文档库 最新最全的文档下载
当前位置:文档库 › 量子计算机

量子计算机

量子计算机
量子计算机

【D-Wave 量子计算机】 (1)多项基础技术出自日本

D-Wave 的量子计算机如果离开了日本的研究和发明,则无法实现,D-Wave Systems 自己也承认这一点。下面,本文就为大家介绍一下D-Wave 的基础理论和器件的发明者。

量子退火

量子退火是东京工业大学西森研究室的门胁(图1)在1998年用英文发表的博士论文中提出的概念。

图1:门胁正史

日本卫材筑波研究所主管研究员

门胁正史在东京工业大学研究生院的博士论文是与西森教授合作完成的论文《横场伊辛模型的量子退火》

门胁说:“我完全没有想到自己的博士论文会在十几年后成为热门话题。”

2001年,麻省理工学院(MIT)的研究者参考西森教授和门胁的论文,发表了“隔热量子计算”理论,“其内容与量子退火基本相同,引发了极大关注”(西森教授)。

据西森教授介绍,最开始的时候,D-Wave的量子计算机被称为“隔热量子计算机”。但是,“因为发现了量子退火的研究在前,D-Wa ve Systems现在也被称为量子退火”。

利用超导电路形成量子位

D-Wave量子计算机使用的利用超导电路形成的量子位是由当

时在NEC研究所任职的蔡兆申(图2)和中村泰信(图3)于1999年在全世界率先实现的。现在在日本理化学研究所任职的蔡兆申说:“D-Wave的量子位与我们开发的量子位是同一个原理。”

图2:蔡兆申图3:中村泰信

日本理化学研究所单量子操作研究组组长

在1999年任职于NEC时,蔡兆申与中村泰信合作,在全世界率先实现了超导量子位东京大学尖端科学技术研究中心教授

量子力学现象原本只发生在原子内部微观世界。而蔡兆申与中村开发的量子位利用规模远远大于原子的超导电路,实现了“量子叠加”这种量子力学现象,从这一点来说,这项技术具有划时代的意义。

现在担任东京大学教授的中村表示,“D-Wave原本是一家思考能否把超导电路运用于业务的企业。我在NEC的时候,曾经与他们进行过多次讨论”。由此可见,NEC对D-Wave有着巨大的影响。

量子通量参变器

在D-Wave量子计算机中,负责放大量子位信号的是超导电路“量子通量参变器(QFP)”。QFP是2005年逝世的东京大学教授后藤英一在1991年发明的。

1990年代,后藤教授出版了多本介绍QFP 的英文书籍。D-Wav e 的希尔顿曾说过:“我们从后藤的著作中学习知识,开发出了超导电路。”

QFP 诞生于东京大学与日立制作所的合作研究项目。日立一方的成员原田丰(图4)说:“我们曾想使用超导电路开发超级计算机的处理器。”

当时,大型机(Mainframe )使用的双极处理器的性能已经提升到极致,而被视为新一代处理器的CMOS 处理器的性能则迟迟没有进步。作为替代二者的新选择,超导电路QFP 被寄予厚望。然而,在

图4:原田丰

日本国士馆大学理工学研究所教授

曾跟随已经去世的后藤英一博士(东京大学教授)的研究组(东京大学与日立制作所的合作研究)和东京大学后藤研究室开发量子通量参变器的原田丰(当时任职于日立制作所)、细谷睦(图5),须田礼仁(图6)

图5:细谷睦

(2)在宇宙最寒冷的地方工作

D-Wave的量子计算机的原理与我们现在使用的计算机(古典计算机)、已被研究多年的传统量子计算机(量子门方式)完全不同。其原理究竟是什么?下面,笔者将分五步进行介绍。

STEP 1:这是一种什么硬件?

首先来看一下据称是10亿日元1台的D-Wave量子计算机的硬件(图1)。机壳的外观看上去像是服务器机柜。机壳内设置着闪烁银光的筒状的“稀释冷冻机”,冷冻机内有D-Wave量子计算机的心脏——超导电路。

利用超导电路实现量子比特

图1:D-Wave的硬件

(点击放大)

使用冷冻机是因为必须使超导电路的温度无限接近绝对零度(-273.15℃)的20mK。该冷冻机内被称为“宇宙中最冷的地方”。

图1的中间就是超导电路的照片。这里安装着对于量子计算机来说最重要的“量子比特”,其作用是产生量子力学现象。量子比特是使用超导材料铌(Nb)制作的环,环中通入左向电流时会产生向上的“磁通量量子”,通入右向电流则会产生向下的“磁通量量子”。磁通量量子是赋予物体磁力的“磁通量”的最小单位。这里可以大致理解为“量子比特中可以流过向上或向下的信号”。

磁通量量子的磁场非常小,要使用“量子通量参变器(QFP)”放大。放大后的磁场使用“超导量子干涉器(dc SQUID)”测量。量子比特与QFP都是日本首先开发成功的。

STEP 2:本质是什么?

D-Wave量子计算机是一台“实验装置”。

与传统计算机的不同之处是,D-Wave量子计算机会实际发生与现实世界的自然现象相同的现象。其内部安装着特殊磁性体(磁铁)“自旋玻璃”的模型。传统计算机虽然能够模拟自然现象,但无法实际产生现象。

遗传算法中,首先把数学上的“组合优化问题”映射到“生物遗传”这一自然现象,然后在传统计算机上模拟生物的遗传现象,把遗传结

果视为组合优化问题的近似解。

作为借用自然现象的算法之一,“模拟退火(SA)”借用的是把磁性体加热到高温并缓慢冷却后,形状趋于稳定的“退火”现象。SA一直是在传统计算机上模拟退火现象,求出组合优化问题的近似解。

1998年,东工大的西森教授产生了一个想法:算法中如果不是模拟真实的退火现象,而是借用“量子力学退火现象”这种理论现象,是不是能更快地解决组合优化问题?

西森教授的研究方向是借用物理现象设计算法的“信息统计力学”。在借用大量物理现象反复进行测试的过程中,西森教授产生了上面的那个创意。于是便与当时他研究室的研究生门胁正史合作,提出了借用“量子力学退火现象”的算法,也就是“量子退火”(图3)。

构想的两次飞跃

图3:D-Wave Systems量子计算机诞生的经过

(图左摄影:加藤康)(点击放大)

门胁通过计算机模拟进行验证,结果显示,“与通常(经典力学)的退火相比,借用…量子力学退火?的算法能够以更高的概率,求出组

合优化问题的精确解”(门胁)。

量子退火是一种算法,按照西森教授的设想,只要在传统计算

机上模拟“量子力学退火现象”即可。但他没有想到的是,在2004年

出现了一位有着划时代奇思妙想的人物。他就是D-Wave Systems

的创始人乔迪·罗斯(Geordie Rose)。

罗斯异想天开,想要制作能产生“量子力学退火现象”的实验装置。按照他的设想,与在传统计算机上模拟“量子力学退火现象”相比,在实验装置中产生实际现象能够更快地得到结果,于是便使用超导电路制作出了实验装置。这就是2011年投入商用的D-Wave量子计算机诞生的经过,也是D-Wave量子计算机能够解决组合优化问题的原因。

STEP 4:进行什么实验?

D-Wave量子计算机上安装了模拟特殊磁性体——自旋玻璃的“三维伊辛模型”(图4)。实施使磁性体能量达到最小的实验,就可解决

组合优化问题。

制作模拟特殊磁性体“自旋玻璃”的实验装置

图4:三维伊辛模型的概念图

(点击放大)

首先来解释一下三维伊辛模型模拟的自旋玻璃。

一般来说,磁性体具有物体能量由原子自旋方向(只有上下两种方向)和自旋之间的相互作用决定的性质。能量越小,磁性体的形状越稳定,能量越大,形状越不稳定。对于通常的磁性体来说,原子的自旋方向完全相同时,能量最小,形状最稳定。但自旋玻璃作为一种特殊的磁性体,即使原子的自旋方向各不相同,其能量仍为最小。

D-Wave量子计算机进行的物理实验的内容,就是让自旋相互作用事先已经确定的自旋玻璃发生“量子力学退火现象”,使自旋玻璃的能量达到最小,求出此时自旋方向的组合(自旋排列)。

D-Wave量子计算机上安装的是什么样的三维伊辛模型呢?三维伊辛模型的自旋用量子比特(图1右侧)表示,量子比特中发生的磁通量量子的方向即为自旋方向。相邻的量子比特之间相互连接。量子比特之间的相互作用通过超导电路“可编程磁性存储器”来设定。设定等使用的是与D-Wave量子计算机连接的个人电脑。

真正的磁性体不同于模型,无法自由设定自旋相互作用,也无法测量实验结果,也就是自旋的方向。而D-Wave量子计算机的本质是自旋玻璃的模型,因此能够实现这些操作。

STEP 5:实验结果意味着什么?

使用D-Wave量子计算机进行实验,能够求出使自旋玻璃的能量达到最小的自旋排列。假设自旋的数量为“N”,则可能的自旋排列有“2的N次方”种(图5)。D-Wave量子计算机的实验结果可以说是“从2的N次方种自旋排列中找出的能量最小的自旋排列”。

实验结果等于“组合优化问题”的解

图5:利用三维伊辛模型解决的问题的图解

(点击放大)

使用传统计算机求出这样的自旋排列非常困难。如果用穷举法求自旋排列,计算时间也将增至2的N次方倍。就算是超级计算机,也无法在有限的时间内求解。

而通过查看D-Wave量子计算机的实验结果,不用计算,也能找到能量最小的自旋排列。也就是说,D-Wave量子计算机能够解决找出使自旋玻璃能量达到最小的自旋排列的“组合优化问题”。

D-Wave量子计算机的最新型号“D-Wave Two”配备了512个自旋,能够实现“2的512次方”种自旋排列。理论上来说,D-Wave T wo可以在几毫秒内,从2的512次方种自旋排列中,找出能量最小的自旋排列。

除了求解自旋玻璃最佳排列这个组合优化问题之外,D-Wave量子计算机还能用来解决其他问题。此时,需要将求解的问题映射到自

旋玻璃的自旋与自旋相互作用的关系。以旅行商问题为例,旅行的城市相当于自旋玻璃的自旋,城市间的距离相当于自旋相互作用。这样的对应方式一目了然,实际的映射其实还要复杂得多。实验得出的使自旋玻璃的能量达到最小的自旋排列即为移动距离最短路径的解。

(3)量子退火的真貌

D-Wave量子计算机中的“量子力学退火现象”、即量子退火是如何进行的?下面就通过实际的实验来介绍一下(图1)。

施加“横磁场”后慢慢减弱

图1:D-Wave内部发生的量子退火现象的图解

(点击放大)

首先根据希望求解的组合优化问题,设定三维伊辛模型(Ising Model)的自旋间相互作用。这相当于传统计算机中的编程。

接下来,将自旋间相互作用的强度设为零,同时向三维伊辛模型施加“横磁场”。实际的操作是向超导电路流入特殊电流(图1中的状态1)。

施加横磁场后,就会形成自旋方向呈朝向和朝下“重合存在”的状态。“重合”是量子力学的现象之一。此时的状态是,自旋是朝上还是朝下并不清楚,但检测时两种方向都可确定。

在慢慢持续减弱横磁场的同时,慢慢增强自旋间的相互作用(图1中2到3的状态)。当横磁场减至零时,自旋的方向就会以高概率变成使三维伊辛模型的能量达到最小的组合。这样便得到了解。

从量子退火的理论上看,使横磁场变零的时间越长,得到精确解的概率就越高。但时间变长后,量子力学的“重合现象”就会消失。因此要在数毫秒内完成实验。

而实验时间太短的话,得到精确解的概率就会降低。因此,D-Wave量子计算机会反复实验1000次,将最佳值视为“解”。也就是说,D-Wave量子计算机得到的解也可能是“近似解”而非精确解。但即便如此,与传统计算机进行的模拟退火相比,仍可得到更接近精确解的近似解。而且求解的时间也较短。

那么,利用D-Wave进行量子退火时,为何能够比使用古典力学的模拟退火(SA)获得更理想的解呢(图2)?图2以数学方式解释了量子退火与模拟退火的不同。两者都是在以自旋的方向组合(排列)为变数、以能量的大小为结果的函数中,搜索使能量达到最小的“基态”。

凭借“量子退火”接近解

图2:D-Wave的量子退火产生的量子效应的概念

(点击放大)

能够快速得到解的原因

模拟退火是从曲线图上的任意一地点出发来搜索能量变小的方向。但该曲线图中有多个“山”和“谷”。搜索的目标是最深的谷、即“基态”,但也有可能会收敛于较小的谷、即“局部最优解”。因此,模拟退火通过向搜索施加“热波动”来翻越“山”。这样一来,就会以某一概率搜索到基态。

而量子退火则是对曲线图上的所有地点同时开始搜索。即使搜索陷入了小谷中,也会凭借“量子退火”这一量子力学现象穿透出去,向基态搜索。这样便可高速得到解。

(4)课题与期待

如果能如理论那般工作,D-Wave可实现高速计算,但实际还存在不少要解决的课题(图1)。

而另一方面,在性能上有望超越D-Wave的新的方式也在开发之中。这就是日本独创的“激光网络方式”。

关于性能的讨论还将持续数年

图1:业内对D-Wave的疑问,以及第三方的评价

(点击放大)

第一个课题是要证明D-Wave量子计算机是否真的使用了量子力学现象(量子效应)。东京工业大学西森秀稔教授表示,“经过多方验证,这一点基本上是肯定的”。围绕这个问题,苏黎世联邦理工学院及美国南加州大学的研究人员发表了论文。

第二个课题与性能有关。对于D-Wave量子计算机,实际上业内存在“可能无法比传统型计算机更快解答问题”的疑问。

比如,谷歌2014年1月公布验证结果称,在某个组合优化问题上,D-Wave比个人电脑快3.55万倍,但在计算其他问题时则比个人电脑慢。谷歌表示,“当作为计算对象的数据中存在规律性时,D-Wave量子计算机能够非常快地解答。但数据毫无规律时,求解往往要耗费大量时间”。

美国航空航天局(NASA)副主任Rupak Biswas表示,“目前的D-Wave由于量子位较少,因此不能说比超级计算机快。不过,今后D-Wave的量子位增加的话,其性能便有望超过超级计算机”。

D-Wave公司负责制造的副总裁Jeremy Hilton表示,“2013年量子位从128增至512时,性能提高了数十万倍。我们今后的目标是,使量子位在2014年内达到1000、在2015年内达到2000”。

D-Wave量子计算机能否发挥与理论上一样的性能?其结果将

在数年内见分晓。

日本独创方式,瞄准5000个自旋

届时,日本可能会出现性能超过D-Wave的其他方式的量子计算机。

这就是日本国立信息学研究所(NII)山本喜久教授的研究小组正在开发的激光网络方式的量子计算机。

激光网络方式与D-Wave一样,也是三维伊辛模型(Ising Mod el)的实验装置。但实验方法以及搜索“基态”(参阅“量子退火的真貌”中的图2)的方法与D-Wave不同。

D-Wave使用超导电路,而激光网络方式则使用“简并光学参量振荡器”及“半导体激光器”。激光器网络方式利用激光器的“偏振光”(光的偏振)来表现三维伊辛模型的自旋。

激光网络方式首先将三维伊辛模型冷却至作为量子力学的现象之一、理论上被视为比绝对零度还要低的温度“负温度”。然后通过加热来制造三维伊辛模型的能量达到最小的状态。

三维伊辛模型处于负温度时,激光器不会振荡(这里的振荡指

激光器发光)。不过,当加热三维伊辛模型时,激光器就会在某一点振荡。此时自旋方向的组合(排列)就成为使三维伊辛模型的能量达到最小的排列。

从前面提到的图2中的曲线图来看,激光网络方式是从曲线图的下方(负温度的区域)开始搜索“基态”的。量子退火是从曲线图的上方开始搜索基态,因此可能会陷入局部最优解(近似解)而非收敛于基态(精确解)。而激光网络方式最初搜索到的就是基态,因此“有望获得组合优化问题的精确解”(NII的山本教授)。

山本教授的研究小组在2013年夏季制成了具备4个自旋的三维伊辛模型,确认可实现与理论相同的工作。今后该小组还将利用“光耦电路”来增加自旋数,力争1年内增至100个、4年内增至5000个。

当实现拥有5000个自旋的三维伊辛模型时,就意味着可从2的5000次方种自旋排列中瞬间找出能量最小的排列。

如果D-Wave及激光网络方式的量子计算机可发挥与理论上相同的性能,那么社会及商业就会发生彻底改变。其“答案”可能会在今后数年内揭晓。(记者:中田敦,《日经计算机》)

量子计算:你不知道的九大问题

量子计算你不知道的地方 量子计算机并不是用来浏览互联网、收发邮件,也不是用来运行常规软件。相反,量子计算机的基础为量子力学。量子力学为物理学的一个分支,该学科创立时间已有100年左右,并对人们的传统看法发起挑战。量子物理学研究对象为很小的事物,如电子和光子等,并试图解决人们此前没能解决的问题。如果你声称量子计算机简直就是以魔法方式运行,这种说法也没有多少夸张之处。在我们面对这些很小的物体时(试想一下,比单个原子还小),科幻小说中描写的时间旅行、瞬间移动(teleportation)等奇特现象也只能说是司空见惯。传统意义上的物理学“规则”在这儿不适用。 这无疑就可开启一些令人心动的可能性,尤其在数学分支优化学科领域就更是如此。顾名思义,优化就是要从一大堆潜在答案中找出最佳者。对于这门特定数学学科领域而言,它致力于解决现实世界中一些可实际感受到的问题。UPS快递卡车如何选择其最佳投递路线?机场该如何合理安排航班才能保持各航班不会延误? 在处理一些优化计算任务上,传统计算机可谓设备简陋。美国南加州大学克希德·马丁量子计算中心科学主任丹尼尔·里达尔(Daniel Lidar)表示,人类验证蛋白质折叠状态会花上大量时间,自然界却能够在数秒或数分钟内完成这种任务,而传统计算机要解决这些问题,则要花上数十亿年的时间去思考。

从某种程度上讲,量子计算也具有了像自然界那样同世界互动的能力。这可能是一种今人感到难以理解的深奥想法。即便如此,这也仅仅是量子计算机的冰山一角。 1、量子计算机依靠量子力学来运行,而量子力学非常“疯狂”。与我们肉眼所看到物体的运动规则相比,量子粒子的运动规则却大为不同。举例来说,量子粒子能够同时存在于两个地方,能够快速前进或后退,甚至能够进行所谓的瞬间移动,也就是物理学家们所说的“量子隧道效应”(qu antum tunneling)。174.139.208.164 这通常是我们在科幻小说中所看到的东西。但在量子世界中,这些现象可谓寻常之极。而科学家们也无法对此给出令人满意的答案。

量子计算机发展简史

量子计算机发展简史 原著:Simon Bone & Matias Castro 翻译:bianca 2003年3月26日 内容摘要 听起来好像有点奇怪,计算机的未来可以被建筑在一杯咖啡周围。那些咖啡因分子恰巧是构建“量子计算机”--一种能够保证提供可在几秒钟内破解密码的思想回应功能的新型计算机的可能组成部件。 内容目录 1.介绍 1.1量子计算机的基本要素 1.2量子计算机的缺点--(电子)脱散性 1.3取得结果 2.通用计算的理论 2.1加热流失的信息 2.2通用量子计算机 2.3人工智能 3.建立一台量子计算机 3.1量子点 3.2计算流体 4.量子计算机的应用 4.1Shor算法--Shor的算法--一个范例 4.2Grover算法 4.3量子机械系统的模拟 5.量子通讯 5.1量子通讯是如何工作的 5.2量子比特的任务 6.当今进展及未来展望 7.结论

8.术语表 9.参照表 9.1书籍 9.2人物 9.3杂志文章 9.4网页 1.介绍 经常会有能使计算机的性能大大改善的新技术出现。从晶体管技术的引进,到超大规模集成电路的持续性发展,科技进步的速度总是如此无情。近日来,现代处理器中晶体管体积的减小成为计算机性能改进的关键所在。然而,这种不断的减小并不能够持续很长的时间。如果晶体管变得太小,那种对量子机械的未知影响将会限制它的性能。因此,看起来这些影响会限制我们的计算机技术,它们真的会吗?在1982年,诺贝尔奖获得者--物理学家Richard Feynman想出了“量子计算机” 的概念,那是一种利用量子机械的影响作为优势的计算机。有一段时间,“量子计算机”的想法主要仅仅停留在理论兴趣阶段,但最近的发展令这个想法引起了每一个人的注意。其中一个进步就是一种在量子计算机上计算大量数据的算法的发明,由Peter Shor(贝尔实验室)设计。通过使用这种算法,一台量子计算机破解密码可以比任何普通(典型)计算机都要快。事实上,一台能够实现Shor算法的量子计算机能够在大约几秒内破解当今任何密码技术。在这种算法的推动下,量子计算机的话题开始集中在动力上,全世界的研究人员都争当第一个制造出实用量子计算机的人。 1.1量子计算机的基本要素 在计算机的经典模型中,最基础的构建要素--比特,只能存在于两种截然不同的状态之一:0或是1。在量子计算机中,规则改变了。一个原子比特--经常被简称为“量比”(quantum bit) --不仅仅存在于传统的0和1状态中,还可以是一种两者连续或重叠状态。当一个量比处于这种状态时,它可以被认为存在于两种领域中:一种为0,而另外一种为1。一个基于这种量比的操作能够同时有效地影响两个值。因此,极为重要的一点是:当我们在量比上实行单一操作时,我们是在针对两种不同的值进行的。类似的,一个双量比系统能对4个值进行操作,而一个三量比系统就是8个值。因此,增加量比的数目能够以指数方式增加我们从系统获得的“量子并行效应”(量子并行效应)。在拥有正确算法类型的情况下,它能通过这种并行效应以远低于传统计算机所花费的时间内解决特定的问题。 1.2量子计算机的缺点--(电子)脱散性

量子信息与量子计算课程论文

半导体量子点的电子自旋相干和自旋操控 摘要:现在各国科学家都在努力希望实现量子计算机,而量子计算机需要一些重要的量子性质,其一是“量子相干性”。该文介绍了量子相干性,并简略介绍了半导体量子点中的电子的自旋相干性,简要探讨半导体量子点的电子自旋操控的方法 关键词:量子点自旋相干自旋调控 一﹑量子相干性 量子相干性,或者说“态之间的关联性”。其一是爱因斯坦和其合作者在1935年根据假想实验作出的一个预言。这个假想实验时这样的:高能加速器中,由能量生成的一个电子和一个正电子朝着相反的方向飞行,在没有人观测时,两者都处于向右和向左自旋的叠加态而进行观测时,如果观测到电子处于向右自旋的状态,那么正电子就一定处于向左自旋的状态。这是因为,正电子和电子本是通过能量无中生有而来,必须遵守守恒定律。这也就是说,“电子向右自旋”和“正电子向左自旋”的状态是相关联的,称作“量子相干性”。这种相干性只有用量子理论才能说明。 要在量子计算机中实现高效率的并行运算,就要用到量子相干性。彼此有关的量子比特串列,会作为一个整体动作。因此,只要对一个量子比特进行处理,影响就会立即传送到串列中多余的量子比特。这一特点,正是量子计算机能够进行高速运算的关键。 二﹑半导体量子点中的电子的自旋相干性

半导体中的电子电荷相干态已经由超快脉冲激光光谱进行了广 泛的研究。强的激光脉冲在半导体中产生了大量的电子和空穴,它们的动力学过程大致可分成3 个阶段: (1) 无碰撞或相干阶段。在这个阶段内,电子和空穴与光场之间产生了一个相干的耦合振荡,导致 了材料极化强度的振荡,类似于二能级系统的拉比跳跃。 (2) 位相弛豫阶段。在这个阶段内,电子和空穴都失去了它们的位相相干性,类 似于二能级系统的退相弛豫。 (3) 准热平衡阶段。由于电子- 声子相互作用,电子和空穴将能量传递给声子(晶格) ,它们分别弛豫到导 带和价带的顶部,形成准平衡状态。利用不同延迟时间的泵- 探束瞬态吸收光谱可以测量半导体中的退相弛豫时间。图1 是GaAs 三个激发载流子浓度下瞬态差分透射系数ΔT作为延迟时间的函数。 由图1 可见,有两个衰减过程;一个是快过程,另一个是慢过程。前者对应于位相弛豫,后者对应于准热平衡弛豫。实验测得GaAs中 的位相弛豫时间分别为30 ,19 ,13fs ,对应于由小到大三个载流子 浓度。这个位相弛豫时间是较小的,主要是由电子的谷间散射引起的。

量子计算机的发展现状与趋势_王建锋

高教论坛 量子计算机的发展现状与趋势 王建锋 (郑州大学体育学院体育教育系,河南郑州450000) 量子信息科学引入后,重新对计算、信息编码与处理进行了诠释。作为一门高效处理信息的学科,量子信息体现了科技的进步。该 学科融入了多个学科,包括信息科学、 物理学,以及材料学。因此,与传统的计算相比,也具有更强大的生命力。可以看出,自从应用量子 信息科学后,使计算机的更加安全,并且提高了通信的质量。 尽管量子计算机尚在初步发展阶段,但是该学科具有很大的发展潜力。因此,对量子计算机的发展现状与趋势进行探讨非常有必要。 1量子计算机的发展现状1.1研究概况(1)拓扑量子计算。 拓扑量子计算方案由一位数学物理学家提出。根据拓扑量子不受扰动的特点,完成量子计算机的构造。在此基础上,进行容错量子的计算。当前,该计算已经引起了国内外的重视。世界上很多大学已经开始了理论与实验方面的研究。在进行拓扑量子计算时,每个子都有几下几个特点。第一,有很多准例子,分为不同的类型,其作用是进行信息的初始化。第二,当每个子进行交换时,只要满足辫群规 则,就能实现拓扑量子门。 然后,完成信息的处理。第三,在拓扑量子计算中,不用考虑环境影响的因素。所以,保证了处理的准确性。当前,美国已经根据相关研究,成功建立了基本的量子位。 (2)单向量子计算。 单向量子是一种新的途径。该计算采用了量子的纠缠态、经典通信,以及局域操作,来传递非局域作用,继而实现等价的非局域哈密顿量功能。所以,成功建立了一种高度纠缠的状态。该状态被称为图态。利用相邻的量子比特进行LOCC过程,可以完成出发端量子比特的逻辑门操作。根据以上原理,有助于完成电路的设计。可以看出,如何高效的转换量子比特数目图态是其模型计算的难点。 (3)绝热量子计算。 绝热量子计算的核心思想是:依靠绝热演化的性能,来等效实现量子玄正的变换。当表现为绝对零度时,系统则处于初始状态。此时,如果不存在能级交叉的现象,那么在理论上来将,系统就会保持基态。但是,在系统演化前后,基态就存在玄正变换的关系。在这种情况下,则可以根据绝热的过程,来实现量子计算。以上方案既有优点,也有缺陷。其优点在于保证系统处于基态。其缺陷为能隙缩小,延长了绝热演化的时间。针对以上问题,采用量子仿真技术就可以解决。该技术的应用,促进了科技的快速发展。 1.2实验进展(1)量子点体系。 量子点体系是在微加工方法的基础上,利用半导体二维电子气,然后成功研制出单电子晶体管。该体系符合量子力学规律,代表了未来量子计算机发展的方向。近年来,国际上多个单位通过研究,在这方面取得了很大进展。研究表明,当半导体量子点具备一定条件后,就可以作为量子芯片。尽管如此,量子芯片在应用的过程中,还存在很大的问题,比如受到周边环境影响较大。鉴于此,在未来的研究中,必须加大力度。 (2)超导量子电路。 该量子计算的核心是Josephson。根据不同的表征量子比特,将其分为三个类型,分贝是电荷、相位,以及磁通。研究表明,该量子电路的特点包括以下两个方面。一方面,利用量子电路结构,能够完成 电路的设计、制定。同时,也可以完成对磁通信号的调整、控制。另一 方面,根据当前的微电子制造工艺,提高了该量子电路的拓展性。 (3)离子阱体系。离子阱体系诞生后,首先实现了量子计算。当前,经过不断的研究,该体系已经在实验方面,取得了很大的进展,其水平非常高。近年来,主要的研究方向为:提高量子操控的单元技术、体系的拓展 等。 调查显示,美国已经启动了相关的计划,预计能够取得更大的研究成果。 2量子计算机的发展趋势近年来,美国实施了研究量子芯片的计划。该计划是时候,不仅推动了量子计算机的研究,而且加大了竞争。随着半导体芯片的快速发展,其晶体管的尺寸也不断减少。目前,与单位流感病毒的大小差不多。其次,晶体管的数目也逐渐减少,量子效应不断增强。在传统模式下,能够达到控制电子的物理极限。当单位晶体管只能容纳一个电子时,也必然满足量子学的规律。可以看出,芯片在发展的过程中,很大程度上依赖于新一代的量子力学计算芯片。随着半导体 微电子技术被突破后,就出现了量子芯片。 美国竞争力计划推行后,代表了量子芯片的实际应用。由于量子芯片与国家安全、产业安全息息相关,美国相关负责人已经将芯片科技提到重要战略位置。受美国的影响,日本、欧共体等也启动了相关的计划,引发了新的计算机技术竞争。目前,在新的发展形势下,给我国电子个工业也带来了机遇和挑战。因此,我们必须抓住机遇,稳步推行量子调控计划。只有这样,才能在未来不受制于人,实现信息技术的革新。调查显示,近年来,通过不懈的努力,我国已经加快了量子信息技术的发展,并取得了很大成绩。表现为:在多光子纠缠、量子密码技术方面,取得了很大的进展和突破。但是,与西方国家相比,我国的研究基础还很薄弱,缺乏原创性的成果,总体水平还不高。特别是在量子计算机学科主流方向上,与西方国家存在很大的差距。鉴于此,我国需要迫切开展更富有挑战性的量子计算机计划,同时不断壮大科研队伍,保证技术方面的支撑。只有加强基础建设,才能实现新一轮的突破,在国际竞争中抢占制高点。 随着社会、经济的快速发展,量子计算机以强大的计算能力,得到了广泛的应用。可以看出,在未来的发展中,量子计算机必然在世界领域内,占有一席之地。尽管如此,该体系在运作的过程中,依然存在很多问题。因此,世界各国需要加大研究的力度,不断创新技术,完善体系,以此来获得更大的研究成果。 参考文献 [1]邹奕成,毛杰.量子计算机的发展[J].科教导刊:电子版,2016(24):131-131.[2]刘超,梁丽,徐亮.计算机的发展趋势分析[J].产业与科技论坛,2013,12(2):91-92.[3]潘斌辉,孔外平.量子计算机的发展现状与趋势[J].中国科学院院刊,2010,25(5):4-8.[4]马宏源,李伟.量子计算机的研究与发展[J].北京电力高等专科学校学报:社会科学版,2010,27. 作者简介:王建锋(1974-),男,汉族,籍贯:河南省登封市大金店镇金东村,学士学位,讲师,研究方向:计算机。 摘要:与传统的计算工具相比,量子计算机更加先进。应用该工具后,在处理数据上发挥了更强大的功能,解决了以往比较困难的 数学问题。基于此, 引起了世界各国的重视。本文结合实际的工作经验,对量子计算机的发展现状进行了分析。然后,提出了在未来的时代中,量子计算机的发展趋势。 关键词:量子计算机;发展;现状;趋势;分析57··

量子计算的发展讲解学习

量子计算的发展

量子计算的发展 摘要:量子计算是量子力学的新进展,它是一种和传统的计算方式迥然不同的新型计算.其概念是全新的,它将使计算技术进入一种前所未有的新境界。对于某些问题,量子计算机可以达到常规计算机不能达到的解题速度.量子计算机可以解决常规计算机不能解决的某些问题量子计算由于其强大的并行计算能力和可以有效的模拟量子行为的能力而日益受到人们的关注。本文介绍了量子计算的含义及其基本原理,以及对于未来量子计算的发展前景。 关键词:量子计算;量子计算机;量子位

目录 引言 (4) 1基本概念 (4) 1.1量子计算 (4) 1.2量子计算机 (4) 1.3量子位 (5) 2.量子计算的原理 (6) 2.1量子叠加性 (6) 2.2量子纠缠 (7) 3.量子计算的发展 (7) 3.1中期发展 (7) 3.2发展前景 (8)

量子计算的发展 引言 自MaxPlanck在1900年提出量子假说以来,量子力学给人类生活带来翻天覆地的变化,改变了经典物理学对世界的认知方式。量子计算和量子计算机概念起源于著名物理学家Feynman,是他在1982年研究用经典计算机模拟量子力学系统时提出的。1985年Deutsch提出第一个量子计算模型即图灵机,量子计算才开始具备了数学的基本型式。由此,量子计算迅速吸引了全世界研究者的注意并成为一门具有巨大潜力的新学科。 1. 基本概念 1.1量子计算 量子计算是应用量子力学原理来进行有效计算的新颖计算模式,它利用量子叠加性、纠缠性和量子的相干性实现量子的并行计算。量子计算从本质上改变了传统的计算理念。 1.2.量子计算机

量子计算和量子信息(量子计算部分,Nielsen等着)6

6.1 当x=0时有(2|0><0|-I )|x>=|0> 当x>0时有(2|0><0|-I )|x>=-|x> 所以2|0><0|-I I 即为相移算子 6.2 |φ><φ|=1/N Σ i =0 N?1Σ j =0 N?1|i><φ|-I )Σ k =0N?1 a k |k>=2/N Σi =0 N?1Σ j =0 N?1|i>-Σk =0 N?1a k |k> 而|i>,|j>,|k>都经过标准归一化,所以当|j>=|k>时,有|j>!=|k> 时,有|j>-Σ k =0 N?1a k |k>=Σ k =0 N?1[-a k +]|k> 其中=Σ k =0 N?1a k N 6.3 (此处为验证Grover 迭代能写成以下矩阵形式) |φ>=cos(θ/2)|α>+sin(θ/2)|β>写成向量形式为[cos(θ/2) sin(θ/2)]T 所以G|φ>= cos θ?sin θsin θ cos θ cos(θ/2)sin(θ/2) = cos(3θ/2) sin(3θ/2) =cos(3θ/2)|α>+sin(3θ/2)|β> 所以Grover 迭代能写成G= cos θ ?sin θsin θ cos θ 6.4 按照书上只有一解的过程,对于多解只能测量出所有解的和 6.5 6.6 (⊙为张量积符号 X 为PauliX 门, Z 为PauliZ 门) 框中的门可以表示为 (X ⊙X)(I ⊙H )(|0><0|⊙I+|1><1|⊙X )(I ⊙H)(X ⊙X) =X|0><0|X ⊙XHHX+X|1><1|X ⊙XHXHX(HXH=Z) =|1><1|⊙I +|0><0|⊙(-Z) =(I -|0><0|)⊙I +|0><0|⊙(I-2|0><0|)

未来计算机的发展趋势

未来计算机的发展趋势 目前,中间件技术已经发展成为企业应用的主流技术,如交易中间件、消息中间件、专有系统中间件、面向对象中间件、数据存取中间件、远程调用中间件等。 随着计算机应用的广泛和深入,又向计算机术本身提出了更高的要求。要起提高计算机的工作速度和存储量,关键是实现更高的集成度。传统的计算机的芯片是用半导体材料制成的,这在当时是最佳的选择。但随着集成的提高,它的弱点也日益显现出来。专家们认识到,尽管随着工艺的改进,集成电路的规模越来越大,但在单位面积上容纳的元件有限的,在1毫米见的硅片上最多不能超过25万个,并且它的散热、防漏电等因素制约着集成电路的规模,现在的半导体芯片发展即将达到理论上的极限。因此,有人预测现行的计算机系统将在2010年遇到无法逾越的障碍。为此,世界各国研究人员正在加紧研究开发新一代计算机,从体系结构的变革到器件与技术革命都要产生一次量的乃至质的飞跃。计算机的发展趋势表现为4种,即巨型化、微型化、网络化和智能化。未来新一代的计算机可分为模糊、量子、超导、光子和DNA5种类型。 1计算要的发展趋势 1)巨型化 巨型化是指计算机速度更快、存储容量更大、功能更强、可靠性更高的计算机。其运算能力一般在每秒百亿次以上,存容量在几百G字节以上。巨型计算机主要用于尖端科学技术和军事国防系统的研究开发。巨型计算机的发展集中体现了计算机科学技术的发展水平。

2)微型化 微型化是指发展体积更小、功能更强、可靠性更高、携带更便、价格更便宜、适用围更广的计算机系统。因为微型机可渗透到诸如仪表、家用电器、导弹弹头等中、小型机无法进入的领域,所以20世纪80年代以来发展异常迅速。预计微型机性在一起,今后将逐步发展到对存储器、通道处理机、高速运算部件、图形卡、声卡的集成,进一步将系统的软件固化,达到整个微型机系统的集成。 3)网络化 网络化是指利用通信技术,把分布在不同地点的计算机互联起来,按照网络协议相互通信,以达到所有用户都可共软件、硬件和数据资源的目的。目前计算机联网已经非常普遍,但是计算机网络化仍然有多工作要做。如网络上资源虽多,利用却并不便;联网的计算机虽多,计算机特别是服务器的利用率并不高;网络虽然便,但是却不安全,等等。计算机网络化在提供便、及时、可靠、安全、高效的信息服务面还有很多的工作要做。 目前各国在开发三网合一的系统工程,即将计算机网、电信网和有线电视网合为一体。将来通过网络能更好地传送数据、文体资料、声音、图形和图像,用户可随时随地在全世界围拨打可视和收看任意的电视和电影。 4)智能化 5)智能化是指让计算机具有模拟人的感觉和思维过程的能力。智能计算机具有解决问题和逻辑推理的功能,以及知识处理和知识库管理的功能等。 人与计算机的联系是通过智能接口,用文字、声音、图像等与计算机自然对话。智能化的研究领域很多,其中最有代表性的领域是专家系统和

浅谈未来计算机的发展趋势

龙源期刊网 https://www.wendangku.net/doc/1b12641097.html, 浅谈未来计算机的发展趋势 作者:陈作帆章珺 来源:《财讯》2016年第16期 自从进入21世纪之后,我国的经济水平不断发展,各项科学技术也日益完善,作为一门全新的科学技术,计算机软件通过多年的发展,如今已经取得了十分辉煌的成就。计算机是由硬件和软件两个部分组成而成的。在逻辑功能上,计算机软件本身提供逻辑语言,这对于计算机工作的控制以及应用都更为快捷高效。因为这个原因,计算机的软件技术开发对于计算机的未来发展可以说是至关重要的。 计算机将具备更多的智能成分,它将具有多种感知能力、一定的思考与判断能力及一定的自然语言能力。除了提供自然的输入手段(如语音输入、手写输入)外,让人能产生身临其境感觉的各种交互设备已经出现,虚拟现实技术是这一领域发展的集中体现。 传统的磁存储、光盘存储容量继续攀升,新的海量存储技术趋于成熟,新型的存储器每立方厘米存储容量可达10TB(以一本书30万字计,它可存储约1500万本书)。信息的永久存储也将成为现实,千年存储器正在研制中,这样的存储器可以抗干扰、抗高温、防震、防水、防腐蚀。 未来计算机发展前景 新型计算机系统不断涌现 硅芯片技术的高速发展同时也意味着硅技术越来越近其物理极限,为此,世界各国的探究职员正在加紧探究开发新型计算机,计算机从体系结构的变革到器件和技术革命都要产生一次量的乃至质的奔腾。新型的量子计算机、光子计算机、生物计算机、纳米计算机等将会在21 世纪走进我们的生活,遍布各个领域。 (1)量子计算机 量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开和关的状态,利用激光脉冲来改变分子的状态,使信息沿着聚合物移动,从而进行运算。 量子计算机中数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此一个量子位可以存储2个数据,同样数目的存储位,量子计算机的存储量比通常计算机大很多。同时量子计算性能够实行量子并行计算,其运算速度可能比目前个人计算机的PentiumⅢ晶片快10亿倍。目前正在开发中的量子计算机有3种类型:核磁共振(NMR)量子计算机、硅基半导体量子计算机、离子阱量子计算机。预计2030年将普及量子计算机。

量子计算和量子逻辑门

1 引言 量子信息是量子物理与信息科学相融合的新兴交叉学科,它诞生于上个世纪80年代,在90年代中期引起国际学术界的巨大兴趣,受到西方各国的高度重视,得到迅速发展,迄今方兴未艾! 量子计算是量子信息的一个重要分支,近年来得到了人们广泛的关注。量子计算机是实现量子计算(quantum computation)的机器。量子计算和量子计算机概念起源于著名物理学家Richard Feynman,是他在1982年研究用经典计算机模拟量子力学系统时提出的。1985年,量子图灵机(Turing)的模型被David Deutsch提出,通过它的性质的研究,预言了量子计算机的潜在能力。由于量子计算机依赖于量子力学规律处理信息,所以它有着经典计算机永远不可逾越的巨大优势。量子计算机不但可以提供更多的比特以及更高的时钟速度,它还提供了一种基于量子原理的算法的全新计算方法[1]。量子计算机中的信息是用量子逻辑门来进行处理的。量子逻辑门是实现量子计算的基础。为了实现量子计算,也就是说构建量子计算机,必须选择与设计合适的物理体系并控制它以实现量子逻辑门。目前,已经有许多作为执行这些量子计算系统的逻辑门的方案被提出,而且其中许多方案已经实现。例如,离子阱[2]、腔量子电动力学[3]、核磁共振[4]、量子点[5]和基于Josephson结的超导体方案[6]等。 基于Alan Turing理论发展起来的现代计算机科学在近几十年中取得惊人的发展,计算机硬件能力在20世纪60年代后的几十年时间里以近似Moore定律成长。随着电路集成度的提高,进一步提高芯片集成度已极为困难。当集成电路的线宽在011μm以下时,电子的波动性质便明显地显现出来。这种波动性就是量子效应。为此,多数观察家预期Moore定律将在21世纪前二十年内结束,人们在考虑替代当前计算机的新途径。物理学方面,自Max Planck在1900年提出量子假说以来,量子力学给人类生活带来翻天

量子计算发展现状报告

量子计算发展现状报告 量子计算是基于量子力学的新型计算方式,利用量子叠加和纠缠等物理特性,以微观粒子构成的量子比特为基本单元,通过量子态的受控演化实现计算处理,理论上具有经典计算无法比拟的巨大信息携带和超强并行处理能力。 量子计算研究始于上世纪80年代,目前已进入工程实验验证和原理样机攻关阶段。量子计算包含量子处理器、量子编码、量子算法、量子软件等关键技术。量子处理器的物理实现是当前阶段的核心瓶颈,包含超导、离子阱、硅量子点、中性原子、光量子、金刚石色心和拓扑等多种技术路线,近期均取得一定进展。目前,量子计算物理平台中的超导和离子阱路线相对领先,但尚无任何一种路线能够完全满足量子计算技术实用化条件实现技术收敛。为充分利用每种技术的优势,未来的量子计算机也可能是多种路线并存的混合体系。 量子优越性(QuantumSupremacy)的概念由教授首先提出,指量子计算在某一个计算问题上,相比经典计算机可实现指数量级运算能力的加速,从而真正体现量子计算技术的原理性优势。实现量子优越性的研究成果基于53位量子比特的超导处理器,在解决随机量子线路采样特定计算问题时,具有远超过现有超级计算机的处理能力。此项研究成果是证明量子计算原理优势和技术潜力的首个实际案例,具有重要的里程碑意义,这一热点事件所引发的震动和关注,将进一步推动全球各国在量子计算领域的研发投入、工程实践和应用探索,为加快量子计算机的研制和实用化注入新动力。 现阶段量子计算的发展水平距离实用化仍有较大距离。量子计算系统非常脆弱,极易受到材料杂质、环境温度和噪声等外界因素的影响而引发退相干效应,使计算准确性受到影响,甚至计算能力遭到破坏。同时,可编程通用量子计算机需要大量满足容错阈值的物理量子比特进行纠错处理,降低退相干效应影响,获得可用的逻辑量子比特。现有研究报道中的物理量子比特数量和容错能力与实际需求尚有很大差距,逻辑量子比特仍未实现。通用量子计算机的实用化,业界普遍预计将需十年以上时间。 在量子计算领域,各国近年来持续大力投入,已形成政府、科研机构、产业和投资力量多方协同的良好局面,并建立了在技术研究、样机研制和应用探索等方面的全面领先优势。领先国家之间通过联合攻关和成果共享,形成并不断强化联盟优势。 初创企业是量子计算技术产业发展的另一主要推动力量。初创企业大多脱胎于科研机构或科技公司,近年来,来自政府、产业巨头和投资机构的创业资本大幅增加,初创企业快速发展。目前,全球有百余家初创企业,涵盖软硬件、基础配套及上层应用各环节。 尽管量子计算目前仍处于产业发展的初期阶段,但军工、气象、金融、石油化工、材料科学、生物医学、航空航天、汽车交通、图像识别和咨询等众多行业已注意到其巨大的发展潜力,开始与科技公司合作探索潜在用途,生态链不断壮大。多

量子计算机与经典计算机的比较

量子计算机与经典计算机的比较? 莫露洁颜源 湛江教育学院计算机科学系,广东湛江,524037 摘要:本文分析了经典计算机和量子计算机的异同;介绍了量子计算机的原理和特点,指出量子计算和量子信息技术在并行计算、保密通信等方面的重要应用。 关键词:量子计算机 经典计算机 量子位 The Compare with Classical and Quantum Computer Mo Lujie,Yan Yuan Department of Computer Science, Zhanjiang Education College,Guangdong,China,524037 Abstract:This paper analysis the difference and the sameness between quantum and classical computer. Introduces the principle of quantum computation. And expounds the applications of quantum computation technologies in parallel algorithm and secret communication. Keywords:quantum computer; classical computer;qubit 1 引 言 人类跨入了21世纪,信息科学面临着新的挑战。计算机是否存在极限的运算速度? 能否实现不可破译、不可窃听的保密通信? 诸如此类的问题成为科学家们关注的重要课题。创建新一代高性能的、安全的计算工具和通信技术当前研究的热点。近年的研究进展表明,应用量子信息的产生、载荷、传播和处理,可能构造高性能的量子计算机。其具备的量子特性在信息领域中有着独特的功能,在提高运算速度、确保信息安全、增大信息容量和提高检测精度等方面可能突破现有的经典信息系统的极限。本文通过分析经典计算机和量子计算机的异同,简述量子计算机的特点与应用。 2 经典计算机的特点 迄今为止,正在应用中的各种不同类型的计算机都是以经典物理学为信息处理的理论 作者简介:莫露洁,生于1980年10月,女,籍贯广西,大学本科学历,学士学位。目前在广东湛江教育学院计算机系任教,职称为助教,同时在职攻读重庆大学计算机专业硕士学位,研究方向是网络与智能信息处理。 26

量子计算机技术发展对信息安全技术带来的影响研究汇报

量子计算机技术发展对信息安全技术带来的影响研究汇报 1、量子计算机技术的发展将会给信息安全技术带来颠覆性的影响。 a 、量子计算机运算速度比经典计算机快,而且相差的是指数级别。 量子计算机与经典计算机的不同之处在于:经典计算机每输入一个数据位(比特),都是确切的二进制0或者二进制1。而量子计算机每输入一个数据位(量子比特),却是二进制0和1的叠加态,记为a|0>+b|1>。这相当于可以这样理解,在只有一个数据位的情况下,每进行一次操作,经典计算机只进行了一次运算,而量子计算机进行了两次运算;以此类推,在有两个数据位的情况下,每进行一次操作,经典计算机只进行了2次运算,而量子计算机进行了次运算;而在在有三个数据位的情况下,每进行一次操作,经典计算机只进行了3次运算,而量子计算机进行了次运算。由此可见,在同样的操作次数和相同的数据位数情况下,量子计算机的运算次数等同于经典计算机的指数倍。 b 、目前计算机通信的安全体系主要依赖的加密解密算法在理论上可 以被量子计算机所破解。 计算机通信在技术层面的安全体系主要依赖于加密解密算法,典型的加密解密算法有RSA ,AES 等等。它们的原理是基于大数分解质因数比较困难这一事实为基础。就是说,在经典计算机的条件下,要把大数分解为质因数,花费时间较长,即使分解出来了,也没有了时效性,因此等同于不能分解。而量子计算机的运算速度等同于经典计算机的指数倍,用量子计算机来分解大数的质因2232

数在很短的时间内就可以实现。 2、量子计算机实现后的计算机通信安全体系重构的预测。 量子计算机采用特定的算法(shor算法)虽然能够破解当前所有的加密解密算法,但是,基于量子力学的量子通信技术所依赖的物理学原理,却可以抵御住量子计算机的破解。正所谓以己之矛攻己之盾。 举个典型的例子说明,基于量子纠缠的量子密钥分发,能实现一次一密的完全随机的密钥分发。而在密码学基本原理中,一次一密的完全随机的密钥分发是是任何算法都不能破解的。因此,基于量子纠缠的量子密钥分发,即使在真正通用的量子计算机出来后,也是可以抵御它的破解的。 并且,基于量子力学的通信技术,例如E91协议,BB84协议,量子隐形传态等通信技术,可以让窃听者无法窃听信息(根据量子力学物理学原理,一旦有人窃听信息,接收方就会收到乱码,从而识别出有人在窃听信息)。从而保证通信的安全。

量子计算学习心得

量子计算学习心得 基于AlanTuring理论发展起来的现代计算机科学在近几十年中取得惊人的发展,计算机硬件能力在20世纪60年代后的几十年时间里以近似Moore定律成长。随着电路集成度的提高,进一步提高芯片集成度已极为困难。当集成电路的线宽在0.1μm以下时,电子的波动性质便明显地显现出来。这种波动性就是量子效应。为此,多数观察家预期Moore定律将在21世纪前二十年内结束,人们在考虑替代当前计算机的新途径。物理学方面,自MaxPlanck在1900年提出量子假说以来,量子力学给人类生活带来翻天覆地的变化,改变了经典物理学对世界的认知方式。Moore定律最终失效问题的一个可能解决办法是采用不同的计算模式,量子计算理论就是这类模式的一种。但是直到1982年,才由Benioff和Feynman发现了将量子力学系统用于推理计算的可能;1985年Deutsch提出第一个量子计算模型。由此,量子计算迅速吸引了全世界研究者的注意并成为一门具有巨大潜力的新学科。 量子计算是应用量子力学原理来进行有效计算的新颖计算模式,它利用量子叠加性、纠缠性和量子的相干性实现量子的并行计算。量子计算从本质上改变了传统的计算理念。 量子计算发挥作用的前提是量子计算的物理实现,即量子计算机的构建。虽然量子计算机的实现原则上已没有不可逾越的障碍,但技术上的实现却遇到严重的困难。无论是量子并 行计算还是量子模拟计算,本质上都是利用了量子相干性,但在实际系统中量子相干性很难保持。此外,量子的纠缠状态也很容易崩溃,且粒子数目越多,实现纠缠状态就越困难。要制造出实用的量子计算机,就必须使更多的粒子实现纠缠状态。 在量子算法方面,自Shor因子分解和Grover搜索算法提出后,虽然各国众多的研究者在该领域进行了大量的研究,但迄今为止,还没有发现其他解决经典问题的新量子算法。一方面是因为无论经典算法还是量子算法,算法设计本身就不容易,更何况要设计出超过最好的现有经典算法的量子算法就更显不易;另一方面,量子计算机上能提供相对经典计算机进行加速的问题可能本来就不多,而已经发现了其中的大部分重要算法;此外,量子计算机与人们的直觉相差太远,在过去几十年中发现传统经典算法的经验对于如何发现和寻找量子算法毫无帮助, 即使存在对很多问题有效的量子算法,也很难找出。 在目前量子计算机还未进入实际应用的情况下,量子计算的研究重点包括:a)计算的物理实现。提高量子体系中相干操控的能力,实现更多的量子纠缠状态。 b)研究新的量子算法。目前还有很多经典算法无法解决的难题,研究新的能解决这些难题的量子算法是一个重要方向。c)增强现有量子算法的实用性和扩展现有量子算法的应用范围,如将量子Fourier变换的应用推广到解决隐含子群问题以及更广的范围,将Grover算法体系扩展到二维和多维搜索域等。 量子计算正在新型计算中发挥更大的作用。

2019年计算机发展历史的四个阶段

2019年计算机发展历史的四个阶段 篇一:计算机发展的四个阶段 计算机技术发展的四个阶段 第一代电子计算机 第一台电子管计算机于1946年在美国制成,取名埃尼阿克(ENIAC)。在美国宾夕法尼亚大学诞生的。世界上第一台电子计算机是个庞然大物:重30吨,占地150平方米,肚子里装有18800只电子管。 1.第一代计算机:电子管数字计算机(1946-1958年) 硬件方面,逻辑元件采用电子管,主存储器采用汞延迟线、磁鼓、磁芯;外存储器采用磁带。软件方面采用机器语言、汇编语言。应用领域以军事和科学计算为主。特点是体积大、功耗高、可靠性差、速度慢(一般为每秒数千次至数万次)、价格昂贵,但为以后的计算机发展奠定了基础。 2.第二代计算机:晶体管数字计算机(1958-1964年)

硬件方面,逻辑元件采用晶体管,主存储器采用磁芯,外存储器采用磁盘。软件方面出现了以批处理为主的操作系统、高级语言及其编译程序。应用领域以科学计算和事务处理为主。并开始进入工业控制领域。特点是体积缩小、能耗降低、可靠性提高、运算速度提高(一般为每秒数十万次,可高达300万次)、性能比第一代计算机有很大的提高。 3.第三代计算机:中、小规模集成电路数字计算机(1964-1970年) 硬件方面,逻辑元件采用中、小规模集成电路,主存储器仍采用磁芯。软件方面出现了分时操作系统以及结构化、规模化程序设计方法。特点是速度更快(一般为每秒数百万 至数千万次)。而且可靠性有了显著提高,价格进一步下降,产品走向通用话、系列化和标准化。应用领域开始进入文字处理和图形图像处理领域。 4.第四代计算机:大规模集成电路计算机(1970年至今)硬件方面,逻辑元件采用大规模和超大规模集成电路,软件方面出现了数据库管理系统、网络管理系统和面向对象语言等。特点是1971年世界

量子计算机的现状及发展趋势

量子计算机的现状及发展趋势 2017年2月21日下午,《麻省理工科技评论》(MIT Technology Review)2017年全球十大突破性技术”中国大陆地区首发,其中量子计算机技术入选其中,量子计算机技术是一个充满魅力的科学领域,同时也是一门具有挑战性和研究性的课程,这就是许多科学家被它所吸引的原因之一。量子计算机能够分析的科学多种多样,对各个学科的分析详细到位,需要用到量子计算机的课程一般是物理学、材料分析学、信息科学、生物学等,所以量子计算机所涉及的领域很广,值得科学家们去开发和进一步研究。 量子计算机的特点包括运行快、处理信息的能力强、适用的范围广等。相比普通的计算机而言,信息的处理量越多对量子计算机的运算就越有利,更能保证运算的精确性,而普通的计算机对于信息的处理速度就比较慢,难于满足人们的需求。量子计算机的发展速度目前虽然比普通的计算机缓慢,但是明显比普通计算机更能引起人们的注意,最大的原因就是其拥有很强的适用性,能够提高人民的生活水平,改善人们的生活方式。 量子计算机和许多计算机一样都是由许多硬件和软件组成的,软件方面包括量子算法、量子编码等,在硬件方面包括量子晶体管、量子储存器、量子效应器等。量子晶体管就是通过电子高速运动来突破物理的能量界限,从而实现晶体管的开关作用,这种晶体管控制开关的速度很快,晶体管比起普通的芯片运算能力强很多,而且对使用的环境条件适应能力很强,所以在未来的发展中,晶体管是量子计算机不可缺少的一部分。量子储存器是一种储存信息效率很高的储存器,它能够在非常短时间里对任何计算信息进行赋值,是量子计算机不可缺少的组成部分,也是量子计算机最重要的部分之一。量子计算机的效应器就是一个大型的控制系统,能够控制各部件的运行。这些组成在量子计算机的发展中占领着主要的地位,发挥着重要的运用。 量子计算机相比普通的计算机拥有很明显的优势,量子计算机的计算速度快、计算更准确,所拥有分析信息的功能更强大,能够同时进行的运算多;它能够轻易战胜目前的RSA 公钥密码体系,在拥有这么强大的运算能力的背后不仅仅是以往0 和 1 信息单元的储存能力和运算能力的运行,而是0 和 1 的升

量子信息与量子计算

关于量子信息与量子计算 量子计算是一种依照量子力学理论进行的新型计算,量子计算的基础原理以及重要量子算法为在计算速度上超越图灵机模型提供了可能。 量子计算(quantum computation) 的概念最早由IBM的科学家R. Landauer及C. Bennett于70年代提出,对于普通计算机运行时芯片会发热,极大地影响了芯片的集成度,科学家们想找到能有更高运算速度的计算机。 到了1994年,贝尔实验室的应用数学家P. Shor指出,相对于传统电子计算器,利用量子计算可以在更短的时间内将一个很大的整数分解成质因子的乘积。这个结论开启量子计算的一个新阶段:有别于传统计算法则的量子算法确实有其实用性,绝非科学家口袋中的戏法。自此之后,新的量子算法陆续的被提出来,而物理学家接下来所面临的重要的课题之一,就是如何去建造一部真正的量子计算器,来执行这些量子算法。许多量子系统都曾被点名作为量子计算器的基础架构,例如光子的偏振(photon polarization)、空腔量子电动力学、离子阱以及核磁共振(nuclear magnetic resonance, NMR)等等。以目前的技术来看,这其中以离子阱与核磁共振最具可行性。事实上,核磁共振已经在这场竞赛中先驰得点:以I. Chuang为首的IBM研究团队在2002年的春天,成功地在一个人工合成的分子中(内含7个量子位)利用NMR完成N =15的因子分解。 到底是什么导致量子如此高的计算能力呢?答案是量子的重叠与牵连原理的巨大作用。普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四个数。量子位是量子计算的理论基石。在常规计算机中,信息单元用二进制的 1 个位来表示, 它不是处于“ 0” 态就是处于“ 1” 态. 在二进制量子计算机中, 信息单元称为量子位,它除了处于“ 0” 态或“ 1” 态外,还可处于叠加态(super posed state) . 叠加态是“ 0” 态和“ 1” 态的任意线性叠加,它既可以是“ 0” 态又可以是“ 1” 态, “ 0” 态和“ 1” 态各以一定的概率同时存在. 通过测量或与其它物体发生相互作用而呈现出“ 0” 态或“ 1” 态.任何两态的量子系统都可用来实现量子位, 例如氢原子中的电子的基态( ground state)和第 1 激发态( first excited state)、质子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、圆偏振光的左旋和右旋等。 一个量子系统包含若干粒子,这些粒子按照量子力学的规律运动,称此系统处于态空间的某种量子态.态空间由多个本征态( eigenstate ) ( 即基本的量子态)构成基本态空间可用Hilbert 空间( 线性复向量空间)来表述,即Hilbert 空间可以表述量子系统的各种可能的量子态.为了便于表示和运算, Dirac提出用符号x〉来表示量子态, x〉是一个列向量,称为ket ;它的共轭转置( conjugate transpose) 用〈x 表示,〈x 是一个行向量, 称为bra.一个量子位的叠加态可用二维Hilbert 空间( 即二维复向量空间)的单位向量〉来描述 无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。因此,要使量子计算成为现实,一个核心问题就是克服消相

相关文档