文档库 最新最全的文档下载
当前位置:文档库 › 不等式专题2

不等式专题2

不等式专题2
不等式专题2

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

基本不等式专题 ---完整版(非常全面)

创作编号:BG7531400019813488897SX 创作者: 别如克* 基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅 当b a =时取“=”) (4)若 R b a ∈,,则 2)2(2 22b a b a ab +≤ +≤ ( 5 ) 若 * ,R b a ∈,则 2 2111 22b a b a ab +≤+≤≤+ ( 1 ) 若 ,,,a b c d R ∈,则 22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+) 22212) n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等

最新不等式提高题专项练习

一元一次不等式(组)常见试题分类练习 一、解法常见考题: 1、已知方程组?? ?-=++=+②① m y x m y x 12,312的解满足x +y <0,求m 的取值范围. 2、已知? ??+=+=+122, 42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围. 3、若关于x 的不等式组???????+<+->+a x x x x 3 22,32 15 只有4个整数解,求a 的取值范围. 4、关于x 的不等式组? ??->-≥-123, 0x a x 的整数解共有5个,求a 的取值范围. 5、已知a 是自然数,关于x 的不等式组?? ?>-≥-0 2, 43x a x 的解集是x >2,求a 的取值范围. 6、若不等式组 X+8<4x -1 的解集是x >3,则m 的取值范围是 。 x >m 7、不等式组?? ?+>+<+1 , 159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1 8、关于x 的不等式组? ??->-≥-123, 0x a x 的整数解共有5个,求a 的取值范围. 9、若不等式组? ??? ? x +8<4x -1x>m 的解集为x>3,则m 的取值范围是________. 10、试确定实数a 的取值范围,使不等式组??? x 2+x +1 3 >0x +5a +43>4 3(x +1)+a 恰有两个整数解. 11、已知a 是自然数,关于x 的不等式组?? ?>-≥-0 2, 43x a x 的解集是x >2,求a 的值. 12、若关于x 的不等式组???????+<+->+a x x x x 3 22,32 15 只有4个整数解,求a 的取值范围. 二、最后一间房问题: 1、若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?

高中数学 不等式专题训练

1、(02京皖春1)不等式组???<-<-0 30 122x x x 的解集是( ) A .{x |-1<x <1} B .{x |0<x <3} C .{x |0<x <1} D .{x |-1<x <3} 2、(01河南广东1)不等式 3 1 --x x >0的解集为( ) A .{x |x <1} B .{x |x >3} C .{x |x <1或x >3} D .{x |1+->|22|330x x x x x 的解集是( ) A .{x |0<x <2} B .{x |0<x <2.5} C .{x |0<x <6} D .{x |0<x <3} 5、(95全国理16)不等式( 3 1)8 2 -x >3-2x 的解集是_____。 6、(02全国文5理4)在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ) A .( 4π,2π)∪(π,45π) B .( 4π ,π) C .(4π,4 5π) D .(4π,π)∪(45π,2 3π) 7、解不等式1|55|2<+-x x 8、不等式022>++bx ax 的解集为}3 1 21|{<<- x x ,求a , b 9、解不等式∣∣x +4∣-8∣>2 解:由原不式式得∣x +4∣-8>2或∣x +4∣-8<-2 ∴∣x +4∣>10或∣x +4∣<6 ∴x >6或x <-14或-106或x <-14或-102x 11、解不等式:∣x +3∣+∣2x -4∣>2 12、解不等式2931831>?+-+x x 13、解关于x 的不等式0)1(2>---a a x x 14、a 为何值时,不等式2)1()23(22+-++-x a x a a >0的解为一切实数? 15、(06重庆文15)设0,1a a >≠,函数2 ()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的 解集为 。 16、(06重庆理15)设0,1a a >≠,函数2lg(23) ()x x f x a -+=有最大值,则不等式() 2log 570a x x -+>的 解集为 。 17、已知不等式230{|1,}x x t x x m x R -+<<<∈的解集为 (1)求t ,m 的值; (2)若函数4)(2++-=ax x x f 在区间(],1-∞上递增,解关于x 的不等式2 log (32)0a mx x t -++-<.

不等式经典题型专题练习(含答案)-

不等式经典题型专题练习(含答案) :__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 25 233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21{ 23x a x b -<->的解集为-1

5.解不等式组:并写出它的所有的整数解. 6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,数a的取 值围. 6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解. 8.已知关于x的不等式组的整数解共有5个,求a的取值围. 9.若二元一次方程组 2 { 24 x y k x y -= += 的解x y >,求k的取值围.

10.解不等式组5134122 x x x x ->-???--??≤并求它的整数解的和. 11.已知x ,y 均为负数且满足:232x y m x y m +=-?? -=?①②,求m 的取值围. 12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集. 14.若方程组2225 x y m x y m +=+??-=-?的解是一对正数,则: (1)求m 的取值围 (2)化简:42m m -++ 15.我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数满足,且,则的最小值为 . 2.若实数,x y 满足1 33(0)2xy x x +=<< ,则313 x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b += ,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________ 4.已知正数a ,b 满足 19 5a b +=,则ab 的最小值为 ,x y 0x y >>22log log 1x y +=22 x y x y +-

一元一次不等式培优专题训练一

一元一次不等式培优专题训练一 例1 1、 用“>”或“<”填空,并在题后括号内注明理由: (1)∵a >b,∴a -m ________b -m (2)∵a >2b,∴2 a ________ b (3)∵4a >5a,∴a ________0 (4)∵2x -1<9,∴x ________5 2、不等号填空:(1)、x 为任意有理数,x -3____x -4.(2)若a <0,b <0,则a ·b ____ab 2. 变式训练:(七中实验)若b a <,则2ac 2bc ;若22bc ac <,则a b (填不等号) ; 例2、不等式(组)的解法:1、不等式1y ,试求出m 的取值范围. x -y=5m -1, ② 3、(09优等生数学)已知关于x ,Y 的方程组???-=+-=-1 331k y x k y x 的解满足x+y >3k+2,求k 的取值范围

基本不等式专题 ---完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2)2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则 2 2111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当 b a =时取“=” 6、柯西不等式 (1)若,,,abc d R ∈,则22222 () ()()a b c d a c b d ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 2 2 2 (a a a ++???+)2 2 2 )b b b ++???+(2 ()a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:222 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证: a b c c b a 8)1)(1)(1(≥--- 5、已知,,a b c R + ∈,且1a b c ++=,求证: 1111118a b c ?????? ---≥ ???????????

(732)解一元一次不等式专项练习50题(有答案)ok

解一元一次不等式专项练习50题(有答案)1., 2.﹣(x﹣1)≤1, 3. ﹣1>. 4.x+2<, 5..6.,7.≥, 8. 9. 10.>,11., 12..

14. 3x ﹣, 15.3(x﹣1)+2≥2(x﹣3).16.,17.10﹣4(x﹣4)≤2(x﹣1),18.﹣1<. 19..21.,22.,23.≥.24.>1.25..26.,

28.; 29. . 30. ≤ 31.,32.(x+1)≤2﹣x 33.2(5x+3)≤x﹣3(1﹣2x)35.; 36. .37.. 38.4x+3≥3x+5. 39.2(x+2)≥4(x﹣1)+7. 40.>x﹣1

41.2(3﹣x)<x﹣3.42.3(x+2)≤5(x﹣1)+7,43.1﹣≥ 44.2(x+3)﹣4x>3﹣x.45.2(1﹣2x)+5≤3(2﹣x)46., 47..48.2﹣>3+. 49.4(x+3)﹣<2(2﹣x)﹣(x ﹣)50..

解不等式50题参考答案: 1.解:去分母得:3(x+1)>2x+6, 去括号得:3x+3>2x+6, 移项、合并同类项得:x>3, ∴不等式的解集为x>3 2.解:去分母得:x+1﹣2(x﹣1)≤2, ∴x+1﹣2x+2≤2, 移项、合并同类项得:﹣x≤﹣1, 不等式的两边都除以﹣1得:x≥1 3.解:去分母得2(x+4)﹣6>3(3x﹣1),去括号得2x+8﹣6>9x﹣3, 移项得2x﹣9x>﹣3﹣8+6, 合并同类项得﹣7x>﹣5, 化系数为1得x < 4.解;x+2 <, 去分母得:3x+6<4x+7, 移项、合并同类项得:﹣x<1, 不等式的两边都除以﹣1得:x>﹣1, ∴不等式的解集是x>﹣1 5.解:去分母,得6x+2(x+1)≤6﹣(x﹣14) 去括号,得6x+2x+2≤6﹣x+14…(3分) 移项,合并同类项,得9x≤18 …(5分) 两边都除以9,得x≤2 6.解:去分母得:2(2x﹣3)>3(3x﹣2) 去括号得:4x﹣6>9x﹣6 移项合并同类项得:﹣5x>0 ∴x<0 7.解:去分母得,3(3x﹣4)+30≥2(x+2), 去括号得,9x﹣12+30≥2x+4, 移项,合并同类项得,7x≥﹣14, 系数化为1得,x>﹣2 8.解:x﹣3<24﹣2(3﹣4x), x﹣3<24﹣6+8x, x﹣8x<24﹣6+3, ﹣7x<21, x>﹣3 9.解:化简原不等式可得:6(3x﹣1)≤(10x+5)﹣6,即8x≥﹣16, 可求得x≥﹣2 10.解:去分母,得3(x+1)﹣8>4(x﹣5)﹣8x, 去括号,得3x+3﹣8>4x﹣20﹣8x, 移项、合并同类项,得7x>﹣15,11.解:去分母,得x+5﹣2<3x+2, 移项,得x﹣3x<2+2﹣5, 合并同类项,得﹣2x<﹣1, 化系数为1,得x > 12.解:去分母,得3(x+1)≥2(2x+1)+6, 去括号,得3x+3≥4x+2+6, 移项、合并同类项,得﹣x≥5, 系数化为1,得x≤﹣5 13.解:去分母,得2(2x﹣1)﹣24>﹣3(x+4),去括号,得4x﹣2﹣24>﹣3x﹣12, 移项、合并同类项,得7x>14, 两边都除以7,得x>2 14.解:去分母得,6x﹣1<2x+7, 移项得,6x﹣2x<7+1, 合并同类项得,4x<8, 化系数为1得,x<2 15.解:3(x﹣1)+2≥2(x﹣3), 去括号得:3x﹣3+2≥2x﹣6, 移项得:3x﹣2x≥﹣6+3﹣2, 解得:x≥﹣5 16.解:去分母得:2(x﹣1)﹣3(x+4)>﹣12,去括号得:2x﹣2﹣3x﹣12>﹣12, 移项得:2x﹣3x>﹣12+2+12, 合并得:﹣x>2, 解得:x<﹣2 17.解:去括号得:10﹣4x+16≤2x﹣2, 移项合并得:﹣6x≤﹣28, 解得:x ≥ 18.解:去分母得,3(x+5)﹣6<2(3x+2), 去括号得,3x+15﹣6<6x+4, 移项、合并同类项得,5<3x, 把x的系数化为1得x >. 19 .解:∵ ∴3(x+5)﹣6<2(3x+2) ∴3x+15﹣6<6x+4 ∴3x﹣6x<4﹣15+6 ∴﹣3x<﹣5 ∴x 20.解:去分母得30﹣2(2﹣3x)≤5(1+x), 去括号得30﹣4+6x≤5+5x, 移项得6x﹣5x≤5+4﹣30,

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

基本不等式练习题(带答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2 111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.332- C.3-23 D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. 63 C. 46 D. 183 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 11123a b c + + ≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A . 114x y ≤+ B .111x y +≥ C .2xy ≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,, 2 a b ab ab a b ++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b ab ab a b +≤≤ + C. 22ab a b ab a b +≤≤+ D.22 ab a b ab a b +≤≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

基本不等式专题----完整版(非常全面)

学习必备 欢迎下载 基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2)2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则 2 2111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当 b a =时取“=” 6、柯西不等式 (1)若,,,abc d R ∈,则22222 () ()()a b c d a c b d ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 2 2 2 (a a a ++???+)2 2 2 )b b b ++???+(2 ()a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:222 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证: a b c c b a 8)1)(1)(1(≥--- 5、已知,,a b c R + ∈,且1a b c ++=,求证: 1111118a b c ?????? ---≥ ???????????

不等式计算专项练习及答案

不等式计算专项练习 一、解答题 1.解不等式组,并且把解集在数轴上表示出来. 2.求不等式组的整数解. 3.计算下列不等式(组): (1)x-<2-. (2)-2≤≤7 (3); (4) 4.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2 (2)2y1-y2≤4 5.解不等式组: 6.求下列不等式组的解集 7.(1)计算:(-2)-2×|-3|-()0 (2)解不等式组: 8.解不等式组,并指出它的所有整数解. 9.解不等式组:,并写出该不等式组的整数解.

11.解不等式组并写出的所有整数解. 12.(1)解方程:. (2)求不等式组:. 13.求不等式组的整数解. 14.(1)解不等式组:并把解集在数轴上表示出来. (2)解不等式组: 15.求不等式组的非负整数解. 16.解不等式(组),并把它们的解集在数轴上表示出来 (1); (2) 17.(1)解不等式组 (2)在(1)的条件下化简:|x+1|+|x-4| 18.已知关于x,y的方程组的解为正数. (1)求a的取值范围; (2)化简|-4a+5|-|a+4|. 19.(1)解不等式2->+1,并把它的解集在数轴上表示出来; (2)求不等式组的整数解. 20.解不等式组:. 21.解不等式组 22.解不等式组,并把它们解集表示在数轴上,写出满足该不等式组的 所有整数解.

23.解不等式组:;在数轴上表示出不等式组的解集,并写出它的整数 解. 24.解不等式组:. 25.解不等式组 26.解不等式组 ) 27.当x 是不等式组 的正整数解时,求多项式(1﹣3x )(1+3x )+(1+3x ) 2 +(﹣x 2)3÷x 4的值. 28.解方程与不等式组: 解方程:;解不等式组: 29.解不等式组. 30.解不等式组,并写出不等式组的整数解. 31.(1)解不等式组: (2)解方程: 32.解不等式组: . 33.解不等式组,并在数轴上表示它的解集. 34.(1)解方程: ; (2)解不等式组: ,并把解集在数轴上表示出来.

不等式综合练习题集

不等式专题练习题 一、知识内容 不等式是高中数学的重要内容之一,不等式的性质是解证不等式的基础;两个正数的算术平均数不小于它们的几何平均数的定理(教材中称为基本不等式,通常称均值不等式)及其变形在不等式的证明和解决有关不等式的实际问题中发挥着重要的作用;线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用. 二、核心思想方法 解不等式是研究方程和函数的重要工具,不等式的概念、性质涉及到求函数最大(小)值,实数大小比较,求参数的取值范围等;不等式的综合题主要是不等式与集合、函数、数列、三角函数、解析几何、导数等知识的综合,综合性强,难度较大,是高考命题的热点,也是高考复习的难点;均值不等式的证明最终是利用了配方法,使用该不等式的核心方法则是整体思想方法,就是对哪两个正数使用定理,例如下面练习题的第5题是对2,a b使用不等式,而不是对,a b使用不等式;线性规划的核心方法是数形结合和转化的思想方法,在具体转化上涉及到面积、截距(目标函数为二元一次多项式)、距离(目标函数含二元二次多项式)、斜率(目标函数为分式)等几何意义,分别如下面练习题的第9、22、23、24题. 三、高考命题趋势 本专题的高考命题热点可从以下两个方面去把握: 1.以客观题形式命题:不等式的性质和解不等式问题多以一个选择题的形式出现,且多与集合、简易逻辑、函数知识相结合,难度较低;均值不等式是历年高考的重点考查内容,考查方式多变,在客观题中出现,一般只有一个选择或填空,考查直接,难度较低;线性规划问题是近几年高考的一个新热点,在考题中主要以选择、填空形式出现,且设问也是灵活多变,每年高考必有一题.四个注意问题:(1)命题者有时把线性规划问题和均值不等式结合在一起,提高了难度,例如下面练习题的第8、28题.(2)线性规划的约束条件中含有参数的,例如下面练习题的第7、9题.(3)均值不等式的凑定值技巧,一是关注消元,而是关注整体代入思想方法,分别如下面练习题的第17、18题.(4)克服思维定势,有些题目很象是利用基本不等式的,其实只是解出未知数代入化简的,

初中不等式专题复习知识点及习题

专题二不等式(组) 知识点汇总: 1.不等式:用“>”、“<”、“≥”或“≤”将两个式子连接以表示大小关系的式子。 2.不等式的解:把使不等式成立的未知数的值叫做不等式的解。 3.不等式的解集:使不等式成立的x的取值范围叫做不等式解的集合,简称解集。 4.不等式的基本性质: (1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。 (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 5.解不等式:求不等式解集的过程。其目的实质就是把不等式化为“x>a或x ≥a”、“x<a或x≤a”的形式。 6.用数轴表示不等式:(大于向右画,小于向左画,无等号画圆圈,有等号画实心点) 7.一元一次不等式:不等式左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式。 思考:解一元一次不等式与解一元一次方程有什么异同? 8.一元一次不等式组:把两个或多个一元一次不等式组合起来是一个一元一次不等式组。 9.不等式组的解集:不等式组中每一个解集的公共部分叫做不等式组的解集。记:同大取大,同小取小,大小小大取中间,大大小小无处找。 思考:解一元一次方程组与解一元一次不等式组有什么异同?

随堂练习: 1.已知a<0,则关于x的不等式ax<5的解为________,5x<a的解为________。 2.已知a,b为常数,若ax+b>0的解集为x<3,则bx+a<0的解集为________。 3.若不等式组有解,则k的取值范围是() (A)k<2 (B)k≥2 (C)k<1 (D)1≤k<2 4.若(x+1)(x-1)<0,则x的解集为__________。 5.九年级一个班有几个同学毕业前合影留念,每人交0.7元,一张彩色底片0.68元,扩印一张相片0.50元,每人分一张,在收上来的钱尽量用掉的前提下,这张相片上的同学最少有________个。 6. 7.某城市平均每天产生垃圾700吨,由甲乙两个垃圾处理厂同时处理。已知甲厂每小时可处理垃圾55吨,每吨需要费用10元;乙厂每小时可处理垃圾45吨,每吨需要费用11元。如果规定该城市每天用于处理垃圾的费用不超过7370元,甲厂每天处理垃圾至少多少小时?

不等式专题训练

不等式专题训练1 1.若a >0,b >0,a+b=2,则下列不等式不恒成立的是( ) A .ab ≤1 B .a 2+b 2≥2 C . + ≤ D .+≥2 2.已知变量x ,y 满足,则的取值范围为( ) A .[0,] B .[0,+∞) C .(﹣∞,] D .[﹣,0] 3.以下结论正确的是( ) A .若a <b 且c <d ,则ac <bd B .若ac2>bc2,则a >b C .若a >b ,c <d ,则a ﹣c <b ﹣d D .若0<a <b ,集合A={x|x=},B={x|x=},则A ?B 4.设x ,y 满足约束条件30,0,20,x y a x y x y --≤?? -≥??+≥? 若目标函数z x y =+的最大值为2,则实数a 的 值为( ) A .2 B .1 C .1- D .2- 5.已知集合()12 2|log 12,| 21x A x x B x x ??+?? =+≥-=≥????-?? ? ? ,则 A B =I ( ) A.()1,1- B.[)0,1 C.[]0,3 D.? 6.若实数x ,y 满足,则z=x ﹣2y 的最小值为( ) A .﹣7 B .﹣3 C .1 D .9 7.设a ,b ∈R + ,且a ≠b ,a+b=2,则必有 ( ) A .1≤ab ≤ B .<ab <1 C .ab <<1 D .1<ab < 8.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .a 2 >ab >b 2 B .ac 2 <bc 2 C . D . 9.如果实数x 、y 满足,目标函数z=kx+y 的最大值为12,最小值3,那么实数k 的值为( ) A .2 B .﹣2 C . D .不存在 10.若点(2,﹣3)不在不等式组表示的平面区域内,则实数a 的取值范围是( ) A .(﹣∞,0) B .(﹣1,+∞) C .(0,+∞) D .(﹣∞,﹣1) 11.设变量x ,y 满足约束条件,则目标函数z=2x+5y 的最小值为( )

《一元一次不等式的整数解》专题训练及答案

《一元一次不等式的整数解》专题训练 一.选择题(共10小题) 1.关于x的不等式x﹣b≥0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2 2.不等式2x﹣1≥3x﹣3的正整数解的个数是() A.1个 B.2个 C.3个 D.4个 3.不等式+1<的负整数解有() A.1个 B.2个 C.3个 D.4个 4.使不等式4x+3<x+6成立的最大整数解是() A.﹣1 B.0 C.1 D.以上都不对 5.下列说法中错误的是() A.不等式x+1≤4的整数解有无数个 B.不等式x+4<5的解集是x<1 C.不等式x<4的正整数解为有限个 D.0是不等式3x<﹣1的解 6.不等式3(x﹣1)≤5﹣x的非负整数解有() A.1个 B.2个 C.3个 D.4个 7.不等式>﹣1的正整数解的个数是() A.1个 B.2个 C.3个 D.4个 8.不等式3(x﹣2)<7的正整数解有() A.2个 B.3个 C.4个 D.5个 9.使不等式x﹣2≥﹣3与2x+3<5同时成立的x的整数值是()A.﹣2,﹣1,0 B.0,1 C.﹣1,0 D.不存在 10.不等式4(x﹣2)>2(3x+5)的非负整数解的个数为() A.0个 B.1个 C.2个 D.3个 二.填空题(共10小题)

11.如果不等式3x﹣m≤0的正整数解是1,2,3,那么m的范围是.12.不等式2x<4x﹣6的最小整数解为. 13.不等式﹣x+2>0的最大正整数解是. 14.不等式2x﹣7<5﹣2x的非负整数解的个数为个. 15.如果不等式2x﹣m≥0的负整数解是﹣1,﹣2,则m的取值范围是.16.不等式4﹣x>1的正整数解为. 17.已知满足不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解是方程:2x﹣ax=3的解,则a的值为. 18.不等式5x﹣3<3x+5的所有正整数解的和是. 19.不等式3x﹣4<x的正整数解是. 20.不等式﹣4x≥﹣12的正整数解为. 三.解答题(共10小题) 21.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值. 22.解不等式<1﹣,并求出它的非负整数解. 23.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?24.解不等式,并把它的解集表示在数轴上,再写出它的最小整数解. 25.解不等式:,并写出它的所有正整数解. 26.求不等式≥的正整数解. 27.解不等式:1﹣≥,并写出它的所有正整数解. 28.求不等式组的最小整数解. 29.若关于x,y的二元一次方程组的解满足x﹣y>﹣3.5,求出满

23个经典的不等式专题

23个经典的不等式专题 1、 证明:2221111+ ...223n +++< ; 2、 若:332a b +=,求证:2a b +≤ ; 3、 若:n N + ∈,求证: 1111 ...12122n n n ≤+++<++; 4、 若:,0a b >,且3ab a b =++,求:a b +的取值范围 ; 5、 若:,,a b c 是ABC ?的三边,求证:111a b c a b c +>+++ ; 6、 当2n ≥时,求证:222111111 (12) 123n n n -<+++<-+ ; 7、 若x R ∈ ,求y = ; 8、 求函数2cos y θ θ = -的最大值和最小值 ; 9、 若,,0a b c >,求证: 2229a b b c c a a b c ++>+++++ ; 10、 若,,a b c R ∈,且22225a b c ++=,试求:22a b c -+的取值范围 ; 11、 若,,a b c R ∈,且226a b c --=,求222a b c ++的最小值 ; 12、 若,,a b c R ∈,且222 (1)(2)(3)11654 a b c -+-++=,求a b c ++的最大值和最小值; 13、 若,,0a b c >,,,0x y z >,且满足22225a b c ++=,22236x y z ++=, 30ax by cz ++=,求:a b c x y z ++++的值 ; 14、 求证:2 115 3n k k =<∑ ;(这回比较紧) 15、 当2n ≥时,求证: 12(1)3n n <+< ; 16、 求证: 113135135...(21)...224246246 (2) n n ???????-++++

不等式经典题型专题练习(含答案)

不等式经典题型专题练习(含答案) 姓名:__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 2 5233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21 { 23x a x b -<->的解集为-1

3.已知关于x ,y 的方程组?? ?=+=+3135y x m y x 的解为非负数,求整数m 的值. 4.由方程组212x y x y a +=?? -=?得到的x 、y 的值都不大于1,求a 的取值范围. 5.解不等式组: 并写出它的所有的整数解.

6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,求实数a的取 值范围. 6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解.

8.已知关于x的不等式组3的整数解共有5个,求a的取值范围. 9.若二元一次方程组 2 { 24 x y k x y -= += 的解x y >,求k的取值范围. 10.解不等式组 5134 1 2 2 x x x x ->- ? ? ? -- ??≤ 并求它的整数解的和. 23 x y m +=- ?①

12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集. 14.若方程组2225x y m x y m +=+??-=-? 的解是一对正数,则: (1)求m 的取值范围 (2)化简:42 m m -++

相关文档
相关文档 最新文档