文档库 最新最全的文档下载
当前位置:文档库 › 工况传递路径分析方法在车辆噪声振动问题中的应用研究

工况传递路径分析方法在车辆噪声振动问题中的应用研究

工况传递路径分析方法在车辆噪声振动问题中的应用研究
工况传递路径分析方法在车辆噪声振动问题中的应用研究

 万方数据

 万方数据

素。为了避免矩阵奇异。各行向量应互不相关。也就是需要互不相关的输人条件,如发动机在不同转速、不同负载下的振动噪声输入。而且.输入条件的数量一般要大于3倍的测点数量.以保证矩阵的运算精度。在实际测试中.通常以车辆加速或滑行等工况实现各种输入条件的采集.比如在加速过程中。每个转速间隔(delta)可作为一个输入条件。另外。还可增加一些其它输入条件。如怠速等。

根据该车型的问题,设置测试工况见表2。

表2测试工况

工况描述

1挡POT800~l500r/min

1挡WOT800—l500r/min

2挡POT800一1500r/rain

2挡WOT800~l500r/min

空挡滑行80km/h

怠速空调开

怠速空调关

怠速散热风扇开

怠速散热风扇关

如图2所示,在54Hz轰鸣声中,结构声更接近该频率总量级,占主要成份,因此排除发动机本体辐射噪声以及进排气噪声的空气声因素。

图2结构声空气声贡献量频谱

在对结构声贡献量进行分析后.发现54Hz的第4吊耳最接近结构声在该频率的总量级.贡献量最大.如图3所示。

图3不同位置结构声贡献量频谱图2009年增刊

在第4吊耳3个方向的贡献量中,Z向最接近第4吊耳结构声在该频率的总量级,贡献量最大,如图4所示。

图4第4吊耳各方向结构声贡献量频谱综上所述.54Hz轰鸣声的主要贡献量来自于第4吊耳Z向振动。根据上述分析结果,将第4吊耳去掉以后.车内54Hz轰鸣声降低约3dB,说明O,I’PA技术成功辨识出该问题的主要噪声源。

确定主要贡献位置后.从第4吊耳处的车身、排气管结构、吊耳隔振特性等进行了研究,对白车身模态和排气管模态进行CAE计算对比.经过优化处理。轰鸣声问题基本解决。

4结束语

对工况传递路径分析方法的原理、应用进行了介绍。工况传递路径分析方法将整车作为研究对象,通过多种工况的测试.形成传递函数矩阵。通过奇异值分解等方法.求解出传递路径中的主要贡献量。与传统的传递路径分析方法相比.该方法可进行结构声和空气声耦合分析.而且测试过程简单方便.大大提高工作效率。

针对东风汽车股份有限公司某车型样车进行了工况传递路径分析.找到了怠速轰鸣声的主要贡献源.并通过改进措施解决了问题。

一39一

o∞P,

繇鹾U

 万方数据

工况传递路径分析方法在车辆噪声振动问题中的应用研究

作者:金鹏, 王彦, 江克峰, 胡李波, Jin Peng, Wang Yan, Jiang Kefeng, Hu Libo

作者单位:金鹏,胡李波,Jin Peng,Hu Libo(米勒贝姆振动与声学系统(北京)有限公司), 王彦,江克峰,Wang Yan,Jiang Kefeng(东风汽车股份有限公司)

刊名:

汽车技术

英文刊名:AUTOMOBILE TECHNOLOGY

年,卷(期):2009(12)

本文读者也读过(10条)

1.余琪.周鋐.She Qi.Zhou Hong传递路径分析用于车内噪声贡献量的研究[期刊论文]-汽车技术2010(3)

2.戴英彪.李岳林.袁凯汽车NVH传递路径分析法探讨[期刊论文]-公路与汽运2010(2)

3.金鹏.王彦.江克峰.胡李波工况传递路径分析方法在车辆噪声振动问题中的应用研究[会议论文]-2009

4.邵威.邵宗安.张春翠.杨养户.Shao Wei.Shao Zongan.Zhang Chuncui.Yang Yanghu数字阶次跟踪技术在汽车NVH领域的应用研究[期刊论文]-汽车技术2009(12)

5.程超.王登峰.刘祖斌.秦民.赵凤军.Cheng Chao.Wang Dengfeng.Liu Zubin.Qin Min.Zhao Fengjun提高橡胶悬置装配状态下刚度的稳定性[期刊论文]-汽车技术2006(2)

6.尹文茂.刘文帅.王秀波.刘宁基于传递函数的潜艇噪声传递路径分析[会议论文]-2007

7.白景潇内燃机燃烧噪声传递路径识别及评价研究[学位论文]2009

8.刘东明.项党.罗清.郑金鑫.LIU Dong-ming.XIANG Dang.LUO Qing.ZHENG Jin-xin传递路径分析技术在车内噪声与振动研究与分析中的应用[期刊论文]-噪声与振动控制2007,27(4)

9.刘强.王弘岩.马芳武.Liu Qiang.Wang Hongyan.Ma Fangwu轿车室内噪声异常增大的诊断分析[期刊论文]-汽车技术2009(12)

10.龙岩.史文库.梁天也.周舟.张军基于改进传递路径分析法的动力总成悬置系统优化及评价[期刊论文]-汽车工程2009,31(10)

本文链接:https://www.wendangku.net/doc/1013254685.html,/Periodical_qcjs200912010.aspx

噪声控制复习题及答案

《环境噪声控制工程》复习题及参考答案 一、名词解释 1、噪声:人们不需要的声音(或振幅和频率紊乱、断续或统计上无规则的声音)。 2、声功率:单位时间内声源向周围发出的总能量。 3、等效连续A 声级:等效于在相同的时间间隔T 内与不稳定噪声能量相等的连续稳定噪声的A 计权声级。 4、透声系数:透射声功率和入射声功率的比值。 5、消声器的插入损失:声源与测点之间插入消声器前后,在某一固定测点所得的声压级的差值。 6、减噪量:在消声器进口端测得的平均声压级与出口端测得的平均声压级的差值。 7、衰减量:在消声器通道内沿轴向两点间的声压级的差值。 8、吸声量:材料的吸声系数与其吸声面积的乘积,又称等效吸声面积。 10、响度:与主观感觉的轻响程度成正比的参量为响度,符号为N ,单位为宋(sone )。 11、再生噪声:气流与消声器内壁摩擦产生的附加噪声。 12、混响声场:经过房间壁面一次或多次反射后达到受声点的反射声形成的声场。 13、噪声污染:声音超过允许的程度,对周围环境造成的不良的影响。 14、声能密度:声场内单位体积媒质所含的声能量。 15、声强:单位时间内,垂直于声波传播方向的单位面积上所通过的声能。 16、相干波:具有相同频率和恒定相位差的声波称为相干波。 17、不相干波:频率不同和相互之间不存在恒定相位差,或是两者兼有的声波。 18、频谱:频率分布曲线,复杂振荡分解为振幅不同的谐振荡,这些谐振荡的幅值按频率排列的图形叫频谱。 19、频谱图:以频率为横坐标,声压级为纵坐标,绘制出的图形。 20、吸声系数:材料吸收声能(包括透射声能)与入射声能之比。 21、级:对被量度的量与基准量的比值求对数,这个对数被称为被量度的级。 22、声压级:p L =10lg 20 2p p =20lg 0p p (dB) (基准声压0p 取值2510-?Pa ) 23、声强级:I L =10lg 0 I I (dB)( 基准声强0I 取值1210-W/m 2) 24、声功率级:w L =10lg 0W W (dB) ( 基准声功率0W 取值1210-W ) 25、响度级:当某一频率的纯音和1000Hz 的纯音听起来同样时,这时1000Hz 纯音的声压级就定义为该待定纯音的响度级。符号为L N ,单位为方(phon )。 26、累计百分数声级:噪声级出现的时间概率或累积概率,L x 表示x%的测量时间所超过的声级,更多时候用L 10、L 50、L 90表示。 27、吸声材料:是具有较强吸声能力,减低噪声性能的材料。 28、直达声场:从声源直接到达受声点的直达声形成的声场。 29、扩散声场:有声源的房间内,声能量密度处处相等,并且在任何一点上,从各个方向传来的声波几率都相等的声场。 30、混响半径:直达声与混响声的声能密度相等的点到声源的临界距离。 31、混响时间:声能密度衰减到原来的百万分之一,即衰减60dB 所需的时间。

微博传播路径分析图

微博传播路径分析图 作者: | 来源:艾瑞网 发布于:2011-07-25 微博的功能在于可扩大媒体传播力度、相同话题的群体、以关系为核心的群发布,而媒体的盈利模式在于广告推送,是被动接受,恰恰微薄传播方式是 主动获取所以在信息接收层面来说,微博的软营销与微博的产品诉求是冲突的。 企业可以通过各种手段(如通过奖励的转发评论等)带来的粉丝,是被动加入的,而非主动加入。因为对于企业所提供信息而言,并没有给粉丝明确的 需求。其实企业通过微博在线上获取的用户,最大的问题就是用户转化率问题。 而转化率的关键在于通过长时间的转发从而真正寻找到合适恰当的用户,这需 要较长的时间与较大的精力和财力的投入。 企业建立微博的路径: 第一,企业投入一定的成本,或通过线上活动,或通过线下推广,获得大规模粉丝关注(当然通过这样的手段所获得的粉丝的忠实度需要思考)。 第二,通过发布大量可读性的信息,吸引大量用户对其话题的讨论、转发。 从而引发更多的关注与粉丝。这要求博主找到与自身企业与公众之间好的话题 切入点,同时企业要花费大量精力与成本对内容持续长期的经营。事实证明,企业结合自身行业,对该行业的分析论述更容易找到最终的客户群体,并能引 发较长尾的Follow。 思考: 默默的为微博平台提供有价值可读的信息,一旦内容失去可读性,粉丝群将大量流失。之前的工作将前功尽废。 企业微博传播路径图:

释义: 行业知识(行业分析、价格指数): 跟随者:客户、准客户 转化率:随Follow的级别的增加跟随者数量减少但是客户的精度也随之提高。 营销: 1、活动: 跟随者:非客户、准客户、客户

转化率:前期建立的粉丝较多,但精准性差,Follow的级别多,精度不高。 活动的一级传播是针对原有企业粉丝,所以一级传播精准度较高之后级别更高。 2、硬广 跟随者:无跟随 最后值得一提的是从信息的传播上来看,当年社区的泛娱乐化传播和今日的微博非常相似,而这些社区也在苦苦思索盈利模式,营销传播模式,其根源并非在于泛娱乐化平台,而在于这些以群、圈、关系、兴趣点为核心的社区是否能够为用户解决实际问题,单纯的信息传播,恐怕很难成为垄断级产品。 所以微博是猫扑、天涯是博客还是qq,就要看能否改变泛娱乐化的信息传播模式,提出更具实用价值的功能,才是微博的杀手级别的应用。微博值得思考当年的腾讯qq是怎样通过对用户生活的微渗透,从娱乐化工具逐渐转变为实用性工具的。

供热系统工况分析

供热系统工况分析 1.供热系统工况分析 1.1何为热力工况、水力工况? 研究供热系统供热量、温度等参数的分布状况称为热力工况。在热力工况的研究中,热用户室内温度的分布状况的分析尤为重要,室内实际温度是否达到设计温度直接关系到供热效果的好坏;当供热成为商品时,室温是否达标,将变为衡量供热这个商品质量优劣的唯一标尺。因此,无论供热系统的设计,还是供热系统的运行,分析供热系统的热力情况都是头等重要的任务。 研究供热系统压力、流量等参数的分布状况称为水力状况。供热系统的供热量是通过热媒(亦称介质,为热水、蒸汽、空气等)输送的。因此,热媒的输送状况,直接影响供热量的分布状况,进而影响室内温度的分布状况。而热媒的输送状况,通常是通过其压力、流量等来描述的。由于水力状况是用来分析热媒传送状况的,因此,水力状况是热力工况的源头,研究热力工况,必须着手研究水力状况。 1.2热力工况与水力工况的关系 在供热行业里,通常困扰我们的最大难题就是冷热不均,处于热源近端的室温过热,被迫开窗户;靠近热源末端的室温过冷。表1.1告诉我们:凡是室外温低的,都是进入散热器的循环流量远小于设计流量造成的。进一步分析,还可得出以下结论:凡室温低于4.5℃的,其循环流量只是设计流量的20%;凡室温在10℃左右的,流量约为设计值的30%左右;凡室温在16以上时,流量均在设计流量的70%以上;

凡实际流量超过设计流量1-2倍以上的,室温都将超过20℃以上。 1.3热力工况与水力工况的稳定性 实现热力工况稳定,供热系统在整个运行期间,并不是始终维持设计流量(最大循环流量)进行定流量运行,而是随着室外温度的升高逐渐减少系统循环流量。在表1.2的实例中,当室外温度tw为设计外温tw=-18℃时,保持热力工况稳定的循环流量为设计运行流量,此时,各热用户皆为室温18℃。当外温升至-4.1℃(当地供暖季的平均外温)时,维持热力工况稳定的循环流量是设计流量的89%(即失调度Xs=0.89),而不是设计流量。而且随着室外温度的不断升高,维持热力工况稳定的循环流量也将不断减少。这就说明:供热系统,只有实施变流量调节,才能使热力工况得到稳定。因此,通常习惯采用的质调节即定流量调节,是无法维持热力工况稳定的。这种调节的好处是简单方便,因而,多年来,国内长期一直延用这种调节方式。随着信息技术和变频调速技术的普遍应用,变流量调节已经变得十分方便,不但可以保证热力工况的稳定,而且有显著的节电效果,此时,再坚持质调节即定流量调节,就显得太过落后了。 推广供热计量技术以来,行业内仍有一些技术人员主张继续维持定流量运行。他们的理由是:推广供热计量技术以后,由于恒温阀的调节作用,系统的流量肯定是变动的,但这种变动只是系统总流量的10%左右,因此,为了维持热力工况的稳定,建议系统仍然按定流量运行。这种理念的基础,是认定定流量调节才能保证热力工况稳定。根据上述分析,这显然是错误的,根源是对室内供暖系统的工况缺乏

LMS https://www.wendangku.net/doc/1013254685.html,b 传递路径分析

传递路径分析 探究振动噪声问题的根源 LMS https://www.wendangku.net/doc/1013254685.html,b 传递路径分析提供了基于工程试验方法的系统级振动噪声解决方案,对关键零部件进行工程分析。 作为一个全面理解振动噪声问题的方法,TPA 有助于对振动噪声问题进行故障诊断,并对每个关键零部件进行性能目标设定。 在一个由多个子结构组成的复杂结构(诸如汽车、飞机或船舶)中,某一特定位置的振动噪声现象往往是由一个远处的振动源所引起的。例如,能量可以通过不同的路径从汽车发动机传入驾驶室内:通过发动机悬置、排气系统连接点,甚至间接地通过传动轴和底盘悬架传入到驾驶室内。进气和排气系统的空气传播也会对振动噪声问题有一定的影响。 强大的传递路径分析技术能够解决这类振动噪声问题,它可以帮助工程师在设计早期检测到问题产生的根源。LMS https://www.wendangku.net/doc/1013254685.html,b 提供高效的解决方案,以识别振动噪声问题及其产生的根本原因,并能够快速地评价设计修改。

从故障诊断到根源分析 传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置的各个结构传播和声传播的传递路径。一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易的设计工作。传递路径分析用于定量分析不同的激振源及其传递路径,并且计算出其中哪些是重要的,哪些对噪声问题有贡献,哪些会互相抵消。 激励源-路径-响应:系统级的方法 LMS https://www.wendangku.net/doc/1013254685.html,b传递路径分析是基于激励源-路径-响应的系统解决方案。所有的振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知的响应位置。通过分析激励源及传递路径对响应的影响,并可以通过对其中的某几个因素进行调整,来解决振动噪声问题。传递路径分析的目标是计算从源到响应的各条路径的矢量贡献量,识别出传递路径中各零部件的NVH特性,并通过对其调整来解决特定的问题。最终,TPA通过合理选择各个零部件的特性以避免振动噪声问题,从而有助于产品优化设计。 完整的解决方案 LMS https://www.wendangku.net/doc/1013254685.html,b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用的TPA解决方案。LMS https://www.wendangku.net/doc/1013254685.html,b可以通过各个可能的角度来帮助客户解决问题——从简单系统到复杂结构。LMS https://www.wendangku.net/doc/1013254685.html,b TPA综合了一系列TPA

传递路径分析法

传递路径分析法 对复杂的汽车系统来说,如何找到一种既能较好地表征整车振动噪声特性,而其实现起来又较为简明、迅速的方法,一直是汽车NVH 研究人员孜孜以求的目标。近年来,基于频率响应函数(FRF )的车内噪声传递路径分析方法成为各大汽车公司和汽车研发中心的主要研究方向之一,这种方法从子结构传递函数的角度出发,在频域上描述了系统的振动噪声特性,为汽车噪声预测、振动噪声快速诊断等工作提供了一种快捷、精准的有利工具。此方法建立的模型中,一般把整个系统划分为几个较为独立的子结构,每个子结构都以频响函数来表征其结构特性,各子结构之间通过各种弹性元件相联结来传递信息。图2.1即为一个由动力总成和车身组成的简单汽车模型,在这模型里,汽车被划分成两个子结构,一个是车身子结构(以子结构A 表示),另一个是动力总成子结构(以子结构B 表示),二者之间通过动力总成悬置相联结。在研究过程中,可将此系统进一步理论化,把各子结构简化成一个个结构块,把联结子结构的各弹性元件(如动力总成悬置)简化成各个标量弹簧。这样,系统就以“结构块-弹簧”的形式表征出来,本章的主要工作即是研究这种“结构块-弹簧”与系统之间的关系,推导相关函数,建立基于频率响应函数的车内噪声传递路径分析方法[15][27~40]。 2.1、系统响应 假设一辆汽车受m 个激励力作用,每一个激励力都有x,y,z 三个方向分量(下面分别用k=1,2,3表示),每一个激励理分量都对应n 个特定的传递路径,那么这个激励理分量和对应的某个传递路径就产生一个系统的响应分量。以车内噪声声压作为系统响应,这个声压分量可以表示为: ()()m nk m nk nk p H F ωω=? 其中,m nk H 是传递函数,nk F 是激励力的频谱。 车内噪声声压受某个激励力作用,传递过来的所有声压成分之和可表示为: ,3 ,3 1,1 1,1 ()()N N m m nk m nk nk n k n k p p H F ωω===== = ?∑ ∑ 车内噪声受所用激励力作用,传递过来的所有声压成分之和可表示为: m m p p =∑ 在式(2.1)中,激励力如果直接作用在车身,所对应的传递函数就是车身传递函数;激励力如果直接作用在车轴,所对应的传递函数就是从车轴到车身,再到车内声场的传递函数。传递路径分析中首先需要明确所需分析的激励点,这根据不同性质的问题而定。例如,车身问题只需考虑底盘与车身耦合处的力激励;整车问题就需考虑车轴处、发动机悬置减振器处、空气压缩机悬置鉴真处、甚至活塞和汽缸缸壁之间的力激励。明确所需分析系统的耦合点后,下步就需要估计各种耦合激励力和各种传递函数,工作量常常很大。本文只考虑了动力总成与车

调速水泵运行工况及相关问题分析

调速水泵运行工况及相关问题分析 发表时间:2019-05-09T14:17:37.533Z 来源:《建筑学研究前沿》2019年1期作者:叶龙 [导读] 分析了调速水泵运行压力跌落值及最佳转速计算,给出了水泵调速设备的转速范围的关计算方法。 新界泵业集团股份有限公司浙江温岭 312575 摘要:现阶段,随着社会的发展,科学技术的发展也越来越迅速。·调速水泵在化工企业的供水系统的应用日益广泛,文中阐述了调速水泵与恒速水泵的容量对供水系统的影响,分析了调速水泵运行压力跌落值及最佳转速计算,给出了水泵调速设备的转速范围的关计算方法。 关键词:调速水泵;运行工况;相关问题分析 引言 某化工企业的水泵把水从水源中取出送至净水厂,再把净化的水送至供水管网,同时长距离输送水需要将水加压。水泵站是供水系统中的枢纽,水泵是这枢纽中的主要设备。近几年调速水泵在供水系统发展很快,但在实际应用中仍然存在着较大的盲目性,文中针对调速水泵的常见问题进行了分析。 1调速水泵与恒速水泵容量对运行的影响 调速水泵(简称调泵)和恒速水泵(简称恒泵)容量的变化,对水泵运行有着很大的关系, 1.1调泵容量相等于或小于恒泵容量 调泵和恒泵在相等容量下组合运行。(1)先开调泵,从零到QA,以调泵变换转数运转。(2)调泵开到QA即满转,水泵流量接近QA 点时就须开恒泵。刚一开恒泵满转,为全速的特性曲线,流量到B点。但立即退回到需要点C。(3)从A到B流量,即以调泵变速承担。(4)流量后退到QD点时,AD一段调速曲线成水平线或趋近水平,由于AD段可来回摆动,很可能摆动到QA,一到QA恒泵停转,但流量稍大于QA,又需要开恒泵,造成开停频繁。5)为防止开停频繁,使流量退到E停恒泵才好。但恒泵循本身曲线,在QE点流量时,压力须退到F,这时F点压力大于设定压力,而调泵则要根据压力标定要求,须将F点拉到E点,但恒泵则由于其特性曲张特点不能下降,这样调泵就不得不空转,造成断流现象。调泵容量小于恒泵容量时,由于不稳定区扩大,增加频繁开动次数和由于滞流区增加缔切时间更长,使破坏性更大。 1.2调泵容量大于恒泵容量 调泵容量大于恒泵容量组合运行,(1)先开调泵,以调泵变换转数,从零到A运行。(2)调泵开到A即满转,流量接近A时就须开恒泵,这时流量到B点,但立即退到需要点C,从A到B都以调泵变换承担。(3)流量后退到D点时,D点在调泵的控制点,特性曲线尚在陡峭区,故无不平衡现象,流量在退到A点时,由于过A点还须开着恒泵,故不能关闭恒泵。(4)流量后退至E点,这时可停恒泵,此时调泵还在起作用,故无缔切现象。但调泵绝不能再退到F点以后才停恒泵,这样就如第1种情况一样,又会发生缔切现象。调泵容量小于恒泵容量是不利的,所以可得出结论,在调泵与恒泵组合运行时,每当需要停1台恒泵,只要待停的1台恒泵容量小于继续运行的调泵(包括1台调泵和若干此调泵能带动的恒泵,此种情况可以1台大容量调泵看待)总容量时,运转起来不会发生缔切现象,开停频繁不平稳情况也会减少。实际运行时,一般调泵由于调速设备的影响,使调泵不能维持其预定的转速,而使调速的压力有1个非线性的跌落值。据有关资料推荐,调泵运行,一般要保持要求的最大流量时的压力时,则该泵流量为零时的设定压力,要比该点要求的实际压力约大10%。美国Michata城水泵站的水泵投入生产的共有7台,其中1台调泵、6台恒泵,每台每d额定送水量94625m3,转数900r/min,恒泵功率1337.7kW,调泵功率1385.4kW,调泵比恒泵功率高3.5%,认为就是为了补偿电机在调速状态下,因为不减低要求的水泵转数而增加的功率。为了避免在使用调泵运转时,比该泵在恒速时要有的转数减低,影响使用效果,甚至在出现大流量,不能达到给定压力,同时结合国内情况,使能安全、可靠及有效的运行,以达到预定的结果,建议选择的调速电机,其功率要超过该电机用在恒速运转时功率的5%,或选泵时也可以考虑所选得的调泵H-Q选择性曲线,要适于调速后合乎预定要求。 2水泵站采用调速设备 选用调速设备后,有的水厂并没有得到节电效果,得不偿失。鉴于设备本身价格昂贵,选用它除了要做技术经济比较之外,还需详细计算选择调速设备的必要性,所选调速设备的调速范围,运行中适应工况变化的最佳转速等。 2.1泵站综合效率计算 调速设备选型之后,为判断供水系统是否应该采用调速设备,以及采用调速设备后是否提高效率,应对泵站进行综合效率计算。综合效率计算η综合见(1)式:η综合=η泵·η传·η管·η电·η池(1)(设η池=1,忽略水池进出的水头损失之差)式中η泵—水泵工作点效率;η传—由传动方式决定的传动效率;η管—管路输出功率与输入功率之比,η管=H净/H全;η电—电动机的效率,根据水泵的轴功率N轴及传动效率算出电动机的有效功率N效,再根据电动机的输入功率N入计算得出电动机效率见(2)式N效=N轴/η传η电=N效/N入(2)η传=1(水泵和电动机是直接传动时)。按η综合=η泵·η传·η管·η电计算出泵站的综合效率。低于55%,应对泵站内各环节的效率进行分析,设法提高该泵站各个环节的效率。采用水泵调速是提高水泵站效率的办法之一。选定调速型式之后,应再计算调速后的综合效率是否提高。 2.2调速泵的最佳转速计算 在采用调速设备的供水系统中,调速设备的最佳转速就是满足管路工况要求时,水泵运行的最佳工况。这工况只有1个点,这个点是管路特性曲线与水泵最高效率抛物线的交点,在转速的变化范围为40%以内满足管路特性曲线上任一工况,都能找到相应的较佳转速。多台泵并联时,C值按水泵并联后的额定工况点参数计算。如果净扬程是变化的,那么最佳转速也是变化的,运行中可根据净扬程的变化,调至最佳转速,使其高效运行。 2.3变频器外置安装 这种安装方式,需要额外的空间放置变频器。变频器与电机之间需要电缆连接,如果距离过长,需要专业的屏蔽电缆连接。在初始投

工况分析

通过查阅相关资料获悉,8个车速测试工况(除工况6)均是采用国际标准工况,模拟日常道路实际行驶情况。主要是测试汽车在不同的驾驶环境下所产生的油耗,并能通过尾气排放量和成分分析对环境的污染程度,以制定更加合理有效的道路行驶政策。不同国家采用的测试工况是因国情而异的。 由于测试工况只是模拟实际驾驶情况,与实际油耗有一定的差距,如实际路况的差异,不同驾驶员驾驶习惯的差异,但可作为一种参考。一般情况下,正常车辆通过模拟工况碳当量法所测出的油耗与实际油耗在2L以内都属于正常情况。 下面对各个测试工况进行详细分析: 工况1(ECE 15): 又称作“ECE 15工况”,该限值和试验方法标准是参照联合国欧洲经济委员会(ECE)的排放法规制定的。由怠速、加速、等速、减速等共计15种不同车速和负荷组成一个试验循环的一种试验工况,一个循环周期为195秒,完成整个循环测试需要经过4个循环共计780秒,每个循环的行驶距离为6.95km。最高车速50km/h,平均车速19km/h。适用于市区内的车辆行驶情况。 工况2(EUDC): 又称作“城郊高速公路工况”,EUDC工况一个循环为400秒,最高车速120km/h,平均车速62.5km/h。 目前一般是将工况1和2结合使用,即四个城市模拟工况加一个城郊模拟工况,如图1所示。工况总运行时间为1180秒,我国和欧洲均采用此测试工况。由图可知,无论是城市工况和市郊工况,变速度行驶时间都比较短,然而在市区日常使用中,基本上没有长时间稳定车速行驶工况出现。 图1 ECE+EUDC工况模拟循环 工况测试基本参数如表1所。

表1 基本参数 工况3(EUDC,Low Power): 此工况为车辆在低功率情况下行驶的城郊高速工况,最高车速为90km/h。与工况2相比,此工况车速达到90km/h后,没有继续加速至120km/h的过程,而是匀速到359秒时减速至0。 工况4(FTP75,Cold Start): 即Federal Test Procedure,是美国所采用的一种市区模拟循环测试工况,此工况分为三个阶段,包括冷启动阶段,暂态阶段和热启动阶段。其中从测速曲线图来看冷启动和热启动的车速曲线相同,分别运行时间为505秒,过渡阶段运行864秒,总计1874秒。最大车速91.45km/h,平均车速34.1km/h。工况4为冷启动阶段。 工况7(FTP75,Cold Start,Short): 从车速曲线上分析此工况为工况4的车速曲线进入第二次怠速之后的部分曲线。 工况8(FTP75,Transient): 此工况即为上文所提到的第二阶段,过渡阶段。 在实际测试过程中一般将三个阶段结合使用,测试曲线如图2所示。 图2 美国FTP75工况市区测试曲线

32_路面噪声传递路径分析与优化

路面噪声传递路径分析与优化 Transfer Path Analysis and Optimization of Road Noise 李朕王亮高亚丽王伟东 (泛亚汽车技术中心有限公司上海201209) 摘要:本文介绍了传递路径分析在路面噪声优化中的应用。借助HyperGraph的NVH分析模块,在纯仿真的环境下应用传递路径分析,在开发更早阶段找到问题根本原因。从本文的优化结果来看,基于纯仿真的传递路径分析周期短,优化效果好。 关键词:汽车NVH 路噪传递路径HyperGraph Abstract: Transfer path analysis was applied in road noise analysis. It is possible to find noise root cause in early stages of vehicle development process by using HyperGraph transfer path analysis in virtual environment. CAE based TPA is more efficient than test based TPA. Key Words: vehicle, NVH, road noise, TPA, HyperGraph 1 介绍 路面噪声是车辆NVH性能开发过程中控制的一个重要指标。它作为车内主要声源影响乘员舒适性。按照传递路径不同,路噪可分为结构传递声与空气传递声。本文介绍传递路径法(下文简称TPA)在结构传递声分析与优化中的应用。 结构传递路噪典型递路径如下。路面激励通过轮胎传递到轮心,轮心传入悬架,再通过悬架传递到车身。其中悬架与车身界面有多条传递路径。使用TPA方法能识别出噪声传递的主要路径和次要路径。随着建模、求解以及后处理的进步,基于仿真的TPA方法能够在早期快速准确的分析问题。 2 分析方法 影响路噪的主要因素有轮胎、悬架形式、衬套刚度以及车身侧底盘连接点的噪声传递函数。越软的衬套和轮胎隔振效果越好,对路噪越有利。但衬套过软会影响车辆的操控稳定性。为了不影响操控稳定性,本文重点关注车身噪声传递函数的优化。受限于燃油经济性的限制,传递函数优化不能以牺牲重量为代价。使用TPA方法识别出关键路径,能在不牺牲重量的情况下满足整车振动噪声的要求。

机械振动与噪声学习题集与答案

《机械振动噪声学》习题集 1-1 阐明下列概念,必要时可用插图。 (a) 振动; (b) 周期振动和周期; (c) 简谐振动。振幅、频率和相位角。 1-2 一简谐运动,振幅为 0.20 cm,周期为 s,求最大的速度和加速度。 1-3 一加速度计指示结构谐振在 82 Hz 时具有最大加速度 50 g,求其振动的振幅。 1-4 一简谐振动频率为 10 Hz,最大速度为 4.57 m/s,求其振幅、周期和最大加速度。1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。即: A cos n t + B cos (n t + ) = C cos (n t + ' ),并讨论=0、/2 和三种特例。 1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大? 1-7 计算两简谐运动x1 = X1 cos t和x2 = X2 cos ( + ) t之和。其中<< 。如发生拍的现象,求其振幅和拍频。 1-8 将下列复数写成指数A e i 形式: (a) 1 + i3 (b) 2 (c) 3 / (3 - i ) (d) 5 i (e) 3 / (3 - i ) 2 (f) (3 + i ) (3 + 4 i ) (g) (3 - i ) (3 - 4 i ) (h) ( 2 i ) 2 + 3 i + 8 2-1 钢结构桌子的周期= s,今在桌子上放W = 30 N 的重物,如图2-1所示。已知周期的变化= s。求:( a ) 放重物后桌子的周期;( b )桌子的质量和刚度。 2-2 如图2-2所示,长度为L、质量为m 的均质刚性杆由两根刚度为k 的弹簧系住,求杆绕O点微幅振动的微分方程。 2-3 如图2-3所示,质量为m、半径为r的圆柱体,可沿水平面作纯滚动,它的圆心O

LMS https://www.wendangku.net/doc/1013254685.html,b 传递路径分析

传递路径分析 探究振动噪声问题的根源 LMS https://www.wendangku.net/doc/1013254685.html,b传递路径分析提供了基于工程试验方法的系统级振动噪声解决方案,对关键零部件进行工程分析。 作为一个全面理解振动噪声问题的方法,TPA有助于对振动噪声问题进行故障诊断,并对每个关键零部件进行性能目标设定。 在一个由多个子结构组成的复杂结构(诸如汽车、飞机或船舶)中,某一特定位置的振动噪声现象往往是由一个远处的振动源所引起的。例如,能量可以通过不同的路径从汽车发动机传入驾驶室内:通过发动机悬置、排气系统连接点,甚至间接地通过传动轴和底盘悬架传入到驾驶室内。进气和排气系统的空气传播也会对振动噪声问题有一定的影响。 强大的传递路径分析技术能够解决这类振动噪声问题,它可以帮助工程师在设计早期检测到问题产生的根源。LMS https://www.wendangku.net/doc/1013254685.html,b提供高效的解决方案,以识别振动噪声问题及其产生的根本原因,并能够快速地评价设计修改。

从故障诊断到根源分析 传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置的各个结构传播和声传播的传递路径。一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易的设计工作。传递路径分析用于定量分析不同的激振源及其传递路径,并且计算出其中哪些是重要的,哪些对噪声问题有贡献,哪些会互相抵消。 激励源-路径-响应:系统级的方法 LMS https://www.wendangku.net/doc/1013254685.html,b传递路径分析是基于激励源-路径-响应的系统解决方案。所有的振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知的响应位置。通过分析激励源及传递路径对响应的影响,并可以通过对其中的某几个因素进行调整,来解决振动噪声问题。传递路径分析的目标是计算从源到响应的各条路径的矢量贡献量,识别出传递路径中各零部件的NVH特性,并通过对其调整来解决特定的问题。最终,TPA通过合理选择各个零部件的特性以避免振动噪声问题,从而有助于产品优化设计。 完整的解决方案 LMS https://www.wendangku.net/doc/1013254685.html,b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用的TPA解决方案。LMS https://www.wendangku.net/doc/1013254685.html,b可以通过各个可能的角度来帮助客户解决问题——从简单系统到复杂结构。LMS https://www.wendangku.net/doc/1013254685.html,b TPA综合了一系列TPA

水泵的串联运行和并联运行工况分析

泵的串联和并联运行 (1)两台相同特性泵的串联运行 图10-8中HⅠ是单台泵的特性曲线。HⅡ是两台泵串联工作时的合成特性曲线,它是在同一流量下两泵相应扬程(纵坐标)相加得到的。R是装置特性曲线。单台泵运转时工况点为A,两泵串联时工况点为B,由图可知,两台泵串联扬程和流量都增加,其增加程度和装置特性曲线的形状有关,但都小于单独运行时的两倍。 (2)不同特性泵的串联运行 图10-9中,HⅠ、HⅡ为两条单独运转时的特性曲线,HⅢ是串联合成特性曲线。R1,R2是两条装置特性曲线。当装置特性曲线为R1时,合成工况点为A,两泵的工况点分别为A1、A2。如果装置特性曲线为A2时,合成工况点为B。当阻力曲线在R2以下时,其运转状态是不合理的。在Q>QB时,两泵合成的扬程小于泵Ⅱ的扬程。若泵Ⅱ作为串联工作的第二级,则泵Ⅰ变为泵Ⅱ吸入侧阻力,使泵Ⅱ吸入条件变坏,有可能发生气蚀。若把泵Ⅰ作为串联工作的第二级,则泵Ⅰ变为泵Ⅱ排出侧的阻力,消耗一部分泵Ⅱ的扬程。

两台泵串联工作,第二级的压力增高,应注意校核轴封和壳体强度的可靠性。泵串联工作,按相同的流量分配扬程。 (3)相同特性泵的并联运转 图10-10中HⅠ(HⅡ)是单独一台泵的特性曲线。HⅢ是两泵并联合成的特性曲线,它是在相同扬程下两泵流量相加得到的。一台泵单独运转时的工况点为A1,合成工况点是A,各泵的实际工况点为B。一台泵运转时,流量为QA1,两台泵并联运行时的流量为QA。因QA=2QB<2QA1。即是说,由于管路阻力的存在,即使用两 台泵并联运行,总的合成流量也小于单独运行时流量的2倍。并联运行时的流量随装置特性曲线变陡而减小。

资料-基于LMS https://www.wendangku.net/doc/1013254685.html,b的破壁机振动噪声研究

1 引言 随着豆浆机使用的日益普及,作为豆浆机升级产品的破壁机因转速高破碎效果好等因素而受到市场的青睐,而噪声问题成为影响破壁机性能体验的关键因素。而振动噪声问题的解决不仅需要信号的采集,同时需要对信号处理分析等要求。 LMS https://www.wendangku.net/doc/1013254685.html,b是一整套的振动噪声试验解决方案,是高速多通道数据采集与 试验、分析、电子报告工具的完美结合,包括数据采集、数字信号处理、结构试验、旋转机械分析、声学和环境试验。 通过LMS https://www.wendangku.net/doc/1013254685.html,b的采集分析系统可以获得破壁机实际的模态振型和ODS振型,与CAE振动响应仿真结合,从而为得出了有益的结论。为破壁机的振动噪声研究提供了一个新的思路和方法。 2 传递路径分析与声源识别 2.1 破壁机噪声传递路径分析 破壁机主要由机头(含电机,控制板,刀架等)、机壳(盛装食材)、底座(支撑机身)三部分构成,工作时电机超高速运转(14900rpm),带动不锈钢刀片,在杯体内对食材进行超高速切割和粉碎,从而打破食材中细胞的细胞壁,将细胞 噪声主要来源和传递路径分析 2.2

声压全息法测试: 对破壁机采用近场声压测试,用麦克风测试距离被测物体表面10mm处的声压,获得各个点的频谱,然后按照频段将各个点的值画成等高线,数值大小用颜色表示。 图2 声压全息法声源识别(250HZ) 声压全息法测试结果显示:转速基频250Hz异音为主要异音频率,主要集中在杯座和底座,其中底座主要是3个侧面辐射出去,基座底部基频噪声较高,靠近后排风口处最高。 3仿真模型与测试的对比及分析 3.1 建立结构有限元模型和模态几何模型 仿真边界条件设置:整个破壁机采用重力作用下的预应力分析,底座胶垫底面和地面采用固定支撑,转子表面添加频率为250Hz的旋转离心力2.167N,杯中的水用质量点等效,绑定在杯子中部。将偏心力加载到电机结构有限元模型中,进行振动响应分析,获得各倍频下的振动响应(重点为基频)。

噪声与振动复习题及答案

噪声与振动复习题及参考答案(40题) 参考资料 1、杜功焕等,声学基础,第一版(1981),上海科学技术出版社。 2、环境监测技术规范(噪声部分),1986年,国家环境保护局。 3、马大猷等,声学手册,第一版(1984),科学技术出版社。 4、噪声监测与控制原理(1990),中国环境科学出版社。 一、填空题 1.在常温空气中,频率为500Hz的声音其波长为。 答:0.68米(波长=声速/频率) 2.测量噪声时,要求风力。 答:小于5.5米/秒(或小于4级) 3.从物理学观点噪声是由;从环境保护的观点,噪声是 指。 答:频率上和统计上完全无规的振动人们所不需要的声音 4.噪声污染属于污染,污染特点是其具有、、。 答:能量可感受性瞬时性局部性 5.环境噪声是指,城市环境噪声按来源可分 为、、、、。 答:户外各种噪声的总称交通噪声工业噪声施工噪声社会生活噪声 其它噪声 6.声压级常用公式Lp= 表示,单位。 答: Lp=20 LgP/P° dB(分贝) 7.声级计按其精度可分为四种类型:O型声级计,是;Ⅰ型声级计为;Ⅱ型声级计为;Ⅲ型声级计为,一般 用于环境噪声监测。 答:作为实验室用的标准声级计精密声级计普通声级计调查声级计不得 8.用A声级与C声级一起对照,可以粗略判别噪声信号的频谱特性:若A声级比C声级小得多时,噪声呈性;若A声级与C声级接近,噪声呈性;如果A声级比C声级还高出1-2分贝,则说明该噪声信号在 Hz 范围内必定有峰值。 答:低频性高频性 2000-5000 9.倍频程的每个频带的上限频率与下限频率之比为。1/3倍频程的每个频带的上限频率与下限频率之比 为;工程频谱测量常用的八个倍频程段是 Hz。 答:2 2-1/3 63,125,250,500,1K,2K,4K,8K 10.由于噪声的存在,通常会降低人耳对其它声音的,并使听阈,这种现象称为掩蔽。 答:听觉灵敏度推移 11.声级计校准方式分为校准和校准两种;当两种校准方式校准结果不吻合时,以校准结果为准。 答:电声声 12.我国规定的环境噪声常规监测项目为、和;选测项目有、和。 答:昼间区域环境噪声昼间道路交通噪声功能区噪声夜间区域环境噪声 夜间道路交通噪声高空噪声 13.扰民噪声监测点应设在。 答:受影响的居民户外1米处

传递路径分析法(TPA)进行车内噪声优化的应用研究

传递路径分析法(TPA)进行车内噪声优化的应用研究 作者:李传兵 摘要:本文基于传递路径分析方法并使用LMS 公司的相关软件,对开发中的某车型的车内轰鸣噪声问题进行了分析,找出了对车内轰鸣声贡献最大的传递路径,并通过有针对性地结构改进,有效地消除了该转速下的轰鸣声问题。 关键词:NVH 传递路径分析法(TPA,Transfer path analysis)贡献量分析 车内振动噪声可以看成是由多个激励经过多条传递路径到达目标点叠加而成的,如果能准确地判断出各主要激励源和传递路径的贡献量,并针对贡献量大的激励源和传递路径作相应的优化改进,则NVH 改进工作效率能得到大大的提高。为此,在汽车的NVH 性能分析中,常常将汽车简化为由激励源(振动源、噪声源)、传递路径和响应点组成的动态系统。能同时考虑激励源和传递路径的传递路径分析法在汽车NVH 性能开发中得到了广泛关注,各专业公司都纷纷开发专门的商业化测试分析系统,LMS 的TPA 分析软件无疑是其中的杰出代表,已成为在汽车领域应用最广泛的商业系统之一。 传递路径分析方法可以用于结构传播噪声和空气传播噪声问题的诊断、分析和优化,本文将以某车型的结构传播噪声优化为例,详细阐述LMS 传递路径分析方法的实际应用过程和效果。 一、(结构)传递路径分析法基本原理 假设汽车受m 个激励力作用,每一激励力都有x、y、z 三个方向分量,每一激励力分量都对应着n 个特定的传递路径,那么这个激励力分量和对应的某个传递路径就产生一个系统响应分量。以车内噪声声压作为系统响应,在线性系统的假设基础上,这个由于结构力输入产生的声压则可以表示为: 上式中,(ω) mnk H 是传递函数,(ω) nk F 是激励力。 由上式所知,激励力和频响函数是TPA 分析的输入量,因此进行TPA 分析需要做的工作

基于整车传递路径分析的加速工况车内噪声优化

基于整车传递路径分析的加速工况车内噪声优化 摘要针对某小型MPV建立加速工况整车传递路径分析模型,模拟得出车内噪声与实测车内噪声吻合度较高。基于TPA模型分析得出各激励源通过各传递路径对加速工况不同转速下各频率车内噪声的贡献量。基于分析结果制定实车优化方案,实车验证优化效果良好。 关键词贡献量分析;传递路径分析;优化预测 加速工况车内噪声是由多个激励通过多条路径传递至车内叠加而成。整车传递路径分析(TPA:Transfer Path Analysis)就是一个快速有效的方法。 1 传统TPA基本原理介绍 传统TPA作为最早提出的TPA分析方法,具有分析精度高,方法成熟可靠的优点。传统TPA理论公式为: 为目标点总声压,表示第i条传递路径上的结构载荷,表示第i条传递路径上的声学载荷,和分别表示对应结构路径和空气路徑的传递函数。传统TPA 的测试工作主要分为两个部分,即传递函数的测量和载荷识别。 1.1 传递函数测量 传递函数的测量分为直接测量法和互易性方法: ①直接测量法是在激励点用力锤或激振器激励,然后测量车内响应点声压。 ②互易性方法是利用线性系统的互逆性,在车内响应点激励,然后测量实车激励点振动响应。 本文利用力锤激励,采用直接法测量结构传递函数。利用互易法测量声学传递函数。 1.2 载荷识别 结构载荷识别方法可以分为直接测量法,悬置刚度法和逆矩阵法,本文采用逆矩阵法:由被动边参考点响应乘以传递函数矩阵的伪逆得到工作载荷[1]。 2 某小型MPV加速工况TPA分析 2.1 模型搭建 本次模型搭建在半消声室内进行,工况为3档全油门典型工况。主要激励源考虑动力总成、进排气,忽略路面噪声影响。传递路径氛围结构传递路径、空气

车内噪声传递路径分析方法探讨

第 27 卷第 3 期2007 年 9 月振动、测试与诊断 Jou rna l of V ib ra t ion,M ea su rem en t & D iagno sis V o l 27 N o. 3 . Sep. 2007 车内噪声传递路径分析方法探讨郭荣万钢赵艳男周江彬 ( 同济大学新能源汽车工程中心上海, 201804) 摘要为了指导汽车NV H 工程师更好地进行故障诊断和声学设计, 介绍了传递路径分析 ( T PA ) 方法的基本原理, 详细分析传递函数和激励力的测量方法, 并以某型汽车发动机振动噪声向车内传递为例, 介绍 T PA 方法的应用。试验结果表明, 应用 T PA 方法可有效、方便地进行噪声源识别和贡献分析。关键词车内噪声传递路径分析传递函数激励力贡献分析中图分类号U 461. 3 引言近年来, 人们对汽车行驶时的NV H 性能, 即噪声 (N o ise ) 、振动 (V ib ra t ion ) 、舒适性 (H a rshness) 越来越关心和重视, 车内的低噪声设计已成为产品开发中的重要研究课题[ 1 ]。传递路径分析 ( T ran sfer Pa th A na lysis, 简称 T PA ) 是一种以试验为基础的方法, 可让NV H 工程师寻找声源通过结构或空气传递到指定接受位置的振动——声学功率流。 PA 经常是与部分贡献的概 T [1 ] 念相联系的。这是由于传递路径分析中假设: 来自不同路径的所有部分贡献构成了总响应。对传递路径分析方法和应用许多研究者进行了大量的研。 1993 年, 文献 [ 1 ] 使用互易性机械2声学传递函数测量方法, 进行结构传递噪声诊断。1996 年, P. J. [2 ] G. van der L inden 等和 1997 年 W im H end ricx [ 1- 11 ] 的影响。文献 [ 8 ] 基于 T PA 技术提出了子系统目标设置方法, 即将系统级 NV H 目标分解到子系统级目标, 并以道路噪声问题描述该方法的应用。文献[ 9 ] 提出了基于传递路径矩阵转置的车身板件噪声贡献分析方法。 2005 年, 文献[ 10 ] 应用试验方法研究中频结构传递噪声, 通过阻抗方法和最小平方方法估计路径上的作用力, 并研究不同路径结构噪声的等级排序方法。文献 [ 11 ] 应用传递路径方法分析不同车身板件对车内噪声的贡献, 将驾驶舱分割成 7 个板件, 每个板件又分成20 个子板件。该文应用互易法测量空气声传递函数, 引入了新型传感器 ( 声学速度传感器) 阵列测量板件振速。当前, 系统的 T PA 方法在国外应用较为广泛而且还在不断发展, 我国汽车 NV H 领域应用还刚起步。本文将介绍 T PA 的基本原理, 详细分析传递函数和激励力的测量方法, 并以某型国产轿车为例介绍该方法的应用, 以期指导和帮助汽车NV H 工程师进行故障诊断和声学设计。Ξ 究等[ 3 ] 介绍空气传播声量化方法基本原理, 分析不同车身板件对车内噪声的贡献。 1999 年, 文献 [ 4 ] 引入间接力估计技术, 并把它应用于汽车传递路径分析。文献 [ 5 ] 提出了双通道传递路径分析 (B T PA ) 方法, 可用于汽车声品质、声学设计和故障诊断。 2003 年, 文献 [ 6 ] 介绍了 H ead 公司开发的用于 1基本原理 [1 ] T PA 方法的基本原理基于假设 : 来自不同路径的所有部分贡献构成了总响应 Pk = 测量声学传递函数以及结构2声学传递函灵敏双通道声源 ( 或称人工头扬声器) , 并把它可用于双通道传递路径分析。文献[ 7 ] 应用 T PA 方法研究发动机声品质, 研究不同部件改进对曲柄隆隆声主观感觉Ξ ∑P i, j ijk ( 1) 其中: P k 为乘员位置 k 处的总声压; P ijk 为传递途径 i 在 j 方向对乘员位置 k 总声压的部分贡献。 P ijk = H ijk S ij ( 2) 国家“八六三” 基金资助项目 ( 编号:

噪声与振动复习题及答案

噪声与振动复习题及参考答案(题) 参考资料 1、杜功焕等,声学基础,第一版(),上海科学技术出版社. 2、环境监测技术规范(噪声部分),年,国家环境保护局. 3、马大猷等,声学手册,第一版(),科学技术出版社. 4、噪声监测与控制原理(),中国环境科学出版社. 一、填空题 .在常温空气中,频率为地声音其波长为. 答:米(波长声速频率) .测量噪声时,要求风力. 答:小于米秒(或小于级) .从物理学观点噪声是由;从环境保护地观点,噪声是指. 答:频率上和统计上完全无规地振动人们所不需要地声音 .噪声污染属于污染,污染特点是其具有、、. 答:能量可感受性瞬时性局部性 .环境噪声是指,城市环境噪声按来源可分为、、、、. 答:户外各种噪声地总称交通噪声工业噪声施工噪声社会生活噪声 其它噪声 .声压级常用公式表示,单位. 答:°(分贝) .声级计按其精度可分为四种类型:型声级计,是;Ⅰ型声级计为;Ⅱ型声级计为;Ⅲ型声级计为,一般 用于环境噪声监测. 答:作为实验室用地标准声级计精密声级计普通声级计调查声级计不得 .用声级与声级一起对照,可以粗略判别噪声信号地频谱特性:若声级比声级小得多时,噪声呈性;若声级与声级接近,噪声呈性;如果声级比声级还高出分贝,则说明该噪声信号在范围内必定有峰值. 答:低频性高频性 .倍频程地每个频带地上限频率与下限频率之比为.倍频程地每个频带地上限频率与下限频率之比为;工程频谱测量常用地八个倍频程段是. 答:,,,,,,, .由于噪声地存在,通常会降低人耳对其它声音地,并使听阈,这种现象称为掩蔽. 答:听觉灵敏度推移 .声级计校准方式分为校准和校准两种;当两种校准方式校准结果不吻合时,以校准结果为准. 答:电声声 .我国规定地环境噪声常规监测项目为、和;选测项目有、和. 答:昼间区域环境噪声昼间道路交通噪声功能区噪声夜间区域环境噪声 夜间道路交通噪声高空噪声 .扰民噪声监测点应设在. 答:受影响地居民户外米处 .建筑施工场界噪声测量应在、、、四个施工阶段进行. 答:土石方打桩结构装修 .在环境问题中,振动测量包括两类:一类是振动测量;另一类是.造成人称环境振动. 答:对引起噪声辐射地物体对环境振动地测量整体暴露在振动环境中地振动 .人能感觉到地振动按频率范围划分,低于为低频振动;为中频振动;为高频振动.对人体最有害地振动是振动频率与人体某些器官地固有频率 地振动.

相关文档