文档库 最新最全的文档下载
当前位置:文档库 › 原子力显微镜在金刚石表面微结构分析中的应用

原子力显微镜在金刚石表面微结构分析中的应用

原子力显微镜在金刚石表面微结构分析中的应用
原子力显微镜在金刚石表面微结构分析中的应用

第20卷第5期2001年10月

电 子 显 微 学 报

Journal of Chinese Electron Microscopy Society

Vol 20,No 5

2001 10

文章编号:1000 6281(2001)05 0607 03

原子力显微镜在金刚石表面

微结构分析中的应用

黄文浩1,2,张竟敏2,阎立峰1,陈宇航2,褚家如2 (中国科学技术大学1选键化学开放实验室,2精密机械与精密仪器系,合肥230026)

摘 要:本文报告用原子力显微镜(AFM)测量金刚石精密加工表面的微观结构,获得了用机械抛光

法与热化学抛光法得到的表面纳米级形貌。前者呈直线纹理,反映出金刚石磨料的刮削机理,后者表

面较平滑,无明显加工纹理,但在磨削方向出现一些蚀坑,反映出碳原子扩散的化学磨削机理。

关键词:金刚石;磨削;微结构;原子力显微镜

中图分类号:O613 7;O781;TN16 文献标识码:A

天然和合成金刚石以其独特的硬度和良好的导热性可制作成各种刀具,在超精密加工领域有广泛的应用。其刀具的锋利程度和寿命与金刚石表面加工的质量密切相关。传统的金刚石表面微结构测量方法大多需要在其表面镀金属层,然后用扫描电子显微镜(SEM)进行观测[1],这样势必丢失部分微结构信息。我们利用原子力显微镜(AFM)直接对金刚石加工表面进行纳米级微结构观测,获得了机械抛光法和热化学抛光法[2,3]所产生表面的不同微观结构。对于用金刚石粉进行机械抛光的表面,其加工纹理清晰,呈直线型。而在氢气气氛中热化学抛光的表面,则直线纹理不明显,在其平坦表面上分布着一些沿磨削方向的凹坑。这些不同的微结构与它们的加工机理有关。

实验与结果

选用一单晶金刚石,磨削表面为(110)面,同一表面的一部分采用传统的金刚砂磨料研磨[4],而另一部分以约5 的倾角采用氢气气氛中的纯铁盘研磨[5]。图1为这两种加工方法示意图。

图1 金刚石表面加工示意图。(a)传统的机械研磨法;(b)热化学机械抛光。

Fig.1 Schematic diagram of diamond surface processing.(a)By mechanical grindin g;(b)By thermo chemical grinding.

测量前,该金刚石经超声清洗,然后用干燥氮气吹干。所用原子力显微镜为美国DI公司Nano III型。其表面微观形貌和截面结构如图2所示。图2(a)为用金刚砂研磨的3 0 m3 0 m 表面形貌,其纹理平直,沟槽深约为2nm,槽间距约为100nm。图2(b)为在氢气气氛中用纯铁盘研磨的2 5 m2 5 m表面,表面比较平坦,无明显的刮削沟槽,但在切削方向分布有一些凹坑,坑的边缘较整齐,无明显毛刺,坑深约为4nm。

图2 金刚石表面AFM 微观形貌和截面结构。(a)机械研磨法;(b)热化学研磨法。

Fig.2 The micros tructures and the cross sections of the diamond surface by AFM.

(a)By mechanical grinding;(b)By thermo chemical

grinding.

图3 金刚石表面微观形貌的SE M 图像。(a)机械研磨法;(b)热化学研磨法。bar=3 0 m

Fig.3 SEM images of the diamond surface.(a)By mechanical grindi ng ;(b)By thermo chemical grinding.

作为对比,我们用SEM(Hitachi X 650)分别测量了上述表面,如图3所示。图3(a)为机械研磨法获得的表面微观形貌,图3(b)为热化学研磨法获得的表面,其结果基本与上述AFM 测量趋608 电子显微学报 J.Chin.Electr.M icrosc.Soc.第20卷

势相符,但分辨率不如AFM 高。扫描范围约为7 m 7 m 。

讨 论

金刚石表面加工的质量将直接影响刀具刃口的平直度与刀尖的曲率半径,为此了解不同磨削方法的机理和工艺过程的控制将是提高质量的关键。就热化学抛光法而言,产生凹坑的原因估计是金刚石与加热铁盘(800!)之间相对运动时由摩擦产生的高温使部分金刚石中的碳原子磨化而呈原子层剥落,故整体上表面呈平坦状,其中的某些区域或因局部摩擦力大而使碳原子气化,与周围氢气生成甲烷,或扩散进入铁盘。定量的分析研究和工艺过程的控制有待深入进行。

结 论

利用原子力显微镜(AFM)可以方便地实现金刚石加工表面纳米级微观形貌的测量,其分辨率和图像质量优于SE M 。由热化学抛光法研磨的表面与机械抛光法抛光的表面相比整体上比较平滑,但存在部分纳米级的腐蚀坑。随着对这种腐蚀坑机理的了解和工艺参数的控制,金刚石表面加工的质量将会有较大的提高。

参考文献

[1]Tokura H,Yang C F ,Yoshikawa M.Thin Solid Fil ms,1992,212:49.

[2]Grigoriev A P,Kovalsky V V.Indiaqua,1984,39:3.

[3]唐壁玉,靳九成,陈小华,陈宗璋.机械设计与制造工程,1998,27(4):3 6.

[4]张竟敏.工具技术,1999,10:10.

[5]张竟敏.工具技术,1999,l9:14.

The diamond surface microstructures investigated by

atomic force microscope

H UANG Wen hao 1,2,ZHANG Jing min,YAN Li feng 1,C HE N Yu hang 2,C HU Jia ru

2(1Open Lab.of Band selective Chemistry,2Dept.of Precision M achinery and Instrumentation,

Univ.Sci.Tech.China,Hefei 230026,China.)Abstract :In this paper the microstructures of diamond surface investigated by atomic force microscope were presented.The different results between mechanical grinding and thermo chemical grinding methods were shown on nanometer scale.The former appeared straight texture was related with the mechanism of scraping of the diamond powder.The later looked smoother,there was no obvious texture.However some pits appeared along the grinding direction.This was related wi th the chemical mechanism of diffusing of the diamond atoms.

Keywords :diamond;grind;micros tructure;atomic force microscope 609第5期黄文浩等:原子力显微镜在金刚石表面微结构分析中的应用

原子力显微镜的原理及使用

原子力显微镜的原理及使用 通过近代物理实验课的学习,了解了许多仪器的工作原理以及使用方法,对今后的科研学习有很大的 帮助。其中原子力显微镜就是其中之一,对于做材料方面的专业来说,原子力显微镜在表征物质的表面结 构及性质起着重要的作用。前段时间我们利用AFM对用RF磁控溅射制备的PZT薄膜进行了表征,通过对AFM的使用并查找相关文献,使我对原子力显微镜有了更加深刻的认识。 原子力显微镜,英文:Atomic Force Microscope ,简写: AFM。是一种利用原子,分子间的相互作用力来观察物体表面微观 形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操 控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样 品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描 样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品 表面的形貌或原子成分。 它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运 动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控 制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电 流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针 尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分 辨率也在纳米级水平。AFM测量对样品无特殊要求,可测量固体表面、吸附体系等。 一、仪器结构: 在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置 检测部分、反馈系统。 1、力检测部分 在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是 使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品 的特性,以及操作模式的不同,而选择不同类型的探针。 2、位置检测部分 在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量 的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作 信号处理。 3、反馈系统 在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作 反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针 尖保持一定的作用力。 AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料, 当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与 所加的电压的大小成线性关系。也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分 别代表X,Y,Z方向的压电陶瓷块组成三角架的形状,通过控制X,Y方向伸缩达到驱动探针在样品表面 扫描的目的;通过控制Z方向压电陶瓷的伸缩达到控制探针与样品之间距离的目的。 原子力显微镜(AFM)便是结合以上三个部分来将样品的表面特性呈现出来的:在原子力显微镜(AFM)的系统中,使用微小悬臂(cantilever)来感测针尖与样品之间的相互作用,这作用力会使微悬臂摆动, 再利用激光将光照射在悬臂的末端,当摆动形成时,会使反射光的位置改变而造成偏移量,此时激光检测 器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整,最后再将样品的表面特性 以影像的方式给呈现出来。 二、工作原理: 将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于 针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬 臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

原子力显微镜

6-5 原子力显微镜 【实验简介】 扫描隧道显微镜工作时要检测针尖和样品之间隧道电流的变化,因此它只能用于导体和半导体的研究。而在研究非导电材料时必须在其表面覆盖一层导电膜。导电膜的存在往往掩盖了样品表面结构的细节。为了弥补扫描隧道显微镜的这一不足,1986年宾尼希等发明了第一台原子力显微镜AFM(atomic force microscopy)。原子力显微镜不仅可以在原子水平测量各种表面形貌,而且可用于表面弹性、塑性、硬度、摩擦力等性质的研究。 【实验目的】 1.学习和了解原子力显微镜的结构和原理; 2.学习扫描隧道显微镜的操作和调试过程,并以之来观察样品的表面形貌; 【实验原理】 1.原子力显微镜 与STM不同,原子力显微镜测量的是针尖与样品表面之间的力。将微小针尖放在悬臂的一端,当针尖与样品间距小到一定程度时,由于针尖与样品的相互作用(引力、斥力等),使悬臂发生弯曲形变。如图使样品与针尖之间作扫描运动,测量悬臂的形变位移,即可得到 图6-5-1 原子力显微镜示意图 样品表面的形貌信息。 由于微悬臂的位移很小,对它的测量是一个关键技术。最早发明者宾尼希等人利用隧道电流对间距的敏感性来测量悬臂的位移,但由于隧道效应对悬臂的功函数(由于污染等原因)变化同样敏感,所以稳定性较差。现在大多数均采用光学方法或电容检测法。本实验采用光

图6-5-2 原子力显微镜光路图 束偏转检测方法,如图2所示。激光束经微悬臂背面反射、再经平面反射镜至四相限接受器,当微悬臂弯曲时激光束在接受器上的位置将发生移动,由四象限接受器检测出悬臂弯曲位移,便可得到样品的表面形貌。 2.轻敲模式成象技术 常规的接触模式扫描由于针尖对样品的作用力较大,会在软样品表面形成划痕,或使样品变形,对粉体颗粒样品,会使样品移动,或将样品碎片吸附在针尖上,分辨率较差,而理想的非接触模式由于工作程短,又是难于有效实施的。 轻敲扫描模式的特点是在扫描过程中由压电驱动器将微悬臂激发到共振振荡状态,针尖随着悬臂的振荡,极其短暂地与样品表面进行接触,同时由于针尖与样品的接触时间非常短,因此剪切力引起的对样品的破坏几乎完全消失,可以清晰观测完好的表面结构而不受表面高度起伏的影响。AFM轻敲扫描模式,特别适用于检测生物样品及其它柔软、易碎、粘附性较强的样品。并对针尖损耗相对最少。 【实验装置】(见扫描隧道显微镜) 【实验内容及步骤】 1.扫描光栅样品 注意:所有插件栏的操作都应当是鼠标单击 1.1 放针尖。把针尖架插入探头; 1.2 放样品(用镊子操作,注意不要让镊子碰到样品表面)。 1.3打开电脑。开启控制箱电源。打开软件,切换到在线工作模式(此时仪器会自动识别当前针尖类型,软硬件自动切换到相应工作模式,头部液晶屏也会立即显示出当前工作模

原子力显微镜的应用

1.引言 随着人类科研的不断发展, 纳米尺度上物质的结构、相互作用以及一些特殊的现象等越来越受到关注, 所以各种研究方法和仪器手段也应运而生。原子力显微镜(Atomic Force Microscope,简称AFM)利用其微悬臂上尖细探针与样品的原子之间的作用力,从而达到检测的目的。其具有原子级的分辨率[1]。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不能观察非导体的不足。 图1 原子力显微镜 原子力显微镜的原理及其在材料科学上的应用 摘要 本文介绍了原子力显微镜的发展过程、探测原理等方面,从原子力显微镜对于材料表面形貌分析,粉体材料分析,纳米材料分析等方面,综述了原子力显微镜技术在材料科学学方面的应用,并展望原子力显微镜在未来的发展 关键词 原子力显微镜工作模式特点表面形貌 Abstract Thisarticle provide information of AFM(Atomic Force Microscope),about the development,the principle,from AFM on analyzing surface of material ,dusty material and nanometer size material. And look into the future of AFM Key word AFM working model characteristic surface

2.仪器工作原理 AFM通常由氮化硼作为一个灵敏的弹性微悬臂,在其尖端有一个用来在样品表面上扫描的很尖细的探针。假设有两个原子,一个是在微悬臂的探针尖端,另一个是在样品的表面,它们之间的作用力会随着距离的变化而变化。当原子和原子很接近时,彼此的电子云排斥力作用会大于原子核与电子云之间的吸引作用,其合力表现为排斥作用。反之,若两原子分开到一定距离时,其电子云的排斥作用小于彼此原子核与电子云之间的吸引力作用,故其合力表现为吸引作用。原子力显微镜就是利用微小探针与待测原子之间的这种交互作用力的微妙变化,来显现表面原子的形貌。[2] 在原子力显微镜中,根据利用原子间的排斥力或吸引力方式的不同,发展出了两种工作模式: (1)利用原子之间的排斥力的变化而产生样品表面轮廓,从而发展了接触式原子力显微镜(Contact AFM),其探针与样品表面的距离约为零点几个纳米。 ( 2 )利用原子之间的吸引力的变化而产生 样品表面轮廓,从而发展了非接触式原子 力显微镜(Non-Contact AFM)其探针与样 品表面的距离约为几到几十纳米。 图2 原子与原子之间的交互作用 在原子力显微镜系统中,使用一个灵活的 微悬臂来感应针尖与样品之间的交互作用 力,该作用力随样品表面形态而变化,它 会使微悬臂随之摆动。将一束激光照射在 微悬臂的末端,当微悬臂摆动时,会使反 射激光的位置改变而造成偏移量,用激光 检测器记录此偏移量,同时将此信号传递 给反馈系统,以利于系统做适当的调整, 从而将样品表面特征以影像的方式显现出 来[3]。(如图 3) 。 图3 原子力显微镜的探测原理示意图 3.原子力显微镜的结构 3.1力检测系统 原子力显微镜使用微小悬臂来检测原 子之间力的变化量。微悬臂通常由一个 100到500μm长和大约500nm到5μm厚 的硅片或氮化硅片制成。微悬臂顶端有一 个尖锐针尖,用来检测样品-针尖间的相 互作用力。 图4 原子力显微镜微悬臂 3.2位置检测系统

晶体结构的分析与计算训练题

晶体结构的分析与计算训练题 1.(2015·全国卷Ⅰ)碳有多种同素异形体,其中石墨烯与金刚石的晶体结构如图所示: (1)在石墨烯晶体中,每个C 原子连接________个六元环,每个六元环占有________个C 原子。 (2)在金刚石晶体中,C 原子所连接的最小环也为六元环,每个C 原子连接______个六元环,六元环中最多有______个C 原子在同一平面。 解析:(1)由石墨烯的结构可知,每个C 原子连接3个六元环,每个六元环占有的C 原子数为1 3 ×6=2。 (2)由金刚石的结构可知,每个C 可参与形成4条C —C 键,其中任意两条边(共价键)可以构成2个六元环。根据组合知识可知四条边(共价键)任选其中两条有6组,6×2=12。因此每个C 原子连接12个六元环。六元环中C 原子采取sp 3 杂化,为空间六边形结构,最多有4个C 原子位于同一平面。 答案:(1)3 2 (2)12 4 2.(2016·全国卷Ⅱ)某镍白铜合金的立方晶胞结构如图所示。 (1)晶胞中铜原子与镍原子的数量比为________。 (2)若合金的密度为d g·cm -3 ,晶胞参数a =________nm 。 解析:(1)由晶胞结构图可知,Ni 原子处于立方晶胞的顶点,Cu 原子处于立方晶胞的面心,根据均摊法,每个晶胞中含有Cu 原子的个数为6×12=3,含有Ni 原子的个数为8×1 8= 1,故晶胞中Cu 原子与Ni 原子的数量比为3∶1。 (2)根据m =ρV 可得, 1 mol 晶胞的质量为(64×3+59)g =a 3 ×d g·cm -3 ×N A ,则a =? ????2516.02×1023×d 1 3 cm =? ?? ??2516.02×1023×d 1 3×107 nm 。 答案:(1)3∶1 (2)? ?? ? ?2516.02×1023×d 1 3×107 3.(2017·全国卷Ⅰ)(1)KIO 3晶体是一种性能良好的非线性光学材料,具有钙钛矿型的立方结构,边长为a =0.446 nm ,晶胞中K 、I 、O 分别处于顶角、体心、面心位置,如图所示。K 与O 间的最短距离为______

原子力显微镜操作详细流程

原子力显微镜操作简要说明 一、设备开机 1、打开原子力显微镜主机电源(在光学平台下方)。 2、开启电脑、运行软件(软件10,如有问题可换9重新运行)。 3、在软件界面点击 SPM init 进行设备初始化,如显示SPM OK可继续操作,如不显示SPM OK重启软件。 4、点open door开操作门,点灯泡按钮照亮。 二、样品准备 1、将表面洁净样品使用专用双面胶粘贴至设备配备的圆形载物片上(最好两个台子一起使用,以便旋转样品)。 2、通过检测组件上的按钮或者软件点open door开启样品室舱门,点灯泡按钮照亮,点击软件界面上的AFM-STM退针钮使显微镜探头缩回。 3、使用专用镊子将样品连同载物片放入磁性样品台上,小心调整样品区域之中间。小心不要碰触探头、激光源等。 4、点击软件界面的AFM-STM使探头移回。关闭舱门。 三、操作程序 1、运行软件的camera功能,点击绿色的play键。运行approach,点击蓝色step move,将样品降低到安全距离。 2、运行软件的aiming功能,点击tools-motors-video calibration-右下角specify laser step 1-Alt+左键-确定-手动Alt+左键点击红十字中心,使激光与十字匹配。 3、运行AFM钮,使针头伸出。点击Shift+左键点击针悬臂梁的中间或偏上三分之一处,点击move laser使激光移动到点击位置,然后用Laser X和Y将Laser 调到最大,点击Aiming,使DFL、LF为0。 4、运行软件的Resonance功能,选择semicontact模式,在probes里选择对应针尖,点击Auto,调节探针悬臂的共振频率。如产生共振,调节Gain和lockgain 的大小(保证其乘积大小不变),确定setpoint为典型值Mag的一半,Gain0.5-1之间。 5、运行landing,观察way值变化。 6、运行软件的Approach功能,自动完成下针。使探针下降至检测距离。 7、点击Scanning按钮,开始样品扫描,扫描图样将自动保存至指定文件夹。注意: 1、除去扫描过程,其他改变任何程序或移动样品的操作都应先关闭反馈键使ON 变为OFF。操作过程中确保XY是闭环状态? 2、取放样品时均应首先软件操作使探头缩回。 3、扫描结果的优劣决定于当前探针状态(是否断针和污染)和所选用的反馈灵 敏度Gain。在确保不损伤仪器以及珍贵探针的情况下进行优化调节。

高中化学选修三选修3物质结构与性质第三章第3章常见晶体结构晶胞分析归纳整理总结

1 1. 金刚石晶体结构(硅单质相同) 1mol 金刚石中含有 mol C —C 键, 最小环是 元环,(是、否) 共平面。 每个C-C 键被___个六元环共有,每个C 被_____ 个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C 键夹角:_______。C 原子的杂化方式是______ SiO 2晶体中,每个Si 原子与 个O 原子以共价键相结合, 每个O 原子与 个Si 原子以共价键相结合,晶体中Si 原子与 O 原子个数比为 。 晶体中Si 原子与Si —O 键数目之比 为 。最小环由 个原子构成,即有 个O , 个Si ,含有 个Si-O 键,每个Si 原子被 个十二元环,每 个O 被 个十二元环共有,每个Si-O 键被__个十二元环共 有;所以每个十二元环实际拥有的Si 原子数为_____个,O 原子数为____个,Si-O 键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 2 . 在NaCl 晶体中,与每个Na +等距离且最近的Cl -有 个, 这些Cl -围成的几何构型是 ;与每个Na +等距离且最近的 Na +有 个。由均摊法可知该晶胞中实际拥有的Na +数为____个 Cl -数为______个,则次晶胞中含有_______个NaCl 结构单元。 3. CaF 2型晶胞中,含:___个Ca 2+和____个F - Ca 2+的配位数: F -的配位数: Ca 2+周围有______个距离最近且相等的Ca 2+ F - 周围有_______个距离最近且相等的F ——。

2 4.如图为干冰晶胞(面心立方堆积),CO 2分子在晶胞 中的位置为 ;每个晶胞含二氧化碳分子的 个数为 ;与每个二氧化碳分子等距离且最 近的二氧化碳分子有 个。 5.如图为石墨晶体结构示意图, 每层内C 原子以 键与周围的 个C 原子结合,层间作用力为 ; 层内最小环有 _____个C 原子组成;每个C 原子被 个最小环所共用;每个 最小环含有 个C 原子, 个C —C 键;所以C 原子数和C-C 键数之比是_________。C 原子的杂化方式 是__________. 6. 冰晶体结构示意如图 ,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7. 金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8. 金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________ 。

原子力显微镜的工作原理及基本操作

2015年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:原子力显微镜的工作原理及基本操作学生所在院(系): 学生所在学科: 学生姓名: 学号: 学生类别:应用型 考核结果阅卷人

原子力显微镜的工作原理及基本操作 一、实验目的 1.了解原子力显微镜的工作原理 2.掌握用原子力显微镜进行表面观测的方法 二、原子力显微镜结构及工作原理 2.1 AFM的工作原理 AFM是用一个一端装有探针而另一端固定的弹性微悬臂来检测样品表面信息的,当探针扫描样品时,与样品和探针距离有关的相互作用力作用在针尖上,使微悬臂发生形变。AFM系统就是通过检测这个形变量,从而获得样品表面形貌及其他表面相关信息 1.原子力作用机制 当两个物体的距离小到一定程度的时候,它们之间将会有原子力作用.这个力主要与针尖和样品之间的距离有关.从对微悬臂形变的作用效果来分,可简单将其分为吸引力和排斥力,它们分别在不同的工作模式下、不同的作用距离起主导作用.探针与样品的距离不同,作用力的大小也不相同,针尖/样品距离曲线如图1所示. 图1 针尖/样品距离曲线 2.原子力显微镜的成像原理 AFM的微悬臂绵薄而修长,当对样品表面进行扫描时,针尖与样品之间力的作用会使微悬臂发生弹性形变,针尖碰到样品表面时,很容易弹起和起伏,它非常的灵敏,极小的力的作用也能反应出来.也就是说如果检测出这种形变,就可以知道针尖-样品间的相互作用力,从而得知样品的形貌。

图2 光束偏转法的原理图 微悬臂形变的检测方法一般有电容、隧道电流、外差、自差、激光二极管反馈、偏振、偏转方法。偏转方法是采用最多的方法,也是原子力显微镜批量生产所采用的方法.图2就是光束偏转法的原理图。 3.原子力显微镜的工作模式 AFM主要有三种工作模式:接触模式(ContactMode)、非接触模式(Non-contact Mode)和轻敲模式( Tapping Mode),如图3. 图3 三种工作模式 接触模式中,针尖一直和样品接触并在其表面上简单地移动.针尖与样品间的相互作用力是两者相接触原子间的排斥力,其大小约为10-8~10-11N。 非接触模式是控制探针一直不与样品表面接触,让探针始终在样品上方5~20nm 距离内扫描.因为探针与样品始终不接触,故而避免了接触模式中遇到的破坏样品和污染针尖的问题,灵敏度也比接触式高,但分辨率相对接触式较低,且非接触模式不适合在液体中成像。 轻敲模式是介于接触模式和非接触模式之间新发展起来的成像技术,类似与非接触模式,但微悬臂的共振频率的振幅相对非接触模式较大,一般在0.01~1nm.分辨率几乎和接触模式一样好,同时对样品的破坏也几乎完全消失,克服了以往常规模式的局限。 4.原子力显微镜的构成 SPA-300HV型显微镜主要包括以下四个系统: 减震系统、头部系统、电子学控制系统、计算机软件系统(图4为结构图)。

较石墨和金刚石的晶体结构

较石墨和金刚石的晶体结构、结合键和性能。 答:金刚石晶体结构为带四面体间隙的FCC,碳原子位于FCC点阵的结合点和四个不 相邻的四面体间隙位置,碳原子之间都由共价键结合,因此金刚石硬度高,结构致密。石墨晶体结构为简单六方点阵,碳原子位于点阵结点上,同层之间由共价键结合,邻层之间由范德华力结合,因此石墨组织稀松,有一定的导电性,常用作润滑剂。 1. 单晶体:如果一个物体就是一个完整的晶体,这样的晶体~单晶体. 水晶、雪花、食盐小颗粒、单晶硅、晶须 2 多晶体:如果整个物体是由许多杂乱无章地排列着的小晶体组成的,这样的物体~多晶体,其中的小晶体叫做晶粒,其边界称为晶界,多晶体有一定的熔点。各向同性 金属及合金等. 3 非晶体:没有规则的几何形状,原子在三维空间内不规则排列。长程无序,各向同性。常见的非晶体有:玻璃、蜂蜡、松香、沥青、橡胶等. 扩散定理 单位时间内通过垂直于扩散方向的单位截面积的物质量(扩散通量)与该物质在该面积处的浓度梯度成正比。 为扩散通量,表示扩散物质通过单位截面的流量,dC/dx为沿x方向的浓度梯度;D为原子的扩散系数。负号表示扩散由高浓度向低浓度方向进行。 层错能 金属结构在堆垛时,没有严格的按照堆垛顺序,形成堆垛层错。层错是一种晶格缺陷,它破坏了晶体的周期完整性,引起能量升高,通常把单位面积层错所增加的能量称为层错能。 层错能出现时仅表现在改变了原子的次近邻关系,几乎不产生点阵畸变。所以,层错能相对于晶界能而言是比较小的。层错能越小的金属,则层错出现的几率越大。

在层错能较高的金属如铝及铝合金、纯铁、铁素体钢(bcc)等热加工时,易发生动态回复,因为这些金属中易发生位错的交滑移及攀移。而奥氏体钢(fcc)、镁及其合金等由于层错能低,不发生位错的交滑移,所以动态再结晶成为动态软化的主要方式。 面心立方的密排面 晶体中原子的堆垛方面心立方晶格的金属: 铝(Al)、铜(Cu)、镍(Ni)、金(Au)、银(Ag)、γ- 铁( γ-Fe, 912℃~1394℃) 式n面心立方:密排面为{111} A BCABCABC…… 点阵常数与原子半径R的关系 晶胞棱边的长度称为点阵常数或晶格常数。对立方晶系,a=b=c,点阵常数用a表示即可; 对六方晶系,a1=a2=a3?c,需要用a和c两个点阵常数来表示晶胞的大小。 1.面心立方: –最密排方向<110> –即面对角线方向原子半径为

原子力显微镜

原子力显微镜 一、实验目的 1了解原子力显微镜的工作原理 2掌握用原子力显微镜进行表面观测的方法 二、实验原理 1. AFM基本原理 原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。 在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。如图一显示。 1)力检测部分 在原子力显微镜系统中,所要检测的力是原子与原子之间的范德华力。使用微悬臂来检测原子之间力的变化量。如图2所示,微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。 (2)位置检测部分 在原子力显微镜系统中,当针尖与样品之间有了作用之后,会使得悬臂摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。聚焦到微悬臂上面的激光反射到激光位置检测器,通过对落在检测器四个象限的光强进行计算,可以得到由于表面形貌引起的微悬臂形变量大小,从而得到样品表面的不同信息。 (3)反馈系统 在原子力显微镜系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。 2.AFM 有三种不同的工作模式: 接触模式( contact mode) 、非接触模式(noncontact mode) 和共振模式或轻敲模式(Tapping Mode) 。(1)接触模式: 从概念上来理解,接触模式是AFM最直接的成像模式。AFM 在整个扫描成像过程之中,探针针尖始终与样品表面保持亲密的接触,而相互

几种常见晶体结构分析.

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话::: 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞) 中,处于不同位置的微粒在该单元中所占的份额也有 所不同,一般的规律是:顶点上的微粒属于该单元中 所占的份额为18 ,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12 ,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的 Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na + 有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与 一个Cs +距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平 均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4 个C 原子紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小 环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环 共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6× 112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2晶体,则SiO 2晶体中最小环为12环(6个Si ,6个O ), 最小环的平均Si 原子个数:6×112 = 12;平均O 原子个数:6×16 = 1。 即Si : O = 1 : 2,用SiO 2表示。 在SiO 2晶体中每个Si 原子周围有4个氧原子,同时每个氧原子结合2个硅原子。一个Si 原子可形 图 1 图 2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

金刚石的消光规律--晶体结构题目例

金刚石的消光规律--晶体结构题目例

(4)金刚石的消光规律计算举例: 金刚石结构中C 的原子坐标: (000)(1/2 1/2 0)(1/2 0 1/2)(0 1/2 1/2) (1/4 1/4 1/4) (3/4 3/4 1/4) (3/4 1/4 3/4) (1/4 3/4 3/4) F hkl =∑f j e 2πi(hxj+kyj+lzj) =fe 2πi(0)+fe 2πi(h/2+k/2)+fe 2πi(h/2+l/2)+fe 2πi(k/2+l/2) +fe 2πi(h/4+k/4+l/4) +fe 2πi(3h/4+3k/4+l/4) +fe 2πi(3h/4+k/4+3l/4) +fe 2π i(h/4+3k/4+3l/4) 前四项为面心格子的结构因子,用F F 表示,后四项可提出公因子e πi/2(h+k+l) 。得: F hkl =F F +fe πi/2(h+k+l) (1+e πi (h+k) +e πi (h+l) +e πi (k+l) ) = F F +F F e πi/2(h+k+l) =F F (1+ e πi/2(h+k+l) ) (1) 由面心格子可知,h 、k 、l 奇偶混杂时,F F =0,F=0; (2) h 、k 、l 全为奇数,且h+k+l=2n+1时, 1+ e πi/2(h+k+l) =1+cosπ/2(h+k+l)+i sinπ/2(h+k+l)

=1+cosπ/2(2n+1)+i sinπ/2(2n+1) =1+(-1)n i F=4f(1±i) F 2 =16f 2 (1+1)=32f (3) h 、k 、l 全为偶数,且h+k+l=4n 时 F=4f(1+e 2niπ) = 4f(1+1) = 8f (4) h 、k 、l 全为偶数,且h+k+l≠4n,即h+k+l=2(2n+1)时 F=4f(1+e (2n+1)iπ )=4f(1-1)=0 对于金刚石 各原子的分数坐标为 )(,0,00,)(,021,21,),(,21,021, ),,(,2 1210 )(41,41,41,)(41,43,43,)(43,43,41, )(4 3 ,41,43 由结构因子得 ) ()()(0[F l k i l h i k h i hkl e e e e f ++++++=πππ

原子力显微镜

原子力显微镜 一.实验目的 1. 了解原子力显微镜的工作原理 2. 掌握用原子力显微镜进行表面观测的方法 二.实验原理 在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统: (1)力检测部分 在原子力显微镜系统中,所要检测的力是原子与原子之间的范德华力。使用微悬臂来检测原子之间力的变化量。如图2所示,微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。 (2)位置检测部分 在原子力显微镜系统中,当针尖与样品之间有了作用之后,会使得悬臂摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。聚焦到微悬臂上面的激光反射到激光位置检测器,通过对落在检测器四个象限的光强进行计算,可以得到由于表面形貌引起的微悬臂形变量大小,从而得到样品表面的不同信息。 (3)反馈系统 在原子力显微镜系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。 原子力显微镜便是结合以上三个部分来将样品的表面特性呈现出来的:在原子力显微镜系统中,使用微小悬臂来感测针尖与样品之间的相互作用,这作用力会使微悬臂摆动,再利用激光将光照射在悬臂的末端,当摆动形成时,会使反射光的位置改变而造成偏移量,此时激光检测器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整,最后再将样品的表面特性以影像的方式给呈现出来。

扫描电子显微镜与原子力显微镜技术之比较_陈耀文

中国体视学与图像分析 2006年 第11卷 第1期CH I N ESE JOURNAL O F S TER EOLO GY AND I M AGE ANALYS I S Vo l .11No.1M a rch 2006 53  收稿日期:2005-08-01 基金项目:国家自然科学基金资助(No .30470900);汕头大学研究与发展基金资助(No .L00015)作者简介:陈耀文(1964-),男,副教授,研究方向:医学图像处理与识别,E 2mail:y wchen@stu .edu .cn 文章编号:1007-1482(2006)01-0053-06 ?综述? 扫描电子显微镜与原子力显微镜技术之比较 陈耀文1 , 林月娟1 , 张海丹1 , 沈智威1 , 沈忠英 2 (1.汕头大学中心实验室, 广东 汕头 515063; 2.汕头大学医学院, 广东 汕头 515031) 摘 要:SE M 和AF M 技术是最常用的表面分析方法。本文介绍了SE M 和AF M 两种技术的原理, 描述了这两种技术在样品形貌结构、成分分析和实验环境等方面的性能,比较了两种技术的特性和不足,充分利用两种技术的互补性,将两种技术结合使用,有助于更加深刻地认识样品的特性。关键词:原子力显微镜;扫描电子显微镜;表面形貌;化学成分中图分类号:TG115.21+ 5.3,R319 文献标识码:A The co m par ison of SE M and AF M techn i ques CHEN Yaowen 1 , L I N Yuejuan 1 , ZHANG Haidan 1 , SHEN Zhewei 1 , SHEN Zhongying 2 (1.Central Laborat ory,Shant ou University,Guangdong Shant ou 515063,China;2.Medical College,Shant ou University,Guangdong Shant ou 515031,China ) Abstract:Scanning electr on m icr oscopy (SE M )and at om ic f orce m icr oscopy (AF M )are powerful t ools f or surface investigati ons .This article described the p rinci p les of these t w o techniques,compared and contrasted these t w o techniques with res pect t o the surface structure and compositi on of materials,and en 2vir on ment .SE M and AF M are comp le mentary techniques,by having both techniques in an analytical fa 2cility,surface investigati ons will be p r ovided a more comp lete rep resentati on . Key words:at om ic f orce m icr oscopy;scanning electr on m icr oscopy;surface structure;compositi on 显微镜由于受到衍射极限的限制,其分辨率只能达到光波半波长数量级(0.3μm ),无法观察更小的物体。1924年,德布罗意提出了微观粒子具有波粒二象性的概念,科学家们在物质领域找到了一种波长更短的媒质—电子,并利用电子在磁场中的运动与光线在介质中的传播相似的原理,研制出以电子为光源的各类电子显微镜。扫描电子显微镜(Scanning Electr on M icr oscopy,SE M )的设计思想,早在1935年便已被提出来了,1942年,英国首先制成实验室用的扫描电镜,主要应用于大样品的形貌分析,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。随着电子工业技术水平的不断发展,到1965年开始生产商品扫描电镜,近数十年来,SE M 各项性能不断提高,如分辨率由初期的50nm 发展到现在约0.5nm ,功能除样品的形貌分析之外,现在可获得特征X 2射线,背散射电子和样品电流等 信息。 1982年,Gerd B innig 和Heinrich Rohrer 在I B M 公司苏黎世实验室共同研制成功了第一台扫描隧道显微镜(Scanning Tunneling M icr oscope,ST M ),使人们首次能够真正实时地观察到单个原子在物体表面的排列方式和与表面电子行为有关的物理、化学性质。然而,由于ST M 的信号是由针尖与样品之间的隧道电流的变化决定的,只适用于研究电子性导体和半导体样品,为了克服ST M 的不足之处,ST M 的发明者B innig 等又在1986年发明了原子力显微镜(A t om ic Force M icr oscope,AF M )。AF M 是通过探测探针与被测样品之间微弱的相互作用力(原子力)来获得物质表面形貌的信息,分辨率可达原子级水平。之后,以ST M 和AF M 为基础,衍生出扫描探针显微镜(Scanning Pr obe M icr oscope,SP M )家族,包括扫描隧道显微镜、原子力显微镜、磁力显微镜、静电

原子力显微镜及其应用

原子力显微镜及其应用 原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规显微镜比较,原子力显微镜的优点是在大气条件下,以高倍率观察样品表面,可用于几乎所有样品(对表面光洁度有一定要求),而不需要进行其他制样处理,就可以得到样品表面的三维形貌图象。并可对扫描所得的三维形貌图象进行粗糙度计算、厚度、步宽、方框图或颗粒度分析。 原子力显微镜可以检测很多样品,提供表面研究和生产控制或流程发展的数据,这些都是常规扫描型表面粗糙度仪及电子显微镜所不能提供的。 一、基本原理 原子力显微镜是利用检测样品表面与细微的探针尖端之间的相互作用力(原子力)测出表面的形貌。 探针尖端在小的轫性的悬臂上,当探针接触到样品表面时,产生的相互作用,以悬臂偏转形式检测。样品表面与探针之间的距离小于3-4nm,以及在它们之间检测到的作用力,小于10-8N。激光二极管的光线聚焦在悬臂的背面上。当悬臂在力的作用下弯曲时,反射光产生偏转,使用位敏光电检测器偏转角。然后通过计算机对采集到的数据进行处理,从而得到样品表面的三维图象。 完整的悬臂探针,置放于在受压电扫描器控制的样品表面,在三个方向上以精度水平0.1nm或更小的步宽进行扫描。一般,当在样品表面详细扫绘(XY轴)时,悬臂的位移反馈控制的Z轴作用下保存固定不变。以对扫描反应是反馈的Z轴值被输入计算机处理,得出样品表面的观察图象(3D图象)。 二、原子力显微镜的特点 1.高分辨力能力远远超过扫描电子显微镜(SEM),以及光学粗糙度仪。样品表面的三维数据满足了研究、生产、质量检验越来越微观化的要求。 2.非破坏性,探针与样品表面相互作用力为10-8N以下,远比以往触针式粗糙度仪压力小,因此不会损伤样品,也不存在扫描电子显微镜的电子束损伤问题。另外扫描电子显微镜要求对不导电的样品进行镀膜处理,而原子力显微镜则不需要。 3.应用范围广,可用于表面观察、尺寸测定、表面粗糙测定、颗粒度解析、突起与凹坑的统计处理、成膜条件评价、保护层的尺寸台阶测定、层间绝缘膜的平整度评价、VCD涂层评价、定向薄膜的摩擦处理过程的评价、缺陷分析等。 4.软件处理功能强,其三维图象显示其大小、视角、显示色、光泽可以自由设定。并可选用网络、等高线、线条显示。图象处理的宏管理,断面的形状与粗糙度解析,形貌解析等多种功能。 三、应用实例 1.应用于纸张质量检验。2.应用于陶瓷膜表面形貌分析。3.评定材料纳米尺度表面形貌特征 1

相关文档
相关文档 最新文档