文档库 最新最全的文档下载
当前位置:文档库 › 安川电机转矩与转速特性图

安川电机转矩与转速特性图

安川电机转矩与转速特性图
安川电机转矩与转速特性图

安川伺服电机转速与转矩特性曲线图电压AC200V

该两种规格,额定转速3000RAM,最高转速6000RAM.属于轻惯量电机,特性高速转矩小,常用于高速动力头驱动。

以下七种规格,额定转速1500RAM,最高转速3000RAM.,属于中惯量中容量电机,特性低速转矩大。常用于X/Z/Y轴向驱动、主轴驱动及多功能Y轴机动力头驱动。

誉胜常用安川电机与驱动器选型,如图一: 誉胜机床安川五型伺服电机主要参数表

电机类型

中惯量中容量--SGMGV 最高转速3000RAM 中惯量小容量---SGMAV 最高转速6000RAM 低惯量小容

量---SGMJV 最高转速6000RAM

额定输出功率

0.85KW 1.3KW 4.4KW 5.5KW 750W 1000W 额定转矩 5.39N.M 8.34N.M 28.4N.M 35N.M 2.39N.M 3.18N.M 最大转矩 13.8N.M 23.3N.M 71.1N.M 87.6N.M 8.36N.M 9.55N.M 额定电流 6.9A 10.7A 32.8A 42.1A 4.7AN.M 7.4AN.M

电机规格

SGMGV- 09A SGMGV- 13A SGMGV- 44A SGMGV- 55A

SGMJV-08A SGMAV-10A

五型驱动器型号 SGDV- 7R6A SGDV- 120A SGDV- 330A SGDV- 470A SGDV-5R5A SGDV-120A 驱动器额定

功率

1KW 1.5KW 5.0KW 6.0KW 0.75KW 1.5KW

誉胜机床主轴选配,如图二: 誉胜机床主轴伺服电机主要参数表

电机类型 安川伺服电机 最高转速3000RAM 北京超同步电机 最高转速8000RAM 美事科伺服电机 最高转速8000RAM

额定输出功率

5.5KW

5.5KW

5.5KW 额定转矩

35N.M 35N.M

36N.M 最大转矩 87.6N.M ——

—— 额定电流 42.1A

11.5A

16.1 电机规格

SGMGV-55A GTB-45P5ZXB DSM-38C5D5K 五型驱动器型号 SGDV- 470A

BKSC-47P5GS1

GK800-4T7.5B

驱动器额定功率

6.0KW

7.5KW

7.5KW

电机特性曲线

? ? ? ? ? ? 电气控制与PLC网络教学资源当前位置: 电气控制与PLC网络教学资源> 学习情境> 项目一货物升降机的继电-接触器控制> 正 文 1.1.3三相异步电动机的工作特性 作者: Admin | 来源:| 点击: 517 | 发布时间: 2007-10-07 异步电动机的转矩特性动画演示 一、三相异步电动机的转矩特性 异步电动机的电磁转矩T是由载流导体在磁场中受电磁力的作用而产生的,它使电动机旋转。 式中U1——定子绕组相电压有效值,单位是伏特(V); f1——定子电源频率,单位是赫兹(Hz); s——电动机的转差率;

R2——转子绕组一相电阻,单位是欧姆(Ω); X20——转子不动时一相感抗,单位是欧姆(Ω); C——与电机结构有关的比例常数。 为了分析方便,将异步电动机的电磁转矩T代替电动机的输出转矩T2 由于电动机的转子参数R2及X20是一定的,电源频率f1也是一定的,故当电源电压U1一定时,上式即表明异步电动机的电磁转矩T只与转差率s有关,因此可用函数式T=f(s)表示,称为异步电动机的转矩特性,画出其图象则称为转矩特性曲线,如图1-13所示。 图1-13异步电动机的转矩特性曲线

二、异步电动机的机械特性 1.电动机的额定转矩的实用计算式 旋转机械的机械功率等于转矩和转动角速度的乘积,对于电动机而言,就有 P2=T2Ω(1-4) 当电动机的输出转矩T2用牛·米(N·m)作单位,旋转角速度Ω用弧度/秒(rad/s)作单位时,输出功率P2的单位是瓦特。 在电动机中计算转矩时输出功率P2的单位是千瓦(kW),转速n的单位是转/分(r/min),所以可以将计算公式简化,如在额定状态下转矩公式为 式中T N——电动机的额定转矩,单位是牛·米(N·m); P N——电动机的额定功率,单位是千瓦(kW); n N——电动机的额定转速,单位是转/分(r/min).

电机转速和扭矩(转矩)计算公式[1].dwg

电机转速和扭矩(转矩)公式 含义:1kg= 1千克的物体受到地球的吸引力是牛顿。 含义:·m 推力点垂直作用在离磨盘中心1米的位置上的力为。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩公式:T=973P/n T是扭矩,单位Kg·m P是输出功率,单位KW n是电机转速,单位r/min 形象的比喻: 功率与扭矩哪一项最能具体代表车辆性能有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则为磅-呎(lb-ft),在美国的车型录上较为常见,若要转换成公制,只要将lb-ft的数字除以即可。汽车驱动力的计算方式:将扭矩除以车轮半径

即可由发动机功率-扭矩输出曲线图可发现,在每一个转速下都有一个相对的扭矩数值,这些数值要如何转换成实际推动汽车的力量呢答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一部1.6升的发动机大约可发挥15.0kg-m的最大扭矩,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/=公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位「牛顿」)。 36公斤的力量怎么推动一公吨的车重呢而且动辄数千转的发动机转速更不可能恰好成为轮胎转速,否则车子不就飞起来了幸好聪明的人类发明了「齿轮」,利用不同大小的齿轮相连搭配,可以将旋转的速度降低,同时将扭矩放大。由于齿轮的圆周比就是半径比,因此从小齿轮传递动力至大齿轮时,转动的速度降低的比率以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的「齿轮比」。 举例说明,以小齿轮带动大齿轮,假设小齿轮的齿数为15齿,大齿轮的齿数为45齿。当小齿轮以3000rpm的转速旋转,而扭矩为20kg-m时,传递至大齿轮的转速便降低了1/3,变成1000rpm;但是扭矩反而放大三倍,成为60kg-m。这就是发动机扭矩经由变速箱可降低转速并放大扭矩的基本原理。 在汽车上,发动机输出至轮胎为止共经过两次扭矩的放大,第一次由变速箱的档位作用而产生,第二次则导因于最终齿轮比(或称最终传动比)。扭矩的总放大倍率就是变速箱齿比与最终齿轮比的相乘倍数。举例来说,手排的一档齿轮比为,最终齿轮比为,而发动机的最大扭矩为5500rpm,于是我们可以算出第一档的最大扭矩经过放大后为××=,比原发动机放大了13倍。此时再除以轮胎半径约0.41m,即可获得推力约为470公斤。然而上述的数值并不是实际的推力,毕竟机械传输的过程中必定有磨耗损失,因此必须将机械效率的因

电机转矩功率转速之间的关系及计算公式

电机转矩、功率、转速之间的关系及计算公式 电动机输出转矩: 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生 一定程度的扭转变形,故转矩有时又称为扭矩。 转矩与功率及转速的关系:转矩(T)=9550*功率(P)/转速(n)? 即:T=9550P/n 由此可推导出: 转矩=9550*功率/转速《===》功率=转速*转矩/9550 方程式中: P—功率的单位(kW); n—转速的单位(r/min); T—转矩的单位(N.m); 9550是计算系数。 电机扭矩计算公式 T=9550P/n 是如何计算的呢? 分析: 功率=力*速度即 P=F*V---——--公式【1】 转矩(T)=扭力(F)*作用半径(R) 推出F=T/R------公式【2】 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30------公式【3】 将公式2、3代入公式1得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位N.m, n分=每分钟转速单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n 30000/3.1415926*P=T*n 9549.297*P=T*n 这就是为什么会有功率和转矩*转速之间有个9550的系数关系。。。 转矩的类型 转矩可分为静态转矩和动态转矩。 ※静态转矩 静态转矩是值不随时间延长而变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。? 静止转矩的值为常数,传动轴不旋转; 恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; 缓变转矩的值随时间延长而缓慢变化,但在短时间内可认为转矩值是不变的; 微脉动转矩的瞬时值有幅度不大的脉动变化。 ※动态转矩 动态转矩是值随时间延长而变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。 振动转矩的值是周期性波动的; 过渡转矩是机械从一种工况转换到另一种工况时的转矩变化 过程;随机转矩是一种不确定的、变化无规律的转矩。

电机转速转矩计算公式[1]

针对你的问题有公式可参照分析: 电机功率:P=1.732×U×I×cosφ 电机转矩:T=9549×P/n ; 电机功率 转矩=9550*输出功率/输出转速 转矩=9550*输出功率/输出转速 P = T*n/9550 公式推导 电机功率,转矩,转速的关系 功率=力*速度 P=F*V---公式1 转矩(T)=扭力(F)*作用半径(R) 推出 F=T/R ---公式2 线速度(V)=2πR*每秒转速(n秒) =2πR*每分转速(n分)/60 =πR*n 分/30---公式3 将公式2、3代入公式1得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位Nm, n分=每分钟转速单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n 30000/3.1415926*P=T*n 9549.297*P= T * n 电机转速:n=60f/p,p为电机极对数,例如四级电机的p=2; 注:当频率达50Hz时,电机达到额定功率,再增加频率,其功率时不会再增的,会保持额定功率。 电机转矩在50Hz以下时,是与频率成正比变化的;当频率f达到50Hz时,电机达到最大输出功率,即额定功率;如果频率f在50Hz以后再继续增加,则输出转矩与频率成反比变化,因为它的输出功率就是那么大了,你还要继续增加频率f,那么套入上面的计算式分析,转矩则明显会减小。

转速的情况和频率是一样的,因为电源电压不变,其频率的变化直接反应的结果就是转速的同比变化,频率增,转速也增,它减另一个也减。 关于电压分析起来有点麻烦,你先看这几个公式。 电机的定子电压:U = E + I×R (I为电流, R为电子电阻, E为感应电势); 而:E = k×f×X (k:常数, f: 频率, X:磁通); 对异步电机来说:T=K×I×X (K:常数, I:电流, X:磁通); 则很容易看出频率f的变化,也伴随着E的变化,则定子的电压也应该是变化的,事实上常用的变频器调速方法也就是这样的,频率变化时,变频器输出电压,也就是加在定子两端的电压也是随之变化的,是成正比的,这就是恒V/f比变频方式。这三个式子也可用于前面的分析,可得出相同结果。 当然,如果电源频率不变,电机转矩肯定是正比于电压的,但是一定是在电机达到额定输出转矩前。 电机的“扭矩”,单位是N?m(牛米) 计算公式是T=9549 * P / n 。 P是电机的额定(输出)功率单位是千瓦(KW) 分母是额定转速n 单位是转每分(r/min) P和n可从电机铭牌中直接查到。 电机转速和扭矩(转矩)公式 含义:1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义:9.8N·m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW

电机功率和转矩转速关系

三相异步电动机磁极对数: 1对磁极(2个磁极):同步转速3000转,异步速度2880转左右。 2对磁极(4个磁极):同步转速1500转,异步速度1450转左右. 3对磁极(6个磁极):同步转速1000转,异步速度960转左右. 4对磁极(8个磁极):同步转速750转,异步速度730转左右. 对于相同功率,不同极数的电机: 磁极对数越多,转速越低,体积越大,但输出的扭矩大。 磁极对数越少,转速越高,体积越小,但输出的扭矩也小。 电机功率和转矩、转速之间的关系 功率: 物理意义 物理意义:表示物体做功快慢的物理量。 物理定义:单位时间内所做的功叫功率。说:“功率是做功快慢的物理量 [1] 公式 功率可分为电功率,力的功率等。故计算公式也有所不同。 电功率计算公式:P=W/t =UI;在纯电阻电路中,根据欧姆定律U=IR代入P=UI中还可以得到:P=I*IR=(U*U)/R 在动力学中:功率计算公式:P=W/t(平均功率);P=Fvcosa(瞬时功率) 因为W=F(f力)×S(s位移)(功的定义式),所以求功率的公式也可推导出P=F·v:P=W /t=F*S/t=F*V(此公式适用于物体做匀速直线运动) 单位

P表示功率,单位是“瓦特”,简称“瓦”,符号是“W”。W表示功,单位是“焦耳”,简称“焦”,符号是“J”。“t”表示时间,单位是“秒”,符号是“s”。 功率越大转速越高,汽车的最高速度也越高,常用最大功率来描述汽车的动力性能。最大功率一般用马力(PS)或千瓦(kW)来表示,1马力等于0.735千瓦。1W=1J/s 功率=力*速度 P=F*V---公式-------------------------------------------------1 转矩(T)=扭力(F)*作用半径(R) ------推出F=T/R---公式-------------------------------------2 线速度(V)=2πR*每秒转速(n秒) =2πR*每分转速(n分)/60 =πR*n分/30---公式-------------------3 将公式2、3代入公式1得: P=F*V=(T/R)*(πR*n分/30)= (T*π* n分)/30 (单位 W) -----P=功率单位W, T=转矩单位Nm, n分=每分钟转速单位转/分钟 如果已知P的单位为KW,那么就是如下公式: P *1000 = (T*π* n分)/30 (单位 W) 30000*P /π=T*n 30000*P /3.1415926 =T*n 9549.297*P=T*n 结论:

安川电机转矩与转速特性图

安川伺服电机转速与转矩特性曲线图电压AC200V 该两种规格,额定转速3000RAM,最高转速6000RAM.属于轻惯量电机,特性高速转矩小,常用于高速动力头驱动。 以下七种规格,额定转速1500RAM,最高转速3000RAM.,属于中惯量中容量电机,特性低速转矩大。常用于X/Z/Y轴向驱动、主轴驱动及多功能Y轴机动力头驱动。

誉胜常用安川电机与驱动器选型,如图一: 誉胜机床安川五型伺服电机主要参数表 电机类型 中惯量中容量--SGMGV 最高转速3000RAM 中惯量小容量---SGMAV 最高转速6000RAM 低惯量小容 量---SGMJV 最高转速6000RAM 额定输出功率 0.85KW 1.3KW 4.4KW 5.5KW 750W 1000W 额定转矩 5.39N.M 8.34N.M 28.4N.M 35N.M 2.39N.M 3.18N.M 最大转矩 13.8N.M 23.3N.M 71.1N.M 87.6N.M 8.36N.M 9.55N.M 额定电流 6.9A 10.7A 32.8A 42.1A 4.7AN.M 7.4AN.M 电机规格 SGMGV- 09A SGMGV- 13A SGMGV- 44A SGMGV- 55A SGMJV-08A SGMAV-10A 五型驱动器型号 SGDV- 7R6A SGDV- 120A SGDV- 330A SGDV- 470A SGDV-5R5A SGDV-120A 驱动器额定 功率 1KW 1.5KW 5.0KW 6.0KW 0.75KW 1.5KW 誉胜机床主轴选配,如图二: 誉胜机床主轴伺服电机主要参数表 电机类型 安川伺服电机 最高转速3000RAM 北京超同步电机 最高转速8000RAM 美事科伺服电机 最高转速8000RAM 额定输出功率 5.5KW 5.5KW 5.5KW 额定转矩 35N.M 35N.M 36N.M 最大转矩 87.6N.M —— —— 额定电流 42.1A 11.5A 16.1 电机规格 SGMGV-55A GTB-45P5ZXB DSM-38C5D5K 五型驱动器型号 SGDV- 470A BKSC-47P5GS1 GK800-4T7.5B 驱动器额定功率 6.0KW 7.5KW 7.5KW

电机转矩、功率、转速之间的关系及计算公式

电机转矩、功率、转速之间得关系及计算公式 电动机输出转矩: 使机械元件转动得力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生 一定程度得扭转变形,故转矩有时又称为扭矩。 转矩与功率及转速得关系: 转矩(T)=9550*功率(P)/转速(n) 即:T=9550P/n 由此可推导出: 转矩=9550*功率/转速《===》功率=转速*转矩/9550 方程式中: P—功率得单位(kW); n—转速得单位(r/min); T—转矩得单位(N、m); 9550就是计算系数。 电机扭矩计算公式 T=9550P/n 就是如何计算得呢? 分析: 功率=力*速度即P=F*V---——--公式【1】 转矩(T)=扭力(F)*作用半径(R) 推出F=T/R------公式【2】 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30------公式【3】 将公式2、3代入公式1得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位N、m, n分=每分钟转速单位转/分钟 如果将P得单位换成KW,那么就就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n 30000/3、1415926*P=T*n 9549、297*P=T*n 这就就是为什么会有功率与转矩*转速之间有个9550得系数关系。。。 转矩得类型 转矩可分为静态转矩与动态转矩。 ※静态转矩 静态转矩就是值不随时间延长而变化或变化很小、很缓慢得转矩,包括静止转矩、恒定转矩、缓变转矩与微脉动转矩。 静止转矩得值为常数,传动轴不旋转; 恒定转矩得值为常数,但传动轴以匀速旋转,如电机稳定工作时得转矩; 缓变转矩得值随时间延长而缓慢变化,但在短时间内可认为转矩值就是不变得; 微脉动转矩得瞬时值有幅度不大得脉动变化。 ※动态转矩 动态转矩就是值随时间延长而变化很大得转矩,包括振动转矩、过渡转矩与随机转矩三种。振动转矩得值就是周期性波动得; 过渡转矩就是机械从一种工况转换到另一种工况时得转矩变化

发动机外特性曲线:效率与转速特性曲线

汽车的效率大小很大程度上决定于发动机的性能。在许多汽车产品介绍上,都标有“最高输出功率”和最高输出扭矩”在两项重要的发动机指标,并用曲线图来反映发动机的上述指标。那么,这些发动机指标是怎样测出来呢? 当发动机运转的时候,其功率、扭矩和耗油量这三个基本性能指标都会随着负荷的变化而变化。这些变化遵循一定的规律,将这些有规律的变化描绘成曲线,就有了反映发动机特性的曲线图。根据发动机的各种特性曲线,可以全面地判断发动机的动力性和经济性。反映发动机运行状况常用速度特性曲线。 汽油发动机曲线图 发动机的速度特性曲线表示有效功率N(千瓦)、扭矩M(牛顿米)、比燃料消耗量g (克/千瓦小时)随发动机转速n而连续变化的表现。发动机的速度特性是在制动试验台架上测出的。保持发动机在一定节气门开度情况下,稳定转速,测取在这一工况下的功率、比耗油等,然后调整被测机载荷(扭距变化),使发动机转速改变,再测得另一转速下的功率、比耗油。按照一定转速间隔依次进行上述步骤。就能测出在不同转速下的数值,将这些数值点连点地组成连续曲线,就产生了功率曲线、扭矩曲线和比燃料消耗量曲线,它们与相应的转速区域对应。 当汽油机节气门完全开启(或者柴油机喷油泵在最大供油量时)的速度特性,称为发动机的外特性,它表示发动机所能得到的最大动力性能。从外特性曲线上可以看到发动机所能输出的最大功率、最大扭矩以及它们相应的转速和燃料消耗量,汽车产品介绍书上大都采用发动机外特性曲线图,但一般只标出功率和扭矩曲线。 发动机外特性曲线是在发动机最好的工作状态下能使发动机发出最大功率的情况下测出来的。它表现的曲线特征是∶功率曲线和扭矩曲线都呈现凸形曲线,但两者表现是不一样的。在汽油发动机外特性曲线中∶

三相异步电动机转速及力矩计算

三相异步电动机转速及力 矩计算 The Standardization Office was revised on the afternoon of December 13, 2020

三相异步电动机转速及力矩计算 电动机扭矩计算 扭矩是力对物体作用的一种形式,它使物体产生转动,其作用大小等于作用力和力臂(作用力到转动中心的距离)的乘积。所以扭矩的单位是力的单位和距离的单位的乘积,即牛顿*米,简称牛米 计算公式是 T=9550 * P / n P是额定(输出)功率单位是千瓦(KW) n 是额定转速单位是转每分 (r/min) P和 n可从电机铭牌中直接查到。 三相异步电动机转速公式为: n=60f/p(1-s) N0=60F/P (同步电动机) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很

三相异步电动机的机械特性

三相异步电动机的机械特 性 The Standardization Office was revised on the afternoon of December 13, 2020

三相异步电动机的运行特性 摘要:本章介绍了三相异步电动机的机械特性的三个表达式。 固有机械特性和人为机械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用 三相异步电动机的运行特性 三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。和直流电动机一样,三相异步电动机的机械特性也是指电磁转矩与转子转速之间的关系。由于转子转速与同步转速 、转差率存在下列关系,即 ()

则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速和转差率,横坐标表示电磁转矩。 三相异步电动机的机械特性有三种表达式,现介绍如下: 机械特性的物理表达式 由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为 () 式中为三相异步电动机的转矩系数,是一常数; 为三相异步电动机的气隙每极磁通量; 为转子电流的折算值; 为转子电路的功率因数; 式()表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因此这一表达式又称为三相异步电动机的物理表达式。 仅从式()不能明显地看出电磁转矩与转差率之间的变化规律。要从分析气隙每极磁通量,转子相电流,以及为转子功

率因数与转差率之间的关系,间接地找出其变化规律。现分析如表所示。 根据表中的分析,可作出曲线、和分别如图、、所示,据此可得出图所示的机械特性曲线。曲线分为两段:当较小时(),变化不大,,电磁转矩 与转子相电流成正比关系,表现为AB段近似为直线,称为直线部分;当较大时 (),如,减少近一 半,很小,尽管转子相电流增大,有功电流不大,使电磁转矩反而减小了,此时表现为段,段为曲线段,称为曲线部分。由此分析知,三相异步电动机的机械特性在某转差率下,产生最大转矩,即点称为最大转矩点,相应的转矩为称为最大转矩,对应的转差率称为临界转差率。 机械特性的参数表达式 1.参数表达式的推导:

看懂转矩转速曲线

教您读懂发动机特性曲线图 如果说发动机是汽车的心脏,那么发动机特性曲线图则是这颗心脏的“健康证书”,读懂这份“证书”才能使广大同学对一款车的性能有更为清楚、客观的认识。所以,此次我们便来认识这份证书——发动机特性曲线图。 一、什么是发动机特性曲线图? 大家在读各种杂志和汽车厂商的宣传资料中会发现有发动机特性曲线(也有叫发动机工况图),将发动机功率、转矩与发动机曲轴转速之间的函数关系以曲线表示,此曲线称为发动机转速特性曲线或简称为发动机特性曲线;如果发动机节气门全开(柴油机高压油泵在最大供油量位置),此特性曲线称为发动机外特性曲线;如果节气门部分开启(或部分供油),称为发动机部分负荷特性曲线。 以上是较为专业的定义解释,但其实通俗的说,就是将油门踩到底,发动机从怠速到最高转速期间,输出的功率和扭矩的情况在图上反映出来,以此来判断车子能跑多快,有没有劲。 从图1可以看出,转速在ntq 点和np点,发动机扭矩和功率分别达到最大值,这是两个决定发动机性能的主要参数,扭矩决定汽车的起步、爬坡、超车能力,而功率决定着最高的车速和载重量。 图1 二、如何由曲线图判断发动机性能 那么怎样的发动机曲线才能代表发动机性能是较好的呢?让我们看图说话,从汽车的起步、超车和极速这3个方面分析。

起步加速能力 图2 拿到一张发动机曲线图,如图2,我们可以看到,扭矩在2000转的时候达到100Nm,升至3500转的过程中有一个快速的提升过程,而如果此区间内的斜线倾斜度越大,越光滑,则代表发动机可以用较短的时间达到扭矩的峰值,并且加速平稳线性,与此同时,功率也随转速的增加而增加。在实际的驾车当中,随着我们踩第一脚油,汽车克服地面摩擦力,开始起步,随着发动机转速提高,汽车的扭矩会快速提升,一般的发动机在3000转左右来到扭矩峰值,而人们经常提及的“3000转换挡”的惯性操作,实际目的就是为了能够保持这个最大的牵引力,通过换挡,使发动机保持在最高扭矩转速附近,这样我们就可以用更短的时间提高车速。 超车能力

异步电机的转矩和转速

第9章异步电机的转矩和转速 原理简述 异步电动机是一种应用最为广泛的电动机,它输出的是转矩和转速,其机械特性曲线的形状和曲线中的起动转矩、最小转矩和最大转矩是衡量一台电动机能否顺利起动和稳定运行的重要指标,也是考核异步电动机的重要技术性能指标之一。 1.转矩公式 从“电机学”中可知,异步电动机用参数表示的电磁转矩公式为 将上式对求导,并令,便得到最大转矩出现时的转差率 式中负号为发电机运行。将公式(9–2)带入(9–1),可求得最大转矩为 在起动时,,。所以起动转矩为 综合以上公式可得出下面几个结论: (1)在一定的频率和一定的电机参数下,电机的转矩与电压平方成正比。

(2)在一般异步电机中,电抗要比电阻大,因此,可以近似认为最大转矩与电抗 成反比,起动转矩与电抗的平方成反比。 (3)最大转矩的大小与转子电阻的数值无关,而出现最大转矩时的转差率与转子电阻成正比。 (4)绕线式电动机,在转子回路串入适当的电阻可以增大起动转矩,当 时起动转矩达到最大值。 2.异步附加转矩和最小转矩 在异步电动机的气隙中存在基波以及一系列高次空间谐波的旋转磁场,这些谐波磁场与其在转子中感应的相应电流在任何异步速下相互作用,会产生一系列谐波转矩,称为异步附加转矩。一般谐波转矩值较小,但如果在设计或制造时措施不力,鼠笼型异步电动机在低速时异步附加转矩可能达到较大的数值,在异步电动机的机械特性中产生一个最小转矩,直接影响电动机的起动。 分析这些磁场所产生的转矩时,可以先分别讨论每一个谐波磁场所产生的转矩,然后用迭加原理把各谐波磁场产生的转矩加起来,得到总的转矩。 对于三相绕组产生的次谐波磁势,当,亦即=3,9,15……时, ;当(k=1、2、3……),即=7,13,19……时,是一正向旋转磁势,同步转速为;当,即时,是一反向旋转磁势,同步转速为。产生的转矩也可用类似基波的公式计算。由于反向的谐波磁势的同步速和最大转矩均发生在(即)的区间,对异步电动机的起动不产生大的影响;而对异步电动机从起动到运行有影响的谐波异步转矩有7次、次……,在、基波同步速等速度附近,出现其负的最大转矩,它们迭加在基波转矩—转速曲线上,在、基波同步 速附近时出现最小转矩,严重的能影响异步电动机的正常起动,甚至使电机在同步速附近旋转,不能上升到正常异步速。由于谐波次数越高其幅值越小,所以7次的影响最大,其 它高次谐波的影响就较小。图9–1画出次和次谐波转矩迭加在基波异步转矩上

发动机外特性曲线:效率与转速特性曲线

发动机外特性曲线:效率与转速特性曲线 汽车的效率大小很大程度上决定于发动机的性能。在许多汽车产品介绍上,都标有“最高输出功率”和最高输出扭矩”在两项重要的发动机指标,并用曲线图来反映发动机的上述指标。那么,这些发动机指标是怎样测出来呢? 当发动机运转的时候,其功率、扭矩和耗油量这三个基本性能指标都会随着负荷的变化而变化。这些变化遵循一定的规律,将这些有规律的变化描绘成曲线,就有了反映发动机特性的曲线图。根据发动机的各种特性曲线,可以全面地判断发动机的动力性和经济性。反映发动机运行状况常用速度特性曲线。 汽油发动机曲线图 发动机的速度特性曲线表示有效功率N(千瓦)、扭矩M(牛顿米)、比燃料消耗量g(克/千瓦小时)随发动机转速n而连续变化的表现。发动机的速度特性是在制动试验台架上测出的。保持发动机在一定节气门开度情况下,稳定转速,测取在这一工况下的功率、比耗油等,然后调整被测机载荷(扭距变化),使发动机转速改变,再测得另一转速下的功率、比耗油。按照一定转速间隔依次进行上述步骤。就能测出在不同转速下的数值,将这些数值

点连点地组成连续曲线,就产生了功率曲线、扭矩曲线和比燃料消耗量曲线,它们与相应的转速区域对应。 当汽油机节气门完全开启(或者柴油机喷油泵在最大供油量时)的速度特性,称为发动机的外特性,它表示发动机所能得到的最大动力性能。从外特性曲线上可以看到发动机所能输出的最大功率、最大扭矩以及它们相应的转速和燃料消耗量,汽车产品介绍书上大都采用发动机外特性曲线图,但一般只标出功率和扭矩曲线。 发动机外特性曲线是在发动机最好的工作状态下能使发动机发出最大功率的情况下测出来的。它表现的曲线特征是∶功率曲线和扭矩曲线都呈现凸形曲线,但两者表现是不一样的。在汽油发动机外特性曲线中∶ 功率曲线在较低转速下数值很小,但随转速增加而迅速增长,但转速增加到一定区间后,功率增长速度变缓,直至最大值后就会下降,尽管此时转速仍会继续增长。 扭矩曲线则与功率曲线相反,它往往在较低转速下就能获得最大值,然后随转速上升而下降。 比耗油量指千瓦小时的耗油量,它随转速的增长而呈现一个凹形曲线,在中间某一转速下达到最小值,转速增大或者减少,都会使比耗油量增大。 柴油机外特性曲线表现与汽油机有所不同。它的功率N、扭矩M和比耗油量g随转速n而变化,但功率N曲线是随转违上升而上升,差不多到了最大转速(标定转速)仍未出现曲线的最高点。扭矩M曲线变化平缓,在不同转速位置变化量不大。比耗油量g曲线不但起点数值低,而且比较平坦(与汽油机比较)。

电动机转矩,功率,转速和负载之间的关系

三相异步电动机在电源电压一定时,电机输出的机械功率也就是被转化成机械转矩的大小是由负载来决定的,当电机处于空载或轻载时,电机输出的转矩很小,因此消耗的电能也就很小,只需要维持自身的损耗能够正常转动就可以了,所以此时电机输出的功率很小,电源电压一定的情况下,电机定子绕组中流过的电流也就很小,定子形成的旋转磁场场强相对就很弱,因此相对来说感应到转子绕组时其内部流过的电流也就小一些;当电机负载加大,需要电机输出的机械转矩也就随之加大,电机就需要增加电能的消耗才能满足,所以定子绕组内就要流过较大电流,同时感应到转子绕组上电流也要随之加大,电机才能变得“有劲”。由于一般鼠笼式三相异步电动机转子绕组都是闭合的,转子电流一般也不便于检测,所以只能通过定子电流表观察,要是绕线式电机就可以从转子引出线的滑环和碳刷的打火情况能够比较直观地看到了,当然要是碳刷和滑环接触的特别好还是不太明显的,接触不是太好时电流小打火不明显,一旦电流加大打火是很明显的。不知道能否解释清你的问题。 电机用一个恒定功率和恒定转矩的问题,恒定功率时,转矩会变,当恒定转矩时,功率会变.电机的相关手册或厂家样本上都有解释 评论|0 2009-08-19 23:01sudy1971|二级 当负载增大的时候,电动机转速开始时是有下降,但是由于输入功率不变,会从新达到平衡的,你该看书了,四大天书之一的电机学 评论|0 2009-08-20 12:48ws顽石|七级 当然有关系。一般可以分为三类: 1.电机机械特性硬,就是说电机从空载到满载转速变化很小。近似认为转速与负载没有关系,恒转矩。比如印刷机、行车等。 2.负载转矩于转速平方成正比。以水、油、空气为介质的电机,比如水泵、风机、油泵等。 3.恒功率,负载转矩与转速成反比。就是说它机械特性很软。负载转矩加大转速急剧下降,电磁转矩加大。反之转速身高,电磁转矩减小。比如电钻、角磨机等。 电动机输出转矩 转矩(英文为torque ) 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的

交流调速作业一 异步电动机全速度范围转矩-转速特性曲线

异步电动机全速度范围转矩-转速 特性曲线绘制 xxxxxxxxxxxxx 摘要:通过异步电动机的参数,在Matlab 中构建异步电动机的稳态模型。在全速度范围内分段进行恒磁通和恒电压恒功率控制,绘制出控制下的转矩—转速特性曲线。 关键词:异步电动机;转矩—转速;恒磁通;恒电压恒功率 1. 异步电动机的模型构建与控制方法 1.1. 异步电动机的稳态模型 图1.1 异步电机的稳态等效电路 三相异步电动机的电磁关系与变压器类似。定子相当于变压器一次,转子相当于变压器二次。 Us —定子相电压;fs —定子频率; fsl —转差频率; Is 、Ir 、Im —分别为定子电流、折算到定子侧的转子电流和励磁电流; Eg —气隙磁通感应电动势; Er —折算到定子侧的转子感应电动势; s —转差率,s=fsl/fs 。 1.2. 异步电动机的转矩公式 通过对运行状态的分析可以得到转矩的公式为: m 为相数,p n 为极对数,s U 为定子电压,S f 为同步频率,s 为转差率, S R 为定子电阻,r R 为转子电阻,ls X 为定子漏感,lr X 为转子漏抗。 ])()[(/222 2lr ls r s r s s p e X X s R R s R U f mn T +++ = π

1.3. 异步电动机的控制方法 1.3.1. 恒磁通控制方法 恒磁通运行条件为: 可以近似与加入低压补偿的恒电压/频率控制等效。此时的转矩—转速特性曲线如下: 图1.2 恒磁通转矩—转速特性曲线 1.3. 2. 恒电压恒功率控制方法 恒电压恒功率条件为: 此时的转矩—转速特性曲线如下: 图1.3 恒电压恒功率转矩—转速特性曲线 2. 异步电动机的仿真与分析 2.1. 仿真要求 利用MATLAB 绘出异步电动机的全速度范围转矩-转速特性曲线,其中: ● 40Hz 、60Hz 、80Hz 采用恒磁通控制; ● 100Hz 、120Hz 、140Hz 、160Hz 采用恒电压控制; ● 电机的额定输入条件为380V/100Hz 。 . const C f E m E s g =Φ=.. const f f const U s sl s ==

交流调速—异步电动机全速度范围内的转矩-转速特性曲线

交流调速专题报告一 —作业1异步电动机全速度范围内的转矩-转速特性曲线 异步电动机全速度范围内的转矩-转速特性曲线 摘要:通过对异步电动机进行数学分析,得到异步电动机的稳态模型。在全速范围内分段进行恒磁通和恒电压恒功率控制,得到控制下的转矩—转速特性曲线。 关键词:异步电动机;转矩—转速;恒磁通;恒电压恒功率 Abstract: By mathematical asynchronous motor analysis, we can get the steady-state model of the asynchronous motor. Full speed within sections of constant flux and constant voltage constant power control, we can get the torque - speed characteristics under the control. Keywords: asynchronous motor; torque - speed; constant flux; constant voltage constant power

1.前言 1.1异步电动机转矩—转速研究意义 电动机作为重要的动力装置,已被广泛用于工业、农业、交通运输、国防军事设施以及日常生活中。与电机配套的控制设备的性能已经成为用户关注的焦点。电机的控制包括电机的起动、调速和制动。异步电动机由于具有结构简单、体积小、价格低廉、运行可靠、维修方便、运行效率较高、工作特性较好等优点,因而在电力拖动平台上得到了广泛应用。据统计,其耗电量约占全国发电量的40%左右。对于异步电动机的转矩—转速特性曲线则是我们实际控制效果的体现。 2.异步电动机的模型和控制方法 2.1异步电动机的稳态模型 Us—定子相电压;fs—定子频率; fsl—转差频率; Is、Ir、Im—分别为定子电流、折算到定子侧的转子电流和励磁电流;Eg—气隙磁通感应电动势;

交流调速技术 异步电动机全速度范围内的转矩-转速特性曲线作业一

BeijingJiaotongUniversity 异步电动机全速度范围内的转矩- 转速特性曲线结题报告 姓名:TYP 班级:电气0906 学号:09291183 指导老师:吴学智 完成日期:2012.11.13

摘要 通过对异步电动机进行数学分析,得到异步电动机的稳态模型。在全速范围内分段进行恒磁通和恒电压恒功率控制,得到控制下的转矩—转速特性曲线。 关键词 异步电动机;转矩—转速;恒磁通;恒电压恒功率 Abstract By mathematical asynchronous motor analysis, we can get the steady-state model of the asynchronous motor.Full speed within sections of constant flux and constant voltage constant power control, we can get the torque - speed characteristics under the control. Keywords asynchronous motor; torque - speed; constant flux; constant voltage constant power 1.前言 1.1异步电动机转矩—转速研究意义 电动机作为重要的动力装置,已被广泛用于工业、农业、交通运输、国防军事设施以及日常生活中。与电机配套的控制设备的性能已经成

为用户关注的焦点。电机的控制包括电机的起动、调速和制动。异步电动机由于具有结构简单、体积小、价格低廉、运行可靠、维修方便、运行效率较高、工作特性较好等优点,因而在电力拖动平台上得到了广泛应用。据统计,其耗电量约占全国发电量的40%左右。对于异步电动机的转矩—转速特性曲线则是我们实际控制效果的体现。 2.异步电动机的模型和控制方法 2.1异步电动机的稳态模型 Us—定子相电压;fs—定子频率;fsl—转差频率; Is、Ir、Im—分别为定子电流、折算到定子侧的转子电流和励磁电流;Eg—气隙磁通感应电动势; Er—折算到定子侧的转子感应电动势; s—转差率,s=fsl/fs. 2.2异步电动机的控制方法

异步电机转差率

三相异步电动机转差率与电机性能有什么关系?在不同频率下运行转差率稳定吗?有多大变化? 1、异步电机,又叫感应电机,是因为转子的电流是由于转差而感应得来的; 2、如果转子与旋转磁场同步,转子就没有电流,就像变压器空载一样; 3、异步电机带上负载时,负载的阻力矩是转子转速下降,而产生转差,转子就会感应出电流,就会有电磁转矩,拖动负载转动; 4、负载越重,转子的速度下降,转差增大,转子电流就增大,转矩就增大,所以电机就有能力拖动更重的负载转动; 5、当负载增大时,转子的转速要下降,但是下降一点儿,转矩就有很大的变化; 6、在我们看来负载虽然增大很多,但是速度却降低很少,大家叫它机械硬特性;

7、就是说异步电机的负载有多重,电机就能有多大的转矩拖动它,而转速我们却感觉好像没有下降一样,所以又称异步电机为恒速电机; 8、所以异步电机是机械特性非常好的电机,其特性不亚于他励直流电机; 9、这就是异步电机的自个儿的本事,不是电源控制的结果! 10、所以有这样好的机械特性,关键因素就是异步电机的转差与转矩成正比关系,转矩是转差的几千倍、几万倍; 11、异步电机的电磁转矩来源于转差,转差是异步电机转矩的根本! 12、在任何频率下,只要电机磁场恒定,同样的转差,会产生同样大小的转矩; 13、所以说好的变频器,变频、变压不改变异步电机的机械特性,或者说能保持异步电机在工频时的机械特性不变; 1、电机工频运行时,用转差率的概念; 2、现在用变频器,频率不断变化,同步转速不断变化,同样的转差有不同的转差率; 3、如果还要用转差率来说明电机的特性,就出现问题,举例说: 1)电机工频运行时,额定转差率是3%,额定转差是45转,额定转矩是Te; 2)电机变频启动时,设定起动频率是1.5hz,额定转差是45转,启动转矩是额定转矩Te,转差率为1; 3)如果用额定转差45转来描述电机的特性,两种情况下,转差都是额定转差45转,转矩都是额顶转矩Te; 4)但是用转差率一个是3%、一个是1,无法反映电机的机械特性; 4、在变频运行的状态下,认为电机工作在机械特性的稳定区,必须用转差来描述电机的机械特性,而不用转差率来描述; 5、因为转差决定了电机的电流、转矩,而转差率因为频率的变化、同步转速的变化,同样的转差率有不同的转差、不同的转矩、不同的电流; 6、所以最适合描述异步电机机械特性曲线的是电机的实际转速n或者是电机的转差△n,而不是转差率; 7、在电机学中,讨论异步电机机械特性曲线时,用转差率的好处是使得不同极对数P的电机,具有相同的特性曲线: 1)例如纵轴表示转差率时,不论电机是2极、4极、6极……,具有相同的坐标0~1;

三相异步电动机转速及力矩计算

三相异步电动机转速及力矩计算 电动机扭矩计算 扭矩是力对物体作用的一种形式,它使物体产生转动,其作用大小等于作用力和力臂(作用力到转动中心的距离)的乘积。所以扭矩的单位是力的单位和距离的单位的乘积,即牛顿*米,简称牛米 计算公式是 T=9550 * P / n P是额定(输出)功率单位是千瓦(KW) n 是额定转速单位是转每分 (r/min) P和 n可从电机铭牌中直接查到。 三相异步电动机转速公式为: n=60f/p(1-s) N0=60F/P (同步电动机) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 一、变极对数调速方法 这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数

达到调速目的,特点如下: 具有较硬的机械特性,稳定性良好; 无转差损耗,效率高; 接线简单、控制方便、价格低; 有级调速,级差较大,不能获得平滑调速; 可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 二、变频调速方法 变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点: 效率高,调速过程中没有附加损耗; 应用范围广,可用于笼型异步电动机; 调速范围大,特性硬,精度高; 技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。 三、串级调速方法 串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为: 可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高; 装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;

相关文档
相关文档 最新文档