文档库 最新最全的文档下载
当前位置:文档库 › 多线程设计要点

多线程设计要点

多线程设计要点
多线程设计要点

多线程设计要点

1.多线程中有主内存和工作内存之分,在JVM中,有一个主内存,专门负责所有线程

共享数据;而每个线程都有他自己私有的工作内存,主内存和工作内存分贝在JVM的stack区和heap区。

2.线程的状态有'Ready','Running','Sleeping','Blocked',和'Waiting'几个状

态,

'Ready'表示线程正在等待CPU分配允许运行的时间。

3.线程运行次序并不是按照我们创建他们时的顺序来运行的,CPU处理线程的顺序是不确定的,如果需要确定,那么必须手工介入,使用setPriority()方法设置优先级。

4.我们无从知道一个线程什么时候运行,两个或多个线程在访问同一个资源时,需要synchronized

5.每个线程会注册自己,实际某处存在着对它的引用,因此,垃圾回收机制对它就“束手无策”了。

6.Daemon线程区别一般线程之处是:主程序一旦结束,Daemon线程就会结束。

7.一个对象中的所有synchronized方法都共享一把锁,这把锁能够防止多个方法对通

用内存同时进行的写操作。synchronized static方法可在一个类范围内被相互间锁定起来。

8.对于访问某个关键共享资源的所有方法,都必须把它们设为synchronized,否则就不能正常工作。

9.假设已知一个方法不会造成冲突,最明智的方法是不要使用synchronized,能提高些性能。

10.如果一个"同步"方法修改了一个变量,而我们的方法要用到这个变量(可能是只读),最好将自己的这个方法也设为synchronized。

11.synchronized不能继承,父类的方法是synchronized,那么其子类重载方法中就不会继承“同步”。

12.线程堵塞Blocked有几个原因造成:

(1)线程在等候一些IO操作

(2)线程试图调用另外一个对象的“同步”方法,但那个对象处于锁定状态,暂时无法使用。

13.原子型操作(atomic),对原始型变量(primitive)的操作是原子型的atomic.意味

着这些操作是线程安全的,但是大部分情况下,我们并不能正确使用,来看看i=i+ 1,i是int型,属于原始型变量:

(1)从主内存中读取i值到本地内存.

(2)将值从本地内存装载到线程工作拷贝中.

(3)装载变量1.

(4)将i加1.

(5)将结果给变量i.

(6)将i保存到线程本地工作拷贝中.

(7)写回主内存.

注意原子型操作只限于第1步到第2步的读取以及第6到第7步的写,i的值还是可能被同时执行i=i+1的多线程中断打扰(在第4步)。

double和long变量是非原子型的(non-atomic)。数组是object非原子型。

14.由于13条的原因,我们解决办法是:

class xxx extends Thread{

//i会被经常修改

private int i;

public synchronized int read(){return i;}

public synchronized void update(){i=i+1;}

..........

}

15.Volatile变量,volatile变量表示保证它必须是与主内存保持一致,它实际是"

变量的同步",也就是说对于volatile变量的操作是原子型的,如用在long或double 变量前。

16.使用yield()会自动放弃CPU,有时比sleep更能提升性能。

17.sleep()和wait()的区别是:wait()方法被调用时会解除锁定,但是我们能使用它的地方只是在一个同步的方法或代码块内。

18.通过制造缩小同步范围,尽可能的实现代码块同步,wait(毫秒数)可在指定的毫秒数可退出wait;对于wait()需要被notisfy()或notifyAll()踢醒。

19.构造两个线程之间实时通信的方法分几步:

(1).创建一个PipedWriter和一个PipedReader和它们之间的管道;

PipedReader in=new PipedReader(new PipedWriter())

(2).在需要发送信息的线程开始之前,将外部的PipedWriter导向给其内部的Writer 实例out

(3).在需要接受信息的线程开始之前,将外部的PipedReader导向给其内部的Reader 实例in

(4).这样放入out的所有东西度可从in中提取出来。

20.synchronized带来的问题除性能有所下降外,最大的缺点是会带来死锁DeadLock,

只有通过谨慎设计来防止死锁,其他毫无办法,这也是线程难以驯服的一个原因。不要再使用stop()suspend()resume()和destory()方法

21.在大量线程被堵塞时,最高优先级的线程先运行。但是不表示低级别线程不会运行,运行概率小而已。

22.线程组的主要优点是:使用单个命令可完成对整个线程组的操作。很少需要用到线程组。

23.从以下几个方面提升多线程的性能:

检查所有可能Block的地方,尽可能的多的使用sleep或yield()以及wait();

尽可能延长sleep(毫秒数)的时间;

运行的线程不用超过100个,不能太多;

不同平台linux或windows以及不同JVM运行性能差别很大。

施井荣2015.12.18

多核与多线程技术的区别到底在哪里

多核与多线程技术的区别到底在哪里? 【导读】:毫无疑问的,“多核”、“多线程”此二词已快成为当今处理器架构设计中的两大显学,如同历史战国时代以“儒”、“墨”两大派的显学,只不过当年两大治世思想学派是争得你死我亡,而多核、多线程则是相互兼容并蓄,今日几乎任何处理器都朝同时具有多核多线程的路线发展迈进。毫无疑问的,“多核”、“多线程”此二词已快成为当今处理器架构设计中的两大显学,如同历史战国时代以“儒”、“墨”两大派的显学,只不过当年两大治世思想学派是争得你死我亡,而多核、多线程则是相互兼容并蓄,今日几乎任何处理器都朝同时具有多核多线程的路线发展迈进。 虽然两词到处可见,但可有人知此二者的实际差异?在执行设计时又是以何者为重?到底是该多核优先还是多线程提前?关于此似乎大家都想进一步了解,本文以下试图对此进行个中差异的解说,并尽可能在不涉及实际复杂细节的情形下,让各位对两者的机制观念与差别性有所理解。 行程早于线程 若依据信息技术的发展历程,在软件程序执行时的再细分、再切割的小型化单位上,先是有行程(Process),之后才有线程(Thread),线程的单位比行程更小,一个行程内可以有多个线程,在一个行程下的各线程,都是共享同一个行程所建立的内存寻址资源及内存管理机制,包括执行权阶、内存空间、堆栈位置等,除此之外各个线程自身仅拥有少许因为执行之需的变量自属性,其余都依据与遵行行程所设立的规定。 相对的,程序与程序之间所用的就是不同的内存设定,包括分页、分段等起始地址的不同,执行权阶的不同,堆栈深度的不同等,一颗处理器若执行了A行程后要改去执行B行程,对此必须进行内存管理组态的搬迁、变更,而这个搬迁若是在处理器内还好,若是在高速缓存甚至是系统主存储器时,此种切换、转移程序对执行效能的损伤就非常大,因为完成搬迁、切换程序的相同时间,处理器早就可以执行数十到上千个指令。 两种路线的加速思维 所以,想避免此种切换的效率损耗,可以从两种角度去思考,第一种思考就是扩大到整体运算系统的层面来解决,在一部计算机内设计、配置更多颗的处理器,然后由同一个操作系统同时掌控及管理多颗处理器,并将要执行的程序的各个程序,一个程序喂(也称:发派)给一颗处理器去执行,如此多颗同时执行,每颗处理器执行一个程序,如此就可以加快整体的执行效率。 当然!这种加速方式必须有一个先决条件,即是操作系统在编译时就必须能管控、发挥及运用多行程技术,倘若以单行程的系统组态来编译,那么操作系统就无法管控服务器内一颗以上的处理器,如此就不用去谈论由操作系统负责让应用程序的程序进行同时的多颗同时性的执行派送。 即便操作系统支持多程序,而应用程序若依旧只支持单程序,那情形一样是白搭,操作

Java架构师必备知识点(高级程序员教程必备)

Java架构师必备知识点(高级程序员教程) 2019年3月 一、并发编程 1.线程安全: 当多个线程访问某一个类(对象)时这个类始终都能表现出正确的行为,那么这个类(对象和方法)就是线程安全的。 2.synchronized: 可以在任意对象以及方法上加锁,而加锁的这段代码称为"互斥区"或者"临界区"。 一个线程想要执行synchronized修饰的方法里的内容,首先是尝试获得锁,如果拿到锁,执行synchronized方法体里面的内容 如果拿不到那么这个线程会不断的尝试获得这把锁,直到拿到为止,而且是多个线程去竞争这把锁。 3.多个线程多个锁: 多个线程,每个线程都将可以拿到自己指定的锁,分别获得锁之后,执行synchronized方法体的内容, 关键字synchronized获得的锁都是对象锁,而不是把一段代码(方法)当做锁,在静态方法上机上synchronized获得的锁为类级别的锁,表示锁定类。 4.对象锁的同步和异步: 同步synchronized:同步就是共享,同步的目的是为了线程安全,对于线程安全需要满足两个特性:原子性(同步)、可见性。 异步asynchronized:异步就是独立,相互之间不受任何制约。 5.脏读:

对于对象的同步和异步方法,我们在设计程序的时候,一定要考虑问题的整体,不然就会出现数据不一致错误,很经典的错误就是脏读(dityread)。 在我们对一个对象的方法加锁的时候,需要考虑业务的整体性,即为setValue和getValue方法同时加锁synchronized同步关键字 保证(service)业务逻辑层的原子性,不然会出现业务逻辑错误。 6.synchronized锁重入: 关键字synchronized拥有重入锁的功能,也就是在使用synchronized时,当一个线程得到一个对象的锁后,再次请求此对象时是可以再次得到该对象的锁。 7.出现异常,锁自动释放: 对于web应用程序,异常释放锁的情况,如果不及时处理,很可能对应用程序业务逻辑产生严重的错误。 比如:现在执行一个队列任务,很多对象都去在等待一个对象正确执行完毕再释放锁, 但是一个对象出现由于异常的出现,导致业务逻辑没有正常执行完毕,就是释放了锁,那么后面的对象执行的都是错误的业务逻辑。 8.synchronized代码块: 使用synchronized声明的方法在某些情况下是有弊端的,比如:A线程方法调用一个时间很长的任务,那么B线程 必须等待很长的时间才能执行,这样的情况下可以使用synchronized代码块去优化代码执行时间,也就是减小锁的时间。 synchronized可以使用任何object对象进行加锁,用法比较灵活,不要使用string的常量加锁,会出现死循环问题。 9.锁对象改变的问题: 当使用一个对象进行加锁的时候,要注意对象本身发生改变的时候,那

微服务框架的设计与实现

微服务框架的设计与实现① 张晶1, 黄小锋2, 李春阳3 1(北京中电普华信息技术有限公司, 北京100192) 2(中国电建集团国际工程有限公司, 北京100048) 3(国网信息通信产业集团有限公司, 北京100031) 摘 要: 相对于传统单块架构, 微服务框架具有技术选型灵活, 独立部署, 按需独立扩展等优点, 更适合当前互联网时代需求. 但微服务架构的使用引入了新的问题, 如服务注册发现、服务容错等. 对微服务框架引入的问题进行分析, 并给出了微服务框架的一种实现方案, 在框架层面解决服务注册发现、服务容错等共性问题, 使业务系统开发人员专注于业务逻辑实现, 简化系统开发的难度, 提高开发效率. 关键词: 微服务框架; 服务注册; 服务发现; 服务容错 Design and Implementation of Microservice Architecture ZHANG Jing1, HUANG Xiao-Feng2, LI Chun-Yang3 1(Beijing China Power Information Technology Co. Ltd., Beijing 100192, China) 2(PowerChina International Group Limited, Beijing 100048, China) 3(State Grid Information & Telecommunication Industry Group Co. Ltd., Beijing 100031, China) Abstract: Compared with traditional single block architecture, microservice architecture has many advantages, such as flexible technology selection, independent deployment, and independent scalability more suitability for the current needs of the internet age, etc. But microservice architecture also introduces new problems such as service registration, service discovery, service fault tolerance. On the basis of the analysis for problems mentioned above, this paper proposes one implementation of microservice framework, which can solve service registration, service discovery, service fault tolerance and other common problems. Based on this, developers only need to focus on the development of business functions, so that it can simplify the difficulty of system development and improve development effectiveness. Key words: microservice architecture; service registration; service discover; fault tolerance 传统信息化系统的典型架构是单块架构(Monolithic Architecture), 即将应用程序的所有功能都打包成一个应用, 每个应用是最小的交付和部署单元, 应用部署后运行在同一进程中. 单块架构应用具有IDE友好、易于测试和部署等优势, 但是, 随着互联网的迅速发展, 单块架构临着越来越多的挑战, 主要表现在维护成本高、持续交付周期长、可伸缩性差等方面[1]. 微服务架构(Microservices)的出现以及在国内外的成功应用, 成为系统架构的一种新选择. 很多大型宝等都已经从传统单块架构迁移到微服务架构[2]. 微服务架构提倡将单块架构的应用划分成一组小的服务, 互联网公司如Twitter、Netflix、Amazon 、eBay、淘服务之间互相协调、互相配合, 为用户提供最终价值. 1 微服务架构 微服务架构是一种架构模式, 采用一组服务的方式来构建一个应用, 服务独立部署在不同的进程中, 不同服务通过一些轻量级交互机制来通信, 例如RPC、HTTP等, 服务可独立扩展伸缩, 每个服务定义了明确的边界, 不同的服务甚至可以采用不同的编程语言来实现, 由独立的团队来维护[3]. 相对于传统的单体应用架构, 微服务架构具有单个服务易于开发、理解和维护; 复杂度可控; 技术选 ①收稿时间:2016-09-18;收到修改稿时间:2016-11-03 [doi: 10.15888/https://www.wendangku.net/doc/1113487895.html,ki.csa.005796]

多核处理器

多核处理器 多核处理器是指在一枚处理器中集成两个或多个完整的计算引擎(内核)。多核技术的开发源于工程师们认识到,仅仅提高单核芯片的速度会产生过多热量且无法带来相应的性能改善,先前的处理器产品就是如此。他们认识到,在先前产品中以那种速率,处理器产生的热量很快会超过太阳表面。即便是没有热量问题,其性价比也令人难以接受,速度稍快的处理器价格要高很多。 最新新闻 中国发布全球首款全系统多核高精度导航定位芯片 全球首款全系统多核高精度导航定位系统级芯片,13日在第六届中国卫星[2.10% 资金研报]学术年会期间对外发布。专家表示,这意味着国产芯片不仅具备国际竞争力,还从“跟踪者”跃升为“引领者”。...详情 内容来自 中文名多核处理器 定义集成两个或多个完整的计算引擎 第一颗通用型微处理器4004 技术优势采用了线程级并行编程 目录 1技术发展 2发展历程 3技术优势 4技术瓶颈 5技术原理 6技术关键 ?核结构研究 ?程序执行模型 ?Cache设计 ?核间通信技术 ?总线设计 ?操作系统设计 ?低功耗设计 ?存储器墙 ?可靠性及安全性设计 7技术意义 8技术种类 9技术应用 10应用 11英特尔 1技术发展 256线程的CPU 256线程的CPU 英特尔工程师们开发了多核芯片,使之满足“横向扩展”(而非“纵向扩充”)方法,从而提高性能。该架构实现了“分治法”战略。通过划分任务,线程应用能够充分利用多个执行内核,并可在特定的时间内执行更多任务。多核处理器是单枚芯片(也称为“硅核”),能够直

接插入单一的处理器插槽中,但操作系统会利用所有相关的资源,将每个执行内核作为分立的逻辑处理器。通过在两个执行内核之间划分任务,多核处理器可在特定的时钟周期内执行更多任务。多核架构能够使软件更出色地运行,并创建一个促进未来的软件编写更趋完善的架构。尽管认真的软件厂商还在探索全新的软件并发处理模式,但是,随着向多核处理器的移植,现有软件无需被修改就可支持多核平台。操作系统专为充分利用多个处理器而设计,且无需修改就可运行。为了充分利用多核技术,应用开发人员需要在程序设计中融入更多思路,但设计流程与对称多处理(SMP)系统的设计流程相同,并且现有的单线程应用也将继续运行。得益于线程技术的应用在多核处理器上运行时将显示出卓越的性能可扩充性。此类软件包括多媒体应用(内容创建、,以及本地和数据流回放)、工程和其他技术计算应用以及诸如应用服务器和数据库等中间非标轴承https://www.wendangku.net/doc/1113487895.html,层与后层服务器应用。多核技术能够使服务器并行处理任务,而在以前,这可能需要使用多个处理器,多核系统更易于扩充,并且能够在更纤巧的外形中融入更强大的处理性能,这种外形所用的功耗更低、计算功耗产生的热量更少。多核技术是处理器发展的必然。推动微处理器性能不断提高的因素主要有两个:半导体工艺技术的飞速进步和体系结构的不断发展。半导体工艺技术的每一次进步都为微处理器体系结构的研究提出了新的问题,开辟了新的领域;体系结构的进展又在半导体工艺技术发展的基础上进一步提高了微处理器的性能。这两个因素是相互影响,相互促进的。一般说来,工艺和电路技术的发展使得处理器性能提高约20倍,体系结构的发展使得处理器性能提高约4倍,编译技术的发展使得处理器性能提高约1.4倍。但是今天,这种规律性的东西却很难维持。多核的出现是技术发展和应用需求的必然产物。 2发展历程 1971年,英特尔推出的全球第一颗通用型微处理器4004,由2300个晶体管构成。当时,公司的联合创始人之一戈登摩尔(Gordon Moore),就提出后来被业界奉为信条的“摩尔定律”——每过18个月,芯片上可以集成的晶体管数目将增加一倍。 在一块芯片上集成的晶体管数目越多,意味着运算速度即主频就更快。今天英特尔的奔腾(Pentium)四至尊版840处理器,晶体管数量已经增加至2.5亿个,相比当年的4004增加了10万倍。其主频也从最初的740kHz(每秒钟可进行74万次运算),增长到现在的3.9GHz(每秒钟运算39亿次)以上。 当然,CPU主频的提高,或许在一定程度上也要归功于1975年进入这个领域的AMD公司的挑战。正是这样的“双雄会”,使得众多计算机用户有机会享受不断上演的“速度与激情”。一些仍不满足的发烧友甚至选择了自己超频,因为在玩很多游戏时,更快的速度可以带来额外的饕餮享受。 但到了2005年,当主频接近4GHz时,英特尔和AMD发现,速度也会遇到自己的极限:那就是单纯的主频提升,已经无法明显提升系统整体性能。 以英特尔发布的采用NetBurst架构的奔腾四CPU为例,它包括Willamette、Northwood和Prescott等三种采用不同核心的产品。利用冗长的运算流水线,即增加每个时钟周期同时执行的运算个数,就达到较高的主频。这三种处理器的最高频率,分别达到了2.0G、3.4G和3.8G。 按照当时的预测,奔腾四在该架构下,最终可以把主频提高到10GHz。但由于流水线过长,使得单位频率效能低下,加上由于缓存的增加和漏电流控制不利造成功耗大幅度增加,3.6GHz奔腾四芯片在性能上反而还不如早些时推出的3.4GHz产品。所以,Prescott产品系列只达到3.8G,就戛然而止。 英特尔上海公司一位工程师在接受记者采访时表示,Netburst微架构的好处在于方便提升频率,可以让产品的主频非常高。但性能提升并不明显,频率提高50%,性能提升可能微不

Windows多线程程序设计

Windows多线程程序设计- - 1、产生一个线程,只是个框架,没有具体实现。理解::CreateThread函数用法。 #include DWORD WINAPI ThreadFunc(LPVOID); int main() { HANDLE hThread; DWORD dwThreadID; hThread = ::CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)(ThreadFunc), NULL, 0, &dwThreadID); ...; return 0; } DWORD WINAPI ThreadFunc(LPVOID lParam) { ...; return 0; } 2、一个真正运转的多线程程序,当你运行它的时候,你会发现(也可能会害怕),自己试试吧。说明了多线程程序是无法预测其行为的,每次运行都会有不同的结果。 #include #include using namespace std; DWORD WINAPI ThreadFunc(LPVOID); int main() { HANDLE hThread; DWORD dwThreadID; // 产生5个线程 for(int i=0; i<5; i++)

{ hThread = ::CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)(ThreadFunc), (LPVOID)&i, 0, &dwThreadID); if(dwThreadID) cout << "Thread launched: " << i << endl; } // 必须等待线程结束,以后我们用更好的处理方法 Sleep(5000); return 0; } DWORD WINAPI ThreadFunc(LPVOID lParam) { int n = (int)lParam; for(int i=0; i<3; i++) { cout << n <<","<< n <<","<< n << ","< } return 0; } 3、使用CloseHandle函数来结束线程,应该是“来结束核心对象的”,详细要参见windows 多线程程序设计一书。 修改上面的程序,我们只简单的修改if语句。 if(dwThreadID) { cout << "Thread launched: " << i << endl; CloseHandle(dwThreadID); } 4、GetExitCodeThread函数的用法和用途,它传回的是线程函数的返回值,所以不能用GetExitCodeThread的返回值来判断线程是否结束。 #include #include using namespace std;

多线程编程的原则及要点

2.4多线程编程的原则及要点: 随着多核CPU的出世,多核编程方面的问题将摆上了程序员的日程,有许多老的程序员以为早就有多CPU的机器,业界在多CPU机器上的编程已经积累了很多经验,多核CPU上的编程应该差不多,只要借鉴以前的多任务编程、并行编程和并行算法方面的经验就足够了。 但是,多核机器和以前的多CPU机器有很大的不同,以前的多CPU机器都是用在特定领域,比如服务器,或者一些可以进行大型并行计算的领域,这些领域很容易发挥出多CPU的优势,而现在多核机器则是应用到普通用户的各个层面,特别是客户端机器要使用多核CPU,而很多客户端软件要想发挥出多核的并行优势恐怕没有服务器和可以进行大型并行计算的特定领域简单。 多核CPU中,要很好地发挥出多个CPU的性能的话,必须保证分配到各个CPU上的任务有一个很好的负载平衡。否则一些CPU在运行,另外一些CPU处于空闲,无法发挥出多核CPU 的优势来。 要实现一个好的负载平衡通常有两种方案,一种是静态负载平衡,另外一种是动态负载平衡。 1、静态负载平衡 静态负载平衡中,需要人工将程序分割成多个可并行执行的部分,并且要保证分割成的各个部分能够均衡地分布到各个CPU上运行,也就是说工作量要在多个任务间进行均匀的分配,使得达到高的加速系数。 2、动态负载平衡 动态负载平衡是在程序的运行过程中来进行任务的分配达到负载平衡的目的。实际情况中存在许多不能由静态负载平衡解决的问题,比如一个大的循环中,循环的次数是由外部输入的,事先并不知道循环的次数,此时采用静态负载平衡划分策略就很难实现负载平衡。 动态负载平衡中对任务的调度一般是由系统来实现的,程序员通常只能选择动态平衡的调度策略,不能修改调度策略,由于实际任务中存在很多的不确定因素,调度算法无法做得很优,因此动态负载平衡有时可能达不到既定的负载平衡要求。 3、负载平衡的难题在那里? 负载平衡的难题并不在于负载平衡的程度要达到多少,因为即使在各个CPU上分配的任务执行时间存在一些差距,但是随着CPU核数的增多总能让总的执行时间下降,从而使加速系数随CPU核数的增加而增加。 负载平衡的困难之处在于程序中的可并行执行块很多要靠程序员来划分,当然CPU核数较少时,比如双核或4核,这种划分并不是很困难。但随着核数的增加,划分的粒度将变得越来越细,到了16核以上时,估计程序员要为如何划分任务而抓狂。比如一段顺序执行的代码,放到128核的CPU上运行,要手工划分成128 个任务,其划分的难度可想而知。

医院网络架构设计与实现

医院网络架构设计与实现 [摘要]随着医院信息化进程的深入,医院信息平台的运行将越来越依赖基础网络的建设。网络成为医院各种关键数据的信息进行交互和传递的重要途径。多种网络架构拥有各自的优势与不足,下面就我对其的认识作出阐述和选择一种合适的网络基础架构。 [关键字] 内外网融合,内外网分离,结合 医院的网络基础架构发展至今,主要分为三种架构,分别是内外网融合的网络架构、内外网分离的网络架构、以及最近几年刚刚兴起的基于业务的无线网络平台架构,这是和医疗信息化的发展阶段分不开的。(内网外网的概念为逻辑上的划分,两种实际的物理架构中,逻辑上均包含内网和外网两部分。划分主要根据业务系统的对内对外服务属性,医疗核心业务相关度等特性来进行。) 首先先来简单认识一下内外网融合的网络架构、内外网分离的网络架构和无线网络平台架构和基于业务的无线网络平台架构以及他们的优缺点比较。 内外网融合的物理架构:就是医院的内网业务以及办公业务都在一张基础网络上运行,在这一网络架构之上,无论是数据的类型、重要程度,还是对网络的要求,以及数据流方向都不尽相同,使得网络数据复杂度提高而可控性下降。从介绍可知,所有业务都在一张基础网上,缺点明显可知,两网仅逻辑隔离,外网对设备的攻击可能引起

内外网络全面瘫痪。优点则是:可以保护投资,并且可以根据需要让某部分终端可以同时访问两个区域,而且内外网融合所需设备相对较少,在维护和购买设备方面都很大程度上减少了成本。 内外网分离的网络架构:就是将医院的内网和外网业务分别放在一张单独建立的网络上来运行,两网物理隔离,最大限度的保障内网业务及数据的安全。内网主要承载医疗核心业务,如HIS、PACS 等。外网作为行政办公、对外发布、互联网医学资料查询的主要平台,对于稳定性和保密的性的要求低于内网,并且接入终端及数据流特点也更为复杂。优点:内外网无共用设备和链路,两网之间互不影响。此种网络架构设计,能够最大程度保证内网安全。缺点:由于内外网完全物理隔离,两张网络单独建设,投资规模增大;灵活性稍弱,一台终端只属于一张网,不能同时对两网资源进行访问,也不能自由切换;需要管理两张网络,增加管理成本 无线网络与上述两种相比大大不同,它是采用无线传输媒介的计算机网络,结合了最新的计算机网络技术和无线通信技术。首先,无线局域网是有线局域网的延伸。使用无线技术来发送和接收数据,减少了用户的连线需求。由于采用无线信号通讯,在网络接入方面就更加灵活了,只要有信号就可以通过无线网卡完成网络接入的目的;同时网络管理者也不用再担心交换机或路由器端口数量不足而无法完成扩容工作了。但是无线网络初次建设成本较高,很多条件不是很好的医院都无法实现;部署时需要改动现有网络结构,对原网络进行调整,增加初次部署复杂度,随着无线网络带宽以及传输数据

实验五 多线程程序设计(汽院含答案)

实验五多线程程序设计 实验目的 1.掌握Java语言中多线程编程的基本方法 2.掌握Runnable接口实现多线程的方法 3.掌握Thread类实现多线程的用法 实验导读 1.进程和线程的概念 进程是程序一次动态执行的过程,对应从代码加载、执行到执行结束这样一个完整的过程,也是进程自身从产生、发展到消亡的过程。 线程是比进程更小的执行单元,一个进程在执行过程中,可以产生多个线程。每个线程都有自身的产生、执行和消亡的过程。 2.线程的状态与生命周期 ●新建:当一个Thread类或其子类的对象被声明并创建时,新生的线程对象处于新建状态。此时它 已经有了相应的内存空间和其他资源。 ●运行:线程创建之后就具备了运行的条件,一旦轮到它来享用CPU资源时,即JVM将CPU使用权 切换给该线程时,此线程的就可以脱离创建它的主线程独立开始自己的生命周期了(即run方法执行的过程)。 ●中断:有4种原因的中断,CPU资源从当前线程切换给其他线程、执行了sleep(int millsecond)方法、 执行了wait()方法、进入阻塞状态。 ●死亡:run方法结束。 3.线程的创建 在Java语言中,与线程支持密切相关的是https://www.wendangku.net/doc/1113487895.html,ng.Thread类和https://www.wendangku.net/doc/1113487895.html,ng.Runnable接口。Runnable接口定义很简单,只有一个run方法。任何一个类如果希望自己的实例能够以线程的形式执行,都可以来实现Runnable接口。 继承Thread类和实现Runnable接口,都可以用来创建Thread对象,效果上并没有什么不同。继承Thread 类的方法很明显的缺点就是这个类不能再继承其他的类了,而实现Runnable接口不会有这个麻烦。 另外,在继承Thread类的代码中,this其实就是指当前正在运行的线程对象,如果使用实现Runnable 接口的方式,要得到当前正在执行的线程,需要使用Thread.currentThread()方法。 线程创建后仅仅是占有了内存资源,在JVM管理的线程中还没有这个线程,此线程必须调用start()方法(从父类继承的方法)通知JVM,这样JVM就会知道又有一个新一个线程排队等候切换了。 注意:多次启动一个线程,或者启动一个已经运行的线程对象是非法的,会抛出IllegalThreadStateException异常对象。 4.线程的优先级 同一时刻在等待队列中的线程会有很多个,它们各自任务的重要性有所不同。为了加以区分,使工作安排和资源分配时间更为合理,每个线程可以被赋予不同的优先级,让任务比较急的线程拥有更高的优先级,从而更快地进入执行状态。 Java中提供了10个等级的线程优先级,最低为Thread.MIN_PRIORITY=1,最高为

操作系统对多核处理器的支持方法

随着多核处理器的发展,对软件开发有非常大的影响,而且核心的瓶颈在软件上。软件开发在多核环境下的核心是多线程开发。这个多线程不仅代表了软件实现上多线程,要求在硬件上也采用多线程技术。可以说多核提供了可以大幅提升性能的机制,多核软件就是可以真正利用这一特点的策略。只有与多核硬件相适应的软件,才能真正地发挥多核的性能。多核对软件的要求包括对多核操作系统的要求和对应用软件的要求。 多核操作系统的关注点在于进程的分配和调度。进程的分配将进程分配到合理的物理核上,因为不同的核在共享性和历史运行情况都是不同的。有的物理核能够共享二级cache,而有的却是独立的。如果将有数据共享的进程分配给有共享二级cache的核上,将大大提升性能;反之,就有可能影响性能。进程调度会涉及到比较广泛的问题,比如负载均衡、实时性等。 面向多核体系结构的操作系统调度目前多核软件的一个热点,其中研究的热点主要有下面几方面:程序的并行研究;多进程的时间相关性研究;任务的分配与调度;缓存的错误共享;一致性访问研究;进程间通信;多处理器核内部资源竞争等等。这些探讨相互独立又相互依赖。考虑一个系统的性能时必须将其中的几点同时加以考虑,有时候对一些点的优化会造成另一些点的性能下降,需要用程序进行性能优化评测,所以合适的多核系统软件方案正在形成过程中。 任务的分配是多核时代提出的新概念。在单核时代,没有核的任务分配的问题,一共只有一个核的资源可被使用。而在多核体系下,有多个核可以被使用。如果系统中有几个进程需要分配,是将他们均匀地分配到各个处理器核,还是一起分配到一个处理器核,或是按照一定的算法进行分配。并且这个分配还受底层系统结构的影响,系统是SMP构架还是CMP构架,在CMP构架中会共享二级缓存的核的数量,这是影响分配算法的因子。任务分配结束后,需要考虑任务调度。对于不同的核,每个处理器核可以有自己独立的调度算法来执行不同的任务(实时任务或者交互性任务),也可以使用一致的调度算法。此外,还可以考虑一个进程上一个时间运行在一个核上,下一个时间片是选择继续运行在这个核上,还是进行线程迁移;怎样直接调度实时任务和普通任务;系统的核资源是否要进行负载均衡等等。任务调度是目前研究的热点之一。 在单核处理器中,常见的调度策略有先到先服务(FCFS),最短作业调度(SJF),优先级调度(Priority-scheduling algorithm),轮转法调度(round-robin RR),多级队列调度(multilevel queue-schedule algorithm)等。例如在Linux操作系统中对实时任务采取FCFS和RR两种调度,普通任务调度采取优先级调度。 对于多核处理器系统的调度,目前还没有明确的标准与规范。由于系统有多个处理器核可用,必须进行负载分配,有可能为每个处理器核提供单独的队列。在这种情况下,一个具有空队列的处理器就会空闲,而另一个处理器会很忙。所以如何处理好负载均衡问题是这种调度策略的关键问题所在。为了解决这种情况,可以考虑共同就绪队列,所有处理器公用一个就绪队列。但是这无疑对进程上下文切换、锁的转换增加了执行时间,降低了性能。另外一种想法就是选择一个处理器来为其他处理器调度,因而创建了主从结构。有的系统将主从结构作进一步扩

java多线程设计模式-WorkerPattern

多线程经典实例 java语言已经内置了多线程支持,所有实现Runnable接口的类都可被启动一个新线程,新线程会执行该实例的run()方法,当run()方法执行完毕后,线程就结束了。一旦一个线程执行完毕,这个实例就不能再重新启动,只能重新生成一个新实例,再启动一个新线程。 Thread类是实现了Runnable接口的一个实例,它代表一个线程的实例,并且,启动线程的唯一方法就是通过Thread类的start()实例方法: Thread t = new Thread(); t.start(); start()方法是一个native方法,它将启动一个新线程,并执行run()方法。Thread类默认的run()方法什么也不做就退出了。注意:直接调用run()方法并不会启动一个新线程,它和调用一个普通的java方法没有什么区别。 因此,有两个方法可以实现自己的线程: 方法1:自己的类extend Thread,并复写run()方法,就可以启动新线程并执行自己定义的run()方法。例如: public class MyThread extends Thread { public run() { System.out.println("MyThread.run()"); } } 在合适的地方启动线程:new MyThread().start(); 方法2:如果自己的类已经extends另一个类,就无法直接extends Thread,此时,必须实现一个Runnable接口: public class MyThread extends OtherClass implements Runnable { public run() { System.out.println("MyThread.run()"); } } 为了启动MyThread,需要首先实例化一个Thread,并传入自己的MyThread实例: MyThread myt = new MyThread(); Thread t = new Thread(myt); t.start();

DSRC通信系统架构设计与实现

DSRC通信系统架构设计与实现 【摘要】本文通过对DSRC系统的架构分析,设计了车车与车路信息交互平台的通信软件与MFC通信显示界面,在平台架构基础上进行了实车传输车身信号数据测试,试验结果表明,所设计的通信系统平台架构合理,并且能够满足包括车辆安全所需求的通信标准。 【关键词】DSRC;MFC;socket;车路通信 0 引言 21世纪将是公路交通智能化的世纪,人们将要采用的智能交通系统,是一种先进的一体化交通综合管理系统。ITS是智能交通系统(Intelligent Transportation System)的简称,是未来交通系统的发展方向,它是将先进的信息技术、数据通讯传输技术、电子传感技术、控制技术及计算机技术等有效地集成运用于整个地面交通管理系统而建立的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合交通运输管理系统[1-2]。 DSRC 采用专为车间通信的WA VE规范以及根据IEEE802.11标准修改制定的IEEE 802. 11p 标准。目前许多文献针对DSRC所进行的研究主要集中在对通信协议或者交通系统某一项参数设置不同时所得出的通信系统实时性与延迟性的研究,但是并没有针对整个ITS系统的架构角度来考虑对DSRC通信系统的实现。 本文针对DSRC在ITS环境下的系统架构,提出了智能通信平台的整个设计,对于DSRC系统的通信软件架构的编写与实车试验,揭示了DSRC在ITS 道路环境下架构设计流程与实车通信效果。 1 DSRC通信平台系统架构设计与仿真 1.1 DSRC系统架构之间的关系 DSRC系统主要包括三个部分:车载单元(OBU)、路边单元(RSU)以及专用短程通信协议。通过车载OBU收发器与路侧RSU收发器,可实现车辆与道路之间的信息交互。DSRC协议是在OSI的基础上提出的三层协议结构,即物理层、数据链路层(LLC与MAC子层)、应用层,如图1所示。 图1 调制方式系统架构的关系 Fig.1 Relationship between the modulation and system architecture 1.2 智能交互系统平台通信socket编写(物理层与数据链路层)

多核处理器的优点和缺点

三、多核处理器的优点和缺点 从应用需求上去看,越来越多的用户在使用过程中都会涉及到多任务应用环境,日常应用中用到的非常典型的有两种应用模式。 一种应用模式是一个程序采用了线程级并行编程,那么这个程序在运行时可以把并行的线程同时交付给两个核心分别处理,因而程序运行速度得到极大提高。这类程序有的是为多路工作站或服务器设计的专业程序,例如专业图像处理程序、非线视频编缉程序、动画制作程序或科学计算程序等。对于这类程序,两个物理核心和两颗处理器基本上是等价的,所以,这些程序往往可以不作任何改动就直接运行在双核电脑上。 还有一些更常见的日常应用程序,例如、等,同样也是采用线程级并行编程,可以在运行时同时调用多个线程协同工作,所以在双核处理器上的运行速度也会得到较大提升。例如,打开浏览器上网。看似简单的一个操作,实际上浏览器进程会调用代码解析、播放、多媒体播放、、脚本解析等一系列线程,这些线程可以并行地被双核处理器处理,因而运行速度大大加快(实际上浏览器的运行还涉及到许多进程级的交互通信,这里不再详述)。由此可见,对于已经采用并行编程的软件,不管是专业软件,还是日常应用软件,在多核处理器上的运行速度都会大大提高。 日常应用中的另一种模式是同时运行多个程序。许多程序没有采用并行编程,例如一些文件压缩软件、部分游戏软件等等。对于这些单线程的程序,单独运行在多核处理器上与单独运行在同样参数的单核处理器上没有明显的差别。但是,由于日常使用的最最基本的程序——操作系统——是支持并行处理的,所以,当在多核处理器上同时运行多个单线程程序的时候,操作系统会把多个程序的指令分别发送给多个核心,从而使得同时完成多个程序的速度大大加快。 另外,虽然单一的单线程程序无法体现出多核处理器的优势,但是多核处理器依然为程序设计者提供了一个很好的平台,使得他们可以通过对原有的单线程序进行并行设计优化,以实现更好的程序运行效果。 上面介绍了多核心处理器在软件上面的应用,但游戏其实也是软件的一种,作为一种特殊的软件,对发展作出了较大的贡献。一些多线程游戏已经能够发挥出多核处理器的优势,对于单线程游戏,相信游戏厂商也将会改变编程策略,例如,一些游戏厂商正在对原来的一些单线程游戏进行优化,采用并行编程使得游戏运行得更快。有的游戏可以使用一个线程实现人物动画,而使用另一个线程来载入地图信息。或者使用一个线程来实现图像渲染中的矩阵运算,而使用另一个来实现更高的人工智能运算。如今,大量的支持多核心的游戏涌现出来,从而使得多核处理器的优势能得到进一步的发挥。 但布赖恩特直言不讳地指出,要想让多核完全发挥效力,需要硬件业和软件业更多革命性的更新。其中,可编程性是多核处理器面临的最大问题。一旦核心多过八个,就需要执行程序能够并行处理。尽管在并行计算上,人类已经探索了超过年,但编写、调试、优化并行处理程序的能力还非常弱。 易观国际分析师李也认为,“出于技术的挑战,双核甚至多核处理器被强加给了产业,而产业却并没有事先做好准备”。或许正是出于对这种失衡的担心,中国国家智能计算机中心主任孙凝辉告诉《财经》记者,“十年以后,多核这条道路可能就到头了”。在他看来,一味增加并行的处理单元是行不通的。并行计算机的发展历史表明,并行粒度超过以后,程序就很难写,能做到个以上的应用程

基于多线程的端口扫描程序课程设计报告

滁州学院 课程设计报告 课程名称: 设计题目:基于多线程的端口扫描程序 院部:计算机与信息工程学院 专业:网络工程 组别:第六组 起止日期: 2012 年12月31日~2013 年1月6日指导教师: 计算机与信息工程学院二○一二年制

课程设计任务书 目录 1 需求分析. 0 1..1 网络安全 0 1.2 课程背景 0 1.3 扫描器 0 1.4 多线程扫描器介绍 (1) 错误! 未定义书签。

错误! 未定义书签。 错误! 未定义书签。 错误! 未定义书签。 1.5 端口扫描 (2) 2 概要设计. (3) 2.1 整体框架设计 (3) 2.2 流程图描述 (3) 3 详细设计. (3) 3.1 端口扫描线程启动 (3) 3.2 GUI 图形界面 (5) 3.3 按钮监听及异常处理 (6) 4 调试与操作说明. (8) 4.1 运行界面 (8) 4.2 扫描结果 (8) 4.3 错误提示 (8) 5 课程设计总结与体会. (8) 6 参考文献. (9) 7 致谢. (9) 8 附录. 0 1 需求分析 1..1 网络安全二十一世纪是信息化、网络化的世纪,信息是社会发展的重要资源。信息安全保障能力是一个国家综合国力、经济竞争实力和生存能力的重要组成部分,是世界各国在奋力攀登的制高点。网络安全是指网络系统的硬件、软件及其系统中的数据受到保护,不因偶然的或者恶意的原因而遭到破坏、更改、泄露,系统连续可靠正常地运行。网络安全包括技术领域和非技术领域两大部分: 非技术领域包括一些制度、政策、管理、安全意识、实体安全

等方面的内容; 技术领域包括隐患扫描、防火墙、入侵检测、访问控制、虚拟专用网、CA 认证、操作系统等方面的内容。这些技术的目标是保证信息的可控性、可用性、保密性、完整性、和不可抵赖性。端口扫描属于安全探测技术范畴,对应于网络攻击技术中的网络信息收集技术。 1.2 课程背景 随着Internet 的不断发展,信息技术已成为促进经济发展、社会进步的巨大推动力。端口扫描技术是网络安全扫描技术一个重要的网络安全技术。与防火墙、入侵检测系统互相配合,能够有效提高网络的安全性。安全扫描是安全技术领域中重要的一类。通过扫描能自动检测远端或本地主机系统信息,包括主机的基本信息(如计算机名、域名、组名、操作系统 型等)、服务信息、用户信息以及漏洞信息,它的重要性在于能够对网络进行安全评估,及时发现安全隐患,防患于未然。 网络的安全状况取决于网络中最薄弱的环节,任何疏忽都有可能引入不安全的因素,最有效的方法是定期对网络系统进行安全分析,及时发现并修正存在的脆弱,保证系统安全。 国外安全扫描技术的历史可以追溯到20 世纪90 年代,当时因特网刚刚起步,但是在过去的十年内,扫描技术飞速发展,迄今为止,其扫描技术已经非常完善,但是在全面性,隐蔽性和智能性上还有待提高。安全扫描从最初专门为UNIX 系统而编写的一些只有简单功能的小程序发展到现在,已经出现了可以运行多个操作系统平台上的,具有复杂功能的系统程序。 国内的扫描技术是在国外的扫描器基础上发展起来的。其中有一些专门从事安全技术的公司。这些公司的扫描器以硬件为主,其特点是执行速度快,不像软件一样受到安装主机系统的限制。 然而对于更多的基于主机的端口扫描而言,简单,实用,可靠才是它们的长处。 1.3 扫描器扫描器是一种自动检测远程或本地主机安全性弱点的程序,通过使用扫描器你可以不留痕迹的发现远程服务器的各种TCP端口的分配。这就能让我们间接的或直观的了解到远程主机所存在的安全问题。为了保证网络中计算机的安全性,必须采取主动策略, 快速、及时、准确、安全的检测出网络中计算机及防火墙开放的和未开放的端口。计算机端口扫描技术就是这种主动防御策略实现的重要技术手段。 扫描器采用模拟攻击的形式对目标可能存在的已知安全漏洞进行逐项检查。目标可以是工作站、服务器、交换机、数据库应用等各种对象。然后根据扫描结果向系统管理员提供周 密可靠的安全性分析报告,为提高网络安全整体水平产生重要依据。在网络安全体系的建设中,安全扫描工具花费低、效果好、见效快、与网络的运行相对对立、安装运行简单,可以大规模减少安全管理员的手工劳动,有利于保持全网安全政策的统一和稳定。 1.4 多线程扫描器介绍 在java 中,组件放置在窗体上的方式是完全基于代码的。组件放置在窗体上的方式通常不是通过绝对坐标控制,而是由“布局管理器”根据组件加入的顺序决定其位置。每个容器都有一个属于的自己布局管理器。使用不同的布局管理器,组件大小,位置和形状将大不相同。表格型布局管理器将容器划分成为一个多行多列的表格,表格的大小全部相同,是由其中最大的组件所决定。通过add 方法可以将组件一一放在每个表格

Java设计模式详解

Java私塾《深入浅出学Java开发高级》 ——系列精品教程

课程概览 n学习Java开发高级部分的理论知识 n第一章:Java程序设计基础 n第二章:设计模式基础 n第三章:框架的基本概念 n第四章:Java程序设计中最基本的设计模式 n第五章:Java程序设计和设计模式的应用 真正高质量培训签订就业协议网址:https://www.wendangku.net/doc/1113487895.html,

第一章Java程序设计基础 真正高质量培训签订就业协议网址:https://www.wendangku.net/doc/1113487895.html,

Java程序设计的基本概念 n什么是程序设计 软件开发的过程,基本上是先分析需要解决的问题(用户需求),找出解决的办法,然后把解决办法用相应的程序语言进行表达(也就是编写程序),最后使用编好的程序去解决问题的这么个过程。 而所谓的程序设计,指的就是:在软件开发的过程中,如何找出解决问题的方法,找到办法过后,如何合理的划分程序结构,合理的组织程序代码,这样的一个过程就是程序设计。 n程序设计能干什么 好的程序设计能让程序:更好的完成用户的需求功能;有更合理的程序架构;更好的程序性能;更好的复用性;更好的可扩展性、可维护性、可配置性、可伸缩性;更好的健壮性;更好的稳定性等等。 真正高质量培训签订就业协议网址:https://www.wendangku.net/doc/1113487895.html,

Java程序设计的基本原则-1 n面向接口编程 这是Java编程里面大家公认的第一原则 n优先使用对象组合而非类继承 n分层 最典型的三层架构,表现层--〉逻辑层--〉数据层 表现层功能:展示数据、人机交互、收集参数调用逻辑层 逻辑层功能:进行数据的逻辑校验、进行逻辑判断、实现业务功能、处理相关功能、处理后续流程、组织数据返回给表现层 数据层功能:实现数据持久化、实现对象和持久化数据的双向映射 n层间交互的基本原则 1:表现层调用逻辑层,逻辑层调用数据层,不可以反过来 2:层间交互也应该通过接口进行调用,以确保各层的实现独立变化 真正高质量培训签订就业协议网址:https://www.wendangku.net/doc/1113487895.html,

相关文档
相关文档 最新文档