变,仍是模拟元件。系统输出通过数字检测器(即模数转换器)变为反馈脉冲信号。

图2 数字伺服系统方块图 数字伺服系统有很高的绝对精度,受模拟量的噪声和零漂的影响很小。当要求较高的绝对精度,而不是重复精度时,常采用数字模拟系统。从经济性可靠性方面来看,简单的伺服系统采用采用模拟型控制为宜。 系统特点及使用场合 电液伺服系统综合了电气和液压两方面的优点,具有控制精度高、响应速度快、输出功率大、信号处理灵活、易于实现各种参量的反馈等优点。因此,在负载质量大又要求响应速度快的场合最为适合,其应用已遍及国民经济的各个领域,比如飞机与船舶舵机的控制、雷达与火炮的控制、机床工作台的位置控制、板带轧机的板厚控制、电炉冶炼的电极位置控制、各种飞机车里的模拟台的控制、发电机转速的控制、材料试验机及其他实验机的压力控制等等。 电液位置伺服系统分析 电液位置伺服系统是最基本和最常用的一种液压伺服系统。当采用电位器作为指令装置和反馈测量装置,就可以构成直流电液位置伺服系统。采用自整角机或旋转变压器作为质量装置和反馈测量装置,就可以构成交流电液位置伺服系统。图3是一个典型的电液位置伺服控制系统。图中反馈电位器与指令电位器接成桥式电路。反馈电位器滑臂与控制对象相连,其作用是把控制对象位置的变化转换成电压的变化。反馈电位器与指令电位器滑臂间的电位差(反映控制对象位置与指令位置的偏差)经放大器放大后,加于电液伺服阀转换为液压信号,以推动液压缸活塞,驱动控制对象向消除偏差方向运动。当偏差为零时,停止驱动,因而使控制对象的位置总是按指令电位器给定的规律变化。 图3 电液位置伺服系统图 电液伺服系统中常用的位置检测元件有自整角机、旋转变压器、感应同步器和差动变压器等。伺服放大器为伺服阀提供所需要的驱动电流。电液伺服阀的作

电液伺服系统及其控制文档概述

电液系统及其控制 1概述 1.1电液控制系统工作原理及组成 一.工作原理 电液控制系统又称电液伺服系统,是以电气信号为输入,以液压信号为输出,电气检测传感器元件为反馈构成闭环控制系统. 由于是电气和液压相结合,因而系统可发挥两者的优点.电气信号便于测量转换放大处理校正,电气检测传感器元件便于检测各种物理量,且快速和多样性;液压信号输出功率大速度快,执行元件具有惯性小等优点.所以结合起来的电液控制系统具有控制精度高,响应速度快,信号处理灵活,输出功率大,结构紧凑,重量轻等优点. 输入电气信号通常有电位器,电子放大器,PLC控制器和计算机等. 电气检测传感器元件通常有位置传感器,压力传感器, 速度传感器,编码器等元件. 输出是以液压动力执行元件(油缸和马达)和伺服元件组成的反馈控制系统.如图所示: 在此系统中,输出量(位移,力,速度等)通过反馈传感器(位移传感器,力传感器,速度传感器等)能自动地快速地准确地反映其变化.并与原先的给定的给定量进行比较,再放大输入给伺服阀,改变其阀芯位移,从而控制输出的压力和流量,驱动执行元件运动,直至输人量与输出量一致为止. 举例: 1.阀控式电液位置控制伺服系统(如上图) 图中所示为双电位器电液位置控制伺服系统的工作原理图.该系统控制工作台的位置,使其按指令电位器给定的规律变化. 系统由指令电位器, 反馈电位器,电子放大器,电液伺服阀,液压缸和工作台组成. 其工作原理如下: 指令电位器将位置指令xi转换成指令电压ur,被控制的工作台位置xp由反馈电位器检测转换成反馈电压ui.两个线性电位器接成桥式电路,从而得到偏差电压ue=ur-uf.当工作台位置xp与指令位置xi一致时,电桥输出偏差电压ue=0,此时伺服放大器输出电流为零, 电液伺服阀处于零位,没有流量输出,工作台不动.当指令电位器位置发生变化,如向右移动一个位移Oxi,在工作台位置发生变化之前, 电桥输出偏差电压ue=KOx,偏差电压经伺服放大器放大后变为电流信号去控制电液伺服阀, 电液伺服阀输出压力油到液压缸,推动工作台右移.随着工

某旋压机电液伺服系统的设计与仿真 自控课设 哈工大

Harbin Institute of Technology 课程设计说明书 课程名称:自动控制原理 设计题目:某旋压机电液伺服系统的设计与仿真班级: 设计者: 学号: 指导老师:王述一 设计时间: 2013年2月----3月 哈尔滨工业大学

哈尔滨工业大学课程设计任务书 (s)=

*注:此任务书由课程设计指导教师填写。 目录 一:题目要求与背景…………………………………………………………………. 1.1 题目要求 1.2题目背景简介 二:基于频率响应法的设计 2.1 人工设计

2.1.1设计满足稳态误差要求的未校正系统的开环频率特性2.1.2计算系统设计要求的相角裕度 2.1.3计算系统设计要求的剪切频率 2.1.4为系统设计校正环节 2.2 计算机辅助设计 2.2.1被控对象仿真 2.2.2控制器的设计 2.2.3对校正后开环系统仿真 2.2.4对控制器的开环系统仿真 2.2.5对校正后闭环系统仿真 2.2.6 对校正系统评估 2.3 校正装置电路图 三:基于根轨迹法的设计 3.1人工设计 3.1.1 原系统根轨迹图 3.1.2 期望主导极点 3.1.3控制器的设计 3.1.4 校正后系统仿真分析 四:设计总结 五:心得体会 六:参考文献 七:附录:

一:题目要求与背景 1.1 题目要求 技术要求:;;;速度信号V=0.5m/min时,误差e(t) 系统固有传递函数为: (s)= 1.2题目背景简介 电液伺服控制起源于主要在军事工程领域发展起来的电液控制技术,而电液比例控制技术,是针对伺服控制存在的诸如功率损失大、对油液过滤要求苛刻、制造和维护费用高。而它提供的快速性在一般工业设备中又往往用不着的情况,在近30多年迅速发展起来的介于普通通断开关控制与伺服控制之间的新型电液控制技术分支。除了模拟式电液比例元件外,早在20世纪60年代人们就开始注意数字式或脉冲式比例元件的开发。这类元件的优点是对介质污染不敏感,工作可靠,重复精度高,成批产品的性能一致性好。其主要缺点是由于按载频原理实现控制,故控制信号的频宽较模拟器件低。数字式电液比例元件的电一机械转换器,主要是步进马达和按脉冲方式工作的动铁式或动圈式力马达。数字式电液比例系统实质上是一个电液数/模转换系统或载频调制系统。其控制分辨精度取决于每一脉冲的当量步长或调制精度。最近迅速发展起来的高速开关阀,为比例阀的先导控制提供了一种新型的方式。这种阀的重要特点是结构简单、响应快,目前正摆脱由于工作流量小而仅作为先导控制阀的局面,甚至更大的流量方向寻求优化结构。 第二次世界大战后期,由于喷气式飞机速度很高,因此对控制系统的快速性、动态精度和功率一重量比都提出了更高的要求。1940年底,在飞机上首先出现了电液伺服系统。经过20余年的发展,到了20世纪60年代,各种结构的电液伺服阀相继问世,电液伺服技术

伺服阀与比例阀原理介绍

电液伺服阀的原理和性能介绍 电液伺服阀是一种比电液比例阀的精度更高、响应更快的液压控制阀,其输出流量或压力受输入的电气信号控制,主要用于高速闭环液压控制系统,而比例阀多用于响应速度相对较低的开环控制系统中,伺服阀价格高且对过滤精度要求也高,比例阀广泛用于要求对液压参数进行连续控制或程序控制但对控制精度和动态特性要求不太高的液压系统中。 另外,1.伺服阀中位没有死区,比例阀有中位死区; 2.伺服阀的频响(响应频率)更高,可以高达200Hz左右,比例阀一般最高几十Hz; 3.伺服阀对液压油液的要求更高,需要精过滤才行,否则容易堵塞,比例阀要求低一些。 比例伺服阀性能介于伺服阀和比例阀之间。 比例换向阀属于比例阀的一种,用来控制流量和流向。 伺服阀跟比例阀的本质区别就是他有两横 1、伺服阀和比例阀上下都有两横; 2、比例阀两边都有比例电磁铁,而且有比例电磁铁的符号上都箭头。但是伺服阀确是只有一边有力马达,要强调的是只有一边有。 比例阀多为电气反馈,当有信号输入时,主阀芯带动与之相连的位移传感器运动,当反馈的位移信号与给定信号相等时,主阀芯停止运动,比例阀达到一个新的平衡位置伺服阀,阀保持一定的输出; 伺服阀有机械反馈和电气反馈两种,一般电气反馈的伺服阀的频响高,机械反馈的伺服阀频响稍低,动作过程与比例阀基本相同。 区别:一般比例阀的输入功率较大,基本在几百毫安到1安培以上,而伺服阀的输入功率较小,基本在几十毫安; 比例阀的控制精度稍低,滞环较伺服阀大,伺服阀的控制精度高,但对油液的要求也高

一个粗液压缸一个细液压缸长短样怎么同步升起 最简单的就是在细油缸的进油口加一个节流阀,控制一下进入油缸的流量使细油缸慢下来。但节流阀的节流效果受负载和液压油粘度的影响比较大,如果负载变化大,你得经常调整。 不用节流阀,用调速阀也可以,不受负载影响,但有发热的趋势。 也可以用分流阀,但分流阀的分流比是确定的,通常是1:1或1:2。粗细油缸的面积比不一定合适。 最贵的方案就是带有长度传感器的伺服缸和比例阀或者伺服阀,在计算机控制下,能达到液压系统能达到的最高精度。但价格很难接受。 |评论 同步精度要求不高的话,直接用个同步分流阀就行了。有负载补偿的 建议用分流集流阀,好一些的阀,精度可以达到正负3% 尽可能用机械同步。分流阀不用试,一定失败。原因是流量太小,形成不了压差。马达式同步有机会成功,但要选排量非常小的。算手泵流量时把人算100瓦的功率。 如果能做到机械式同步,那是最好不过的了,如果没条件,在同步精度要求较低的情况下,可以用同步阀(分流-集流阀),精度要求再高点的话,可以用同步马达。再高点,就无法达到了,因为要用伺服阀,但现场无法用电 分流阀在负载相同时效果非常好,但负载偏差严重时同步效果大打折扣,建议用同步马达或 同步缸,同步精高时不妨用传感器 油缸不大的话用同步缸要好点,油缸大的话用同步马达应该可以满足 流马达又叫同步马达,一般为齿轮的,与多联齿轮泵的外形有点象,就是两组或两组以上的齿轮马达串联在一起,转速一致,按一定比例分配液压泵提供来的油液供执行元件使用,不

相关文档