文档库 最新最全的文档下载
当前位置:文档库 › 5.3任意角的正弦函数、余弦函数和正切函数(一)

5.3任意角的正弦函数、余弦函数和正切函数(一)

5.3任意角的正弦函数、余弦函数和正切函数(一)
5.3任意角的正弦函数、余弦函数和正切函数(一)

【课题】5.3任意角的正弦函数、余弦函数和正切函数

【教学目标】

知识目标:

理解任意角的三角函数的定义及定义域; 能力目标:

⑴ 会利用定义求任意角的三角函数值; ⑵培养学生的观察能力.

【教学重点】

任意角的三角函数的概念.

【教学难点】

任意角的三角函数的概念.

【教学设计】

(1)在知识回顾中推广得到新知识; (2)数形结合探求三角函数的定义域;

(3)问题引领,师生互动.在问题的思考和交流中,提升能力.

【教学备品】

教学课件.

【课时安排】

1课时.

【教学过程】

*构建问题 探寻解决

在Rt ABC 中,

sin α= 、cos α= 、tan α= .

将Rt ABC 放在直角坐标系中,使得点A 与坐标原点重合,AC 边在x 轴的正半轴上.三

A B C

a b

c

α

x

P r

=

横坐标到原点的距离x

角函数的定义可以写作

sinα=、cosα=、tanα=.

*动脑思考探索新知

为角α的终边上的任意一设α是任意大小的角,点(,)

P x y

离为r=那么角点(不与原点重合),点P到原点的距

α的正弦、余弦、正切分别定义为

sin

y

r

α=;cos

x

r

α=;tan

y

x

α=.

在比值存在的情况下,对角α的每一个确定的值,按照相应的对应关系,角α的正弦、余弦、正切、都分别有唯一的比值与之对应,它们都是以角α为自变量的函数,分别叫做正弦函数、余弦函数、正切函数,统称为三角函数.

由定义可以看出:当角α的终边在y轴上时,

π

π()

2

k k

α=+∈Z,终边上任意一点的横坐标x的值都等于0,此时tan

y

x

α=无意义.除此以外,对于每一个确定的角α,三个函数都有意义.

正弦函数、余弦函数和正切函数的定义域如下表所示:

当角α

数是以实数α为自变量的函数.

*巩固知识典型例题

例1 已知角α的终边经过点(2,3)

P-,求角α的正弦、余弦、正切值.

分析已知角α终边上一点P的坐标,求角α的某个三角函数值时,首先要根据关系式r=P到坐标原点的距离r,然后根据三角函数定义进行计算.

解因为2

x=,3

y=-,所以r,因此

sin

y

r

α==,cos

x

r

α==,

3tan 2

y x α==-. *运用知识 强化练习

教材练习5.3.1

已知角α的终边上的点P 的座标如下,分别求出角α的正弦、余弦、正切值:

⑴ ()3,4P -; ⑵ ()1,2P -; ⑶ 1,2P ? ??

. *归纳小结 强化思想

本次课学了哪些内容?重点和难点各是什么?

*自我反思 目标检测

本次课采用了怎样的学习方法? 你是如何进行学习的? 你的学习效果如何?

*继续探索 活动探究

(1)读书部分: 教材章节5.3; (2)书面作业: 学习与训练5.3;

(3)实践调查: 探究计算器的计算界限角的三角函数值的方法.

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

两角和与差的正弦余弦正切公式练习题

两角和差的正弦余弦正切公式练习题 知 识 梳 理 1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β. cos(αβ)=cos_αcos_β±sin_αsin_β. tan(α±β)=tan α±tan β 1tan αtan β. 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α. cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α 1-tan 2α . 3.有关公式的逆用、变形等 (1)tan α±tan β=tan(α±β)(1tan_αtan_β). (2)cos 2α= 1+cos 2α2,sin 2α=1-cos 2α2 . (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α= 2sin ? ?? ?? α±π4. 4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ),其中tan φ=b a 一、选择题 1.给出如下四个命题 ①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβ αβαtan tan 1tan ?-+an 成立的条件是)(2 Z k k ∈+≠ππα且)(2 Z k k ∈+≠ππβ; ④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是 ( ) A .①② B .②③ C .③④ D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是 ( ) A .21+ B .12- C .2 D . 2

正弦函数、余弦函数的图像

正弦函数、余弦函数的图像 撰稿:游斌 修订:高一备课组 学生姓名:__________第___小组 一、学习目标,心中有数: 1、了解用正弦线作正弦函数的图像的方法;能通过适当的图形变换由正弦函数的图像得到余 弦函数的图像; 2、掌握用“五点法”作正弦函数、余弦函数的简图; 3、能用“五点法。”作正弦型和余弦型函数的简图。 二.自主学习,体验成功: (一)、知识梳理 形成体系 1、多媒体演示利用正弦线作正弦函数在[]π2,0上的图像 2、怎样可以得到R x x y ∈=,sin 的图像? 因为终边相同的角有相同的三角函数值,所以函数 []0,)1(2,2,sin ≠∈+∈=k Z k k k x x y 且ππ的图像与函数[]π2,0,sin ∈=x x y 的图像的形状完全一致,于是我们只要将函数[]π2,0,sin ∈=x x y 的图像向左、向右平行移动(每次π2单位长度),就可以得到R x x y ∈=,sin 的图像,正弦函数的图像叫做正弦曲线。 3、因为)2 sin( cos x x +=π ,而)2 sin( x y +=π 的图像可以由x y sin =的图像向左平移 2 π 得到,

所以x y cos =的图像也可以由x y sin =的图像向左平移 2 π 得到。 余弦函数的图像叫做余弦曲线。 4、观察正弦函数在[]π2,0上的图像,其中起关键作用的点有哪些?利用这些关键点作出正弦函数x y sin =在[]π2,0上的简图。 (1)列表: (2)在直角坐标系中描点、并用平滑曲线连接起来。 这种作图方法叫做“五点法”。 (二)、课前热身 自我检测 画出下列函数的简图: (1)x y sin 1+=,[]π2,0∈x (2)x y cos -=,[]π2,0∈x x y o

(完整版)两角和与差的正弦、余弦、正切公式及变形

两角和与差的正弦、余弦、正切公式及变形 1.两角和与差的正弦、余弦、正切公式 (1)公式 ①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β 1+tan αtan β(T (α-β)) ⑥tan(α+β)=tan α+tan β 1-tan αtan β(T (α+β)) (2)公式变形 ①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式 ①sin 2α=2sin_αcos_α, ②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α= 2tan α 1-tan 2α . (2)公式变形 ①cos 2 α=1+cos 2α2,sin 2 α=1-cos 2α2 ; ②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(π α±. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×) (4)公式tan(α+β)=tan α+tan β 1-tan αtan β 可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意

二倍角正弦、余弦、正切公式教案

二倍角的正弦、余弦、正切 王业奇

α 1tan tan 二、提出问题:若β = α 让学生板演得下述二倍角公式:

一、例题: 例一、(公式巩固性练习)求值: 1.sin22 30’cos22 30’=4 2 45sin 21= 2.=-π 18 cos 22 224cos = π 3.=π -π8 cos 8sin 22 224cos - =π- 4.=ππππ12 cos 24cos 48 cos 48 sin 8 2 16sin 12cos 12sin 212cos 24cos 24sin 4=π=ππ=πππ 例二、 1.5555(sin cos )(sin cos )12121212ππππ +- 2 25553 sin cos cos 121262 πππ=-=-=

2.=α-α2sin 2cos 44 α=α -αα+αcos )2 sin 2)(cos 2sin 2(cos 2222 3. =α+-α-tan 11tan 11α=α -α 2tan tan 1tan 22 4.=θ-θ+2cos cos 21221cos 2cos 2122=+θ-θ+ 例三、若tan = 3,求sin2 cos2 的值。 解:sin2 cos2 = 57 tan 11tan tan 2cos sin cos sin cos sin 22 22222=θ +-θ+θ=θ+θθ-θ+θ 例四、 条件甲:a =θ+sin 1,条件乙:a =θ +θ2 cos 2sin , 那么甲是乙的什么条件? 解:= θ+sin 1a =θ +θ2)2 cos 2(sin 即a =θ +θ|2 cos 2sin | 当 在第三象限时,甲 乙;当a > 0时,乙 甲 ∴甲既不是乙的充分条件,也不是乙的必要条件。 例五、(P43 例一) 已知),2 (,135sin ππ ∈α= α,求sin2,cos2,tan2的值。 解:∵),2 (,135sin ππ ∈α=α ∴1312 sin 1cos 2-=α--=α ∴sin2 = 2sin cos = 169 120 -

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

半角的正弦余弦正切公式

半角的正弦、余弦和正切 学习目标: 1.了解由二倍角的变形公式推导半角的正弦、余弦和正切公式的过程; 2. 掌握半角的正弦、余弦和正切公式,能正确运用这些公式进行简单三角函数式的化简、求值和证明恒等式. 学习重点: 掌握半角的正弦、余弦、正切公式的结构特点,灵活用公式. 学习难点:半角与倍角公式之间的内在联系及运用公式时正负号的选取. 知识链接: 1. 复习二倍角的正弦、余弦、正切公式 sin 2α= ; cos 2α= = = ; tan 2α= . 一、预习案: 问题1:若7cos 25α=,且α为锐角,则sin 2 α= , cos 2α = ,tan 2α = . 1?在α-=α2sin 212cos 中,以α代2α,2α代α即得2sin 2 α= 2?在1cos 22cos 2-α=α 中,以α代2α,2α代α即得2cos 2 α= 3?以上结果相除得2tan 2α= 半角公式:sin 2 α= (1) cos 2α= (2) tan 2α = = = (3) 问题2:半角公式的特点及使用公式时应该注意什么问题?

问题3:你能根据上面的公式解答下列问题吗? 1、求值:(1)sin15 (2)cos15 (3)tan 8π 二、学习案: 例1:已知sin θ=45,且5π2<θ<3π,求cos θ2和tan θ2 的值. 跟踪训练:已知sin φcos φ=60169,且π4<φ<π2 ,求sin φ,cos φ的值. 例2:化简: 1. (1+sin α+cos α)? ????sin α2-cos α22+2cos α (180°<α<360°) 2.cot tan 1tan tan .222αααα????-+? ??????? 跟踪训练: 化简: 1cos sin 1cos sin 1cos sin 1cos sin αααααααα +---+--+-

二倍角的正弦余弦和正切公式教案

§3.1.3二倍角的正弦、余弦和正切公式(1)教案 珠海市田家炳中学:温世明 一、知识与技能 1. 能从两角和的正弦、余弦、正切公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;理解化归思想在推导中的作用。 2. 能正确运用(顺向、逆向、变形运用)二倍角公式求值、化简、证明,增强学生灵活运用数学知识和逻辑推理能力; 3.揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识,并培养学生综合分析能力. 4.结合三角函数值域求函数值域问题。 二、过程与方法 1.让学生自己由和角公式而导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;通过例题讲解,总结方法.通过做练习,巩固所学知识. 2.通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力;通过综合运用公式,掌握有关技巧,提高分析问题、解决问题的能力。 三、情感、态度与价值观 1.通过本节的学习,使同学们对三角函数各个公式之间有一个全新的认识;理解掌握三角函数各个公式的各种变形,增强学生灵活运用数学知识、逻辑推理能力和综合分析能力.提高逆用思维的能力. 2.引导学生发现数学规律,培养学生思维的严密性与科学性等思维品质. 四、教学重、难点 教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 五、学法与教学用具 学法:研讨式教学,多媒体教学; 六、教学设想: (一)复习式导入:大家首先回顾一下两角和(差)的正弦、余弦和正切公式, ()βαβαβαsin sin cos cos cos =±;()βαβαβαsin cos cos sin sin ±=±; ()β αβ αβαtan tan 1tan tan tan ±= ±. (二) 复习练习: (三)公式推导: 我们由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手,把上述公式中β看成α即可), ()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+= ()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-; 思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢 ?

最新3.1.3二倍角的正弦余弦正切公式教案

马鞍山中加双语学校数学组学引用清教学设计 学科: 数学 年级: 高一 授课时间: 一课时 主备人:朱坤坤 总课题 第三章 三角恒等变换 课时 1 课 题 3.1.3二倍角的正弦、余弦和正切公式 课型 新授课 教学目标 知识与技能: 会以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、 余弦和正切公式 理解推导过程,了解它们的内在联系,并能运用上述公式进行简单的恒等变换. 过程与方法: 引导学生积极参与到推导过程当中 情感态度价值观: 树立辩证思维的能力,培养学生创新能力。 教学重点 以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式 教学难点 二倍角的理解及其灵活运用 教 学 内 容 操作细则 一、引入新课及学习目标展示[3分钟] 1. 引入新课:一、复习准备: 大家首先回顾一下两角和的正弦、余弦和正切公式, ()sin sin cos cos sin αβαβαβ+=+; ()cos cos cos sin sin αβαβαβ+=-; ()tan tan tan 1tan tan αβ αβαβ ++= -. 2.学习目标展示[2分钟] 1,会借助于两角和的正弦、余弦、正切公式推导二倍角的正弦、余弦、正切公式 2,灵活运用二倍角公式进行简单的恒等变换. 二、自学指导[30分钟] 我们已经知道两角和的正弦、余弦、正切公式 ()sin sin cos cos sin αβαβαβ+=+; ()cos cos cos sin sin αβαβαβ+=-; ()tan tan tan 1tan tan αβ αβαβ ++= -. 导入部分: 激发学生学习兴趣,使学生对本节课要学内容有大概了解 使学生对本节课所学内容和要达到的目标有清晰的了解

正弦 余弦 正切二倍角公式及变形升降幂公式(完全版)

§3.1.3二倍角的正弦、余弦和正切公式 一、教学目标 以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用. 二、教学重、难点 教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想: (一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式, ()sin sin cos cos sin αβαβαβ+=+; ()cos cos cos sin sin αβαβαβ+=-; ()tan tan tan 1tan tan αβ αβαβ++=-. (二)公式推导: ()sin 2sin sin cos cos sin 2sin cos ααααααααα =+=+=; ()22cos 2cos cos cos sin sin cos sin ααααααααα=+=-=-; 22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-. ()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+= =--. 升降幂公式 2 )cos (sin 2sin 1ααα±=±

αα2cos 22cos 1=+αα2sin 22cos 1=-2 2cos 1cos 2α α+=22cos 1sin 2α α-=}}升幂降角公式 降幂升角公式

二倍角的正弦、余弦和正切公式(基础)

二倍角的正弦、余弦和正切公式(基础) 【学习目标】 1.能从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式,并了解它们之间的内在联系. 2.能熟练运用二倍角公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式.但不要求记忆),能灵活地将公式变形并运用. 3.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想、方程思想等在三角恒等变换中的作用. 【要点梳理】 要点一:二倍角的正弦、余弦、正切公式 1.二倍角的正弦、余弦、正切公式 2sin 22sin cos ()S αααα=? 22222cos 2cos sin () 2cos 112sin C αααααα =-=-=- 22 2tan tan 2()1tan T αα αα = - 要点诠释: (1)公式成立的条件是:在公式22,S C αα中,角α可以为任意角,但公式2T α中,只有当 2 k π απ≠ +及()4 2 k k Z π π α≠ + ∈时才成立; (2)倍角公式不仅限于2α是α的二倍形式,其它如4α是2α的二倍、 2α是4 α 的二倍、3α是 32 α 的二倍等等都是适用的.要熟悉多种形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活运用公式的关键. 如:2 cos 2 sin 2sin α α α=; 1 1 sin 2sin cos ()2 2 2 n n n n Z α α α ++=∈ 2.和角公式、倍角公式之间的内在联系 在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式,它们的内在联系如下:

两角和与差的正弦余弦正切公式练习题(含答案)

两角和差的正弦余弦正切公式练习题 一、选择题 1.给出如下四个命题 ①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβ αβαtan tan 1tan ?-+an 成立的条件是)(2 Z k k ∈+≠ππα且)(2 Z k k ∈+≠ππβ; ④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是 ( ) A .①② B .②③ C .③④ D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是 ( ) A .21+ B .12- C .2 D . 2 3.当]2 ,2[π π- ∈x 时,函数x x x f cos 3sin )(+=的 ( ) A .最大值为1,最小值为-1 B .最大值为1,最小值为2 1- C .最大值为2,最小值为-2 D .最大值为2,最小值为-1 4.已知)cos(,3 2 tan tan ,7)tan(βαβαβα-= ?=+则的值 ( ) A .2 1 B . 2 2 C .2 2- D .2 2± 5.已知 =-=+=-<<<αβαβαπαβπ 2sin ,53 )sin(,1312)cos(,432则 ( ) A .6556 B .-6556 C .5665 D .-56 65 6. 75sin 30sin 15sin ??的值等于 ( ) A . 4 3 B . 8 3 C .8 1 D . 4 1 7.函数)4 cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+= +=π π其中为相同函数的是 ( ) A .)()(x g x f 与 B .)()(x h x g 与 C .)()(x f x h 与 D .)()()(x h x g x f 及与 8.α、β、γ都是锐角,γβαγβα++=== 则,8 1 tan ,51tan ,21tan 等于 ( )

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

两角和与差的余弦、正弦、正切公式

1.下列式子中,正确的个数为( ) ①sin ()α-β=sin α-sin β; ②cos ()α+β=cos α-cos β; ③sin ()α-β=sin αcos β-cos αsin β; ④cos ()α+β=cos αcos β+sin αsin β. A .0个 B .1个 C .2个 D .3个 2.sin 7°cos 37°-sin 83°cos 53°的值为( ) A .-12 B.12 C.32 D .-3 2 解析:方法一 原式=sin 7°cos 37°-cos 7°sin 37°=sin ()7°-37°,=sin ()-30°=-sin 30°=-1 2 ,故选A. 方法二 原式=cos 83°cos 37°-sin 83°sin 37°=cos ()83°+37°=cos 120°=-cos 60°=-1 2,故选A. 3.化简sin α-3cos α得( ) A .2sin ????α+π3 B .2sin ????α-π6 C .2cos ????α-π6 D .2sin ????α-π3 解析:sin α-3cos α=2????12sin α-3 2cos α =2sin ????α-π3.故选D. 4.逆用两角差的正切公式求3-tan 18° 1+3tan 18° 的值等于( ) A .tan 42° B .tan 3° C .1 D .tan 24° 解析:3-tan 18°1+3tan 18°=tan 60°-tan 18° 1+tan 60° tan 18° =tan ()60°-18°=tan 42°,故选A. 5.逆用两角和的正切公式求1+tan 15° 1-tan 15° 的值. 解析:1+tan 15°1-tan 15°=tan 45°+tan 15° 1-tan 45°tan 15° =tan ()45°+15°=tan 60°= 3. 巩固练习: 一、选择题: 1.化简sin119sin181sin91sin 29-o o o o 等于( ) A.12 B.12 - C. 32 D.32 - 2.已知tan α+tan β=2,tan(α+β)=4,则tan α·tan β等于( ) (A )2 (B)1 (C) 12 (D)4 3.sin 12 π25cos 6π11-cos 12π11sin 6π 5的值是( )

正弦、余弦函数图像

1.4.1 正弦函数、余弦函数的图像 (一) 给定任意一个角,其正弦值、余弦值均存在,且满足唯一性,即角与正弦、余弦值之间可以建立一一对应关系,符合函数的要求。 形如y =Asin(ωx +φ)(ω≠0)的函数称为正弦函数; 形如y =Acos ωx +φ (ω≠0)的函数称为余弦函数; 其中y =sinx 、y =cosx 是正弦函数与余弦函的基本形式:所有的正弦函数、余弦函数,通过“换元”思想,都可以转化为y =sinx 与 y=cosx 的形式,故二者是研究正弦函数与余弦函数的基石。 (二) 在诱导公式的帮助下,我们可以将任意一个角的三角函数值转化为求某一个锐角的三角函数,再以有序实数对(角,三角函数)的形式在坐标系内描点,从而得到三角函数的图象;除了基础的描点法,我们也可以利用三角函数线,得到函数的图象。 (三) 0到2π,是任意角的冰山一角;0到2π一段上的函数图象,也仅仅是三角函数图象的一部分.另一方面,当角的终边旋转一周后继续旋转,角的大小在逐渐变化的同时,角的正弦线“玩接力”样依次重复出现,可以预见,2π到4π,4π到6π,6π到8π,…,是0到2π一段上函数图象的“复制”与“粘贴”,每一段的首尾相接,便是函数图象的“真身”。 (四) 正弦函数、余弦函数的图象告诉我们: ①从自变量x 的角度看,函数图象可沿着x x 轴上任何一个故正弦函数、R ; ②从因变量y 的角度看,正弦函数、余弦y =1与y =?1两条互相[?1,1],好比正弦函数、余弦函数为一个“加工厂”,投入的角多大多小,产成品----“函数值”只能在[?1,1]; ③正弦函数、余弦函数的图象可以看作某一部分(如图中的阴影部分)的重复拼接,故画函数图象时,可以以此为单元。 (五) 基于正弦函数、余弦函数图象的特征,有了重复单元,就有了整个正弦函数、余弦函数的图象;在画函数图象时,重复单元的绘

关于正弦函数和余弦函数的计算公式

关于正弦函数和余弦函数的计算公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosα

正弦余弦换算公式

三角函数诱导公式常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为:

对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三正切,四余弦 1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(2π-a)=cos(a) cos(2π-a)=sin(a) sin(2π+a)=cos(a) cos(2π+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) s in(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b)

正弦函数余弦函数图像教案及反思

1.4.1 正弦函数、余弦函数的图象 教材分析 三角函数是基本初等函数之一,是描述周期现象的重要数学模型,是函数大家庭的一员。除了基本初等函数的共性外,三角函数也有其个性的特征,如图像、周期性、单调性等,所以本节内容有着承上启下的作用;另外,学习完三角函数的定义之后,必然要研究其性质,而研究函数的性质最常用、最形象直观的方法就是作出其图像,再通过图像研究其性质。 由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图. 教学目标 1.通过简谐振动实验演示,让学生对函数图像有一些直观的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力. 2.通过本节学习,理解正弦函数、余弦函数图象的画法.借助图象变换,了解函数之间的内在联系.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象. 3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观. 重点难点 教学重点:正弦函数、余弦函数的图象. 教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系. 教学用具:多媒体教学、几何画板软件、ppt控件 教学过程 导入新课 1.(复习导入)首先复习相关准备知识:三角函数、三角函数线。遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们是如何画出它们图象的(列表描点法:列表、描点、连线)? 2.(物理实验导入)视频观看“简谐运动”实验.得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象. 推进新课 新知探究 提出问题 问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x∈[0,2π]的精确图象呢? 问题②:如何得到y=sinx,x∈R时的图象? 对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x轴上从0到2π这一段分

《正弦函数、余弦函数的图像》教案设计

正弦函数、余弦函数的图像 一、内容和内容解析: 本节课是高中新教材《数学》必修4§1.4《正弦函数、余弦函数的图象和性质》的第一节,是学生在已掌握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象的画法。.为今后学习正弦型函数y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础.因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用。 二、教学目标 (1)了解如何利用正弦线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像。 (2)掌握“五点法”画正弦函数、余弦函数的简图。 (3)探究利用“五点法”画与正弦函数、余弦函数有关的某些简单函数在长度为一个周期的闭区间上的简图。 (4)体验利用图象变换作图的方法,体会数形结合的思想。 三、教学支持条件分析: 1.资料的收集 “简谐运动”的实验装置. 2.课件的制作 采用flash软件辅助设计“简谐运动”动画,用flash软件或“几何画板”制作正弦函数图像的几何画法过程. 3.活动的准备: 利用多媒体、实物教具等手段可帮助学生更直观地认识正、余弦函数曲线,以及它们之间的图像变换,并且通过教师的讲解法、谈话法、发现法、启发式教学法,使学生通过一定的观察、思考、分析以及动手操作,更有利学生的自主探索,使学生在学习活动中获得成功感,整堂课在师生的合作学习氛围中进行数学思维,使学生更好的发现数学规律。 四、教学过程 课题导入: 以前,我们已经学习过一次函数、二次函数、反比例函数、指数函数、对数函数等,对于各种函数,我们都可以通过它的图像研究它的一些相关性质,那么,我们今天学习的正、余弦函数的图像是什么样子的呢? 探索新知: 1、情景设置:

相关文档
相关文档 最新文档